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Abstract

This paper examines the effect of the water sprays commonly used to cool freshly drawn glass

fibers. A model has been developed using a Karman-Pohlhausen treatment of the velocity

and thermal boundary layers and accounting for the evaporation of an entrained water spray.

Solutions of the model equations have been calculated, and the effect of changing various

process parameters is studied. Variations in Sauter mean diameter, spray density, and spray

placement along the fiber are considered, as well as the effect of fiber diameter and drawing

speed. Fiber temperature profiles for different values of the process variables are presented.
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Nomenclature

Symbol Description

a fiber radius [m]

a1, a2, a3 β series expansion coefficients for small α

A1 kevap curve-fit coefficient [m2/sK2]

B (kρcp)
/
(kfρf cpf )

B1 kevap curve-fit coefficient [m2/sK]

C1 kevap curve-fit coefficient [m2/s]

cp air specific heat capacity [J/kgK]

cpf fiber specific heat capacity [J/kgK]

D0 initial droplet diameter [m]

D droplet diameter [m]

hfg latent heat of vaporization [J/kg]

k air thermal conductivity [W/m·K]

kf fiber thermal conductivity [W/m·K]

kevap evaporation coefficient [m2/s]

ṁ′′′ local volumetric evaporation rate [kg/m3s]

no environmental spray density [drops/m3]

n boundary layer spray density [drops/m3]

Pr Prandtl number

Q convective heat flow from fiber [W]

q̇e volumetric heating due to vaporization [W/m3]

t time [s]

T boundary layer air temperature [K]

Te environmental air temperature [K]

Tf fiber temperature [K]

u axial boundary layer velocity [m/s]

U fiber velocity [m/s]

v radial boundary layer velocity [m/s]

x axial distance from bushing plate [m]

X xν
/
Ua2

y radial distance from fiber surface [m]
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Greek Symbols

α velocity profile parameter

β temperature profile parameter

δ momentum boundary layer thickness [m]

δT thermal boundary layer thickness [m]

η dimensionless volumetric energy ratio, (ρcp)
/
(ρf cpf )

Θ boundary layer air temperature defect [K]

Θf fiber temperature defect [K]

µ dynamic viscosity [kg/m·s]

ν kinematic viscosity [m2/s]

ρ air density [kg/m3]

ρf fiber density [kg/m3]

ρw water density [kg/m3]
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Introduction

Glass fibers are used for reinforcement of products ranging from structural plastics to fabrics.

Such fibers are made by drawing molten glass through an array of small diameter bushings.

The glass solidifies within a few centimeters of the bushing and is then pulled a distance of

one to two meters prior to coating with various binders or sizing compounds. Typical fiber

diameters are 5-30 µm with drawing speeds varying from 15-90 m/sec and array sizes ranging

from several hundred to several thousand fibers. This process has been in use for several

decades [1].

The cooling of the fibers from the glass extrusion temperature (1500 K) to a temperature

where the coatings can be applied (below 365 K) is a rate limiting step. The high fiber speeds

and short drawing lengths require a temperature drop of over 1100 K in roughly 25 ms. In

order to enhance the heat removal from the fibers, the fiber bundle is sprayed with water from

atomizing nozzles. Typical Sauter mean droplet diameters are on the order of 15 to 20 µm

and droplet number densities may range from a few hundred per cm3 to a few thousand per

cm3, depending upon nozzle and airflow conditions. At the fiber temperatures involved, water

cannot wet the fiber surface without an initial quenching process. Moreover, at typical number

densities, droplet speeds, and fiber speeds, direct collisions of droplets with the fibers are

infrequent and will involve only a small percentage of the fiber surface. Thus, for most of the

fiber, cooling enhancement is evidently due primarily to evaporative effects in the air adjacent

to the fibers.

At present, no quantitative method is available for calculating the effect of the water spray

on the cooling rate of the fibers. Production stations have been designed through a trial and er-

ror process in nozzle placement and operating conditions. Determining the effects of changing

process parameters, such as spray size and density, is only possible through direct experimen-

tation on production systems, which is both time consuming and expensive. A model is needed

to calculate the effects of evaporative cooling on the manufacturing process. Such a model can

be used for improvement of the existing process and as a design tool for developing new pro-

cesses and products.

The basic problem of boundary layer growth and heat transfer from continuous cylinders

moving through a still fluid has been studied quite extensively. Early work by Seban and Bond

[2] and Glauert and Lighthill [3] examined stationary cylinders in a moving fluid. Sakiadis

4



[4] showed that the case of a moving cylinder in stationary fluid leads to different flow and

temperature fields; he developed a momentum integral solution for the boundary layer flow

around a moving cylinder using a logarithmic velocity profile. These integral solutions have

been used in many subsequent studies [5,6,7,8], and exact solutions of the boundary layer

equations by Sayles [9] lie within 9% of the integral solutions. Convection from isothermal

fibers was studied using integral results by Bourne and Elliston [5], assuming constant fluid

properties; exact solutions were obtained by Karnīs and Pechoc̄ [8] and were found to lie within

10% of the integral results. In addition, Beese and Gersten [10] have provided perturbation

solutions for isothermal fibers that are valid in the limit of large fiber diameter.

Of greatest relevance to our case are those studies that account for the finite heat capacity

and axial temperature drop of the fibers. Bourne and Dixon [6] used integral solutions for the

cooling fiber, neglecting conduction resistance within the fiber and using averaged values of

the fluid properties. Their results showed good agreement with experimental measurements

by Arridge and Prior [11] and by Alderson et al. [12] on 15 to 50 µm diameter on glass fibers.

They showed that attention to the averaging of temperature-dependent air properties was quite

important. Chida and Katto [7] subsequently amended the Bourne and Dixon theory to account

for radial heat conduction in the fibers; for conditions typical of glass fibers, radial conduction

proves to be negligible. Chida and Katto also developed scaling parameters for the problem

which were shown to collapse the above mentioned experiments. Maddison and McMillan [13]

reported further experiments on fiber cooling which were in general agreement with the results

of Arridge and Prior. Kang et al. [14] performed experiments on large diameter aluminum

cylinders drawn through air and water; they found good agreement with the scaled theoretical

results of Chida and Katto. Richelle et al. [15] provided exact solutions of the boundary layer

equations for moving fibers. Roy Chaudhury and Jaluria [16] performed numerical integrations

of the full elliptic equations and found agreement with the experimental studies that was similar

to that of Chida and Katto. Together, these studies provide strong validation of the integral

theory originally developed by Bourne and Dixon.

These studies focus on laminar flow in the boundary layers; at present, little is known about

the stability of these boundary layers. Several of the above studies [5,8,10,15], and others

[17,18], have also produced results for the Nusselt number of fibers moving through dry air.

We are aware of no work addressing spray cooling of glass fibers, although a large body of

work deals with other problems in spray cooling. Such studies include cooling of atomized flu-
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ids [19], cooling of large flat surfaces [20,21] through direct spray impingement on the surface,

and cooling of air by water spray [22,23]. A recent study by Buckingham and Haji-Sheikh [24]

considered spray cooling of large metal cylinders. Of particular relevance is their identification

of a convection-dominated cooling regime in which water spray was found to evaporate within

the boundary layer of a high temperature surface, without actually impinging upon it. This

process is quite similar to the one modeled here for glass fibers.

In this paper, we use the Karman-Pohlhausen integral method to develop a set of equations

that describe the growth of the fiber thermal boundary layer with droplet evaporation occurring

in the boundary layer. In the limit of no spray, our approach is identical to the Bourne and

Dixon theory [6], although we have not assumed constant fluid properties along the length of

the fiber. The boundary layer evaporation term is evaluated using a single droplet model, and

the resulting equations are used to calculate fiber temperature profiles for various spray and

fiber conditions. The fiber is assumed to travel through undisturbed ambient air within which

the spray is uniformly distributed. We assume throughout this study that the droplets are

dispersed in the boundary layer and do not directly interact with the fiber (e.g., through some

type of collision and film boiling process). We further assume that the boundary layer remains

laminar and that crossflows are unimportant. Radiation cooling of small diameter, high speed

fibers is easily shown to be small relative to forced convective cooling, and it is not included

here.

Development of Boundary Layer Evaporation Model

The boundary layer equations in cylindrical coordinates for laminar, steady state, incompress-

ible flow on a continuous moving fiber in still air are

∂u
∂x

+ ∂v
∂y

+ v
a+y = 0 (1)

ρu
∂u
∂x

+ ρv ∂u
∂y

= µ
(
∂2u
∂y2

+ 1
a+y

∂u
∂y

)
(2)

u
∂T
∂x

+ v ∂T
∂y

= k
ρcp(a+y)

∂
∂y

(
(a+y)∂T

∂y

)
+ 1
ρcp

q̇e (3)

where u is the axial velocity, v is the radial velocity, q̇e is a volumetric heat source due to

evaporation (W/m3), y is measured from the fiber surface, and the coordinate system is further
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described in Fig. 1. The position y = 0 corresponds to the fiber surface and x = 0 to the fiber

bushing plate. The fiber radius and fiber velocity are assumed constant over the length of the

fiber1. All equations are written in terms ofy rather than r to simplify the boundary conditions.

Equations (1) and (2) are subject to the boundary conditions

u = U,v = 0 at y = 0 (4)

u→ 0, v → 0 as y →∞ (5)

where U is the fiber speed, and equation (3) is subject to the boundary conditions

T(x,y) = Tf (x) at y = 0 (6)

T(x,y)→ T∞,
∂T
∂y

→ 0 as y →∞ (7)

where Tf (x) is the local fiber temperature. An additional boundary condition on equation (3)

is q̇e
∣∣
y=0 = 0. This condition arises from the assumption that no drops touch the surface of

the fiber.

Following the work of Glauert and Lighthill [3] for axial flow over a long cylinder and the

analyses of a continuous cylinder moving through a still fluid by Sakiadis and others [4,8], an

approximate velocity profile of the form

u
U
= 1− 1

α
ln(1+ y

a
) for y ≤ δ(x) (8)

u
U
= 0 for y ≥ δ(x) (9)

is assumed, where α is a function of x only, and the spray is assumed to have negligible

effect on the velocity boundary layer. (The number density of spray is relatively low and the

typically boundary layer thicknesses on long thin fibers are many times greater than typical

droplet diameters.) By setting u/U = 0, the boundary layer thickness δ, can be defined as

δ = a(eα − 1). As shown by Bourne and Elliston [5], an integral analysis of equations (1) and

(2) allows the relationship of the velocity profile parameter, α, to x to be evaluated as

2νx
Ua2

= e
2α − 1
α

+ Ei(2α)+ ln(2α)+ γ − 2 (10)

1The short necking region is neglected.
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where γ = .5572 . . . is Euler’s constant and Ei(2α) is the exponential integral. Note that equa-

tion (10) shows α to be a function of the parameter X = νx/Ua2.

To obtain a corresponding equation for the temperature profile in the presence of evapora-

tion, we consider the boundary layer control volume shown in Fig. 2. Neglecting conduction in

the x direction, an energy balance yields

d
dx

∫∞
0
ρcpT(x,y)u(x,y)2π(a+y)dy ∆x

= −2πak
∂T
∂y

∣∣∣∣∣
y=0

∆x +
∫∞

0
q̇e 2π(a+y)dy ∆x (11)

where u(x,y) is the boundary layer velocity profile, T(x,y) is the boundary layer temperature

profile and k is the thermal conductivity of the air.

Another equation is needed to determine the axial variation in fiber temperature. For fibers

with diameters less than 200 µm, Papamichael and Miaoulis [25] have shown that the effect

of axial conduction can be neglected. The analysis of Chida and Katto [7] shows that radial

conduction depends upon the parameter B = (kρcp)
/
(kfρf cpf ); for glass fibers drawn through

air, B is on the order of 1.6×10−5, and radial conduction may be ignored. Using a control volume

on a section of the fiber (Fig. 3), energy conservation for the fiber is described by

d
dx

(
πa2ρfcpf TfU

)
= 2πak

∂T
∂y

∣∣∣∣∣
y=0

(12)

where ρf is the fiber density, cpf is the fiber specific heat, and conduction along and across

the fiber is neglected. Defining the temperature defects

Θ(x,y) = T(x,y)− T∞ and Θf (x) = Tf (x)− T∞ (13)

a temperature distribution similar to the velocity distribution can be assumed [6]

Θ
Θf

= 1− 1
β

ln
(

1+ y
a

)
for y ≤ δT (14)

Θ
Θf

= 0 for y ≥ δT

where β is a function of x. This form of temperature profile is acceptable in so far as the

evaporative term in equation (3) is smaller than the others and acts to thin the boundary layer

over some distance in x, while having a small influence on the local shape in y . Evaporative
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effects will modify the evolution of β with x. Rearranging equation (12) and substituting for

the assumed temperature profile yields

aρfcpf U
2

dΘf
dx

= −kΘf
βa

(15)

which describes the decay of the fiber temperature.

After substituting for the velocity and temperature profiles and evaluating the integral on

the lefthand side of equation (11) with the assumption δ ≤ δT , the equation becomes

d
dx

[
1
4

a2ΘfUe2α (1−α+ β)
αβ

− 1
4

a2ΘfU (2αβ+α+ 1+ β)
αβ

]
=

−k
ρcp

(−Θf
β

)
+ 1
ρcp

⌠⌡ δT
0

q̇e(a+y)dy. (16)

Expanding the lefthand side of equation (16) leads to an expression in dα/dx, dΘf /dx and

dβ/dx, which can be simplified by using equation (15) to eliminate dΘf /dx and by using

dα
dx

= 2να2

Ua2
(−e2α +αe2α +α+ 1

) (17)

(from equation 10) to eliminate dα/dx and to transform dβ/dx to dβ/dα. A differential

equation for β is obtained

dβ
dα

= 2β
αPr

+ η
α2 Pr

(
e2α −αe2α + βe2α − 2αβ−α− 1− β

)

− β
α

(
2αe2α − 2α2e2α + 2αβe2α − e2α − βe2α + 1+ β

)
(−e2α +αe2α +α+ 1

) + 2β2

ΘfαkPr

⌠⌡ δT
0

q̇e (a+y)dy (18)

where Pr is the Prandtl number and η = (ρcp)
/
(ρcp)f ; in the absence of evaporative cooling,

β = β(X,Pr, η).

This result is correct as long as the velocity boundary layer δ is smaller than the thermal

boundary layer δT , which is the normal case for a Prandtl number less than unity. With the addi-

tion of spray, however, the thermal boundary layer will actually start to shrink until the thermal

boundary layer will be fully contained by the velocity boundary layer. When this happens, the

integration across the boundary layer of equation (11) is evaluated from 0 to δT = a(eβ − 1)

rather than 0 to δ = a(eα − 1). Using the same method as used to develop equation (18), the
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differential equation for β becomes

dβ
dα

= −2αβ
Pr




(
2e

2α

α − e2α − 1
α2 − e2α

α + 1
α

)
(−2βe2β − 2αβe2β + 2β2e2β + e2β +αe2β −α− 1

)



− 2αβ2

Θf kPr




(
2e

2α

α − e2α − 1
α2 − e2α

α + 1
α

)
(−2βe2β − 2αβe2β + 2β2e2β + e2β +αe2β −α− 1

)


⌠⌡ δT

0

q̇e (a+y)dy

+ η
Pr

(
−e2β −αe2β + βe2β + 2αβ+α+ 1+ β

)

×




(
2e

2α

α − e2α − 1
α2 − e2α

α + 1
α

)
(−2βe2β − 2αβe2β + 2β2e2β + e2β +αe2β −α− 1

)



+ β
α

(
−e2β + βe2β + 1+ β

)
(−2βe2β − 2αβe2β + 2β2e2β + e2β +αe2β −α− 1

) . (19)

The presence of Θf in equations (18) and (19) prevents direct integration of β with α. In

addition, the evaporation term will be shown to be a function of Θf . Equations (18) and (19)

can be used to evaluate the change in the thermal boundary layer due to normal boundary layer

growth and due to evaporation within the boundary layer. The value of β can be evaluated as

a function of α which in turn can be used to evaluate the fiber position. Knowledge of the

thermal boundary layer at any point on the fiber can then be used to evaluate the heat transfer

from the fiber to the surroundings.

Modeling Evaporation

Our aim is to evaluate the evaporation integrals in equations (18) and (19). We do this by calcu-

lating the total evaporation rate in successive differential control volumes of length ∆x along

the fiber; axial variations in the evaporation are accounted for in the subsequent numerical

integration of the equations in x. The evaporation rate in the increment ∆x is proportional to

the total droplet surface area and a temperature-dependent evaporation coefficient. The total

droplet surface area, in turn, depends upon the droplet size distribution and number density.

For evaporation, the droplet size distribution is best described using the Sauter mean diameter

(SMD), which is the diameter of a drop having the average surface area to volume ratio of the

entire spray cloud.
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Several approximations are made in modeling the droplet evaporation, the justification for

which is discussed in detail in [26]. The transient warm-up time of each drop presumed short

compared to droplet lifetime: the droplets quickly reach the wet-bulb temperature appropriate

to the local boundary layer air temperature and humidity. The droplets in the boundary layer

are assumed to be fully entrained and to travel at the air velocity corresponding to the radial

position of the center of the drop. The droplets in the boundary layer never touch the fiber

surface while fiber temperature is above the droplet saturation temperature; the solutions

obtained apply only to this nonwetting regime. The droplets in the boundary layer are assumed

to be uniform at the Sauter mean diameter.

A well-established formula exists for the evaporation rate of a single droplet [27]:

D2 = D2
0 − kevapt (20)

where D is the droplet diameter at time t, D0 is the original droplet diameter, and kevap is

an evaporation constant that is dependent on temperature and relative humidity and which

can be calculated using mass transfer theory [28]. The coefficient kevap was calculated for a

temperature range from 300 K to 1500 K using both low and high rate mass transfer theory,

and the resulting data were fit to second-order polynomial expressions of the form

kevap = A1T 2 + B1T + C1 (21)

where T is the local air temperature, which will vary with position y across the thickness of the

boundary layer and with distance x along the fiber. The air is assumed to have zero relative

humidity, giving an upper bound on the cooling effect. Evaluation of the total mass evaporated,

after integration of our equations, shows that axial increases in the relative humidity of air in

the boundary layer produce no more than a 4% decrease in the evaporation rate, and generally

much less than that. We have therefore neglected the effect of axial changes in the relative

humidity.

Within an annular section of the differential control volume, the volumetric evaporative

heat loss is simply the latent heat of vaporization at droplet temperature, hfg , times the mass

evaporation rate per unit volume, ṁ′′′ (kg/m3s), evaluated locally. Thus, the evaporative cool-

ing rate of the boundary layer increment can be expressed as an integral through the radial

thickness of the boundary layer:

⌠⌡ δT
0

q̇e 2π(a+y)dy ∆x =
⌠⌡ δT

0

hfgṁ′′′ 2π(a+y)dy ∆x. (22)
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The evaporation rate is the time rate of change of the mass of droplets per unit volume:

ṁ′′′ = d
dt

(
nρw

π
6
D3
)
= u(x,y) d

dx

(
nρw

π
6
D3
)
= u(x,y)ρw π

6

(
D3dn
dx

+ndD
3

dx

)
(23)

for n the local number density (droplets per m3), D the Sauter mean diameter of the spray, and

u(x,y) the local air speed.

In order to satisfy the condition that no droplets touch the fiber, a linear droplet density

distribution is assumed near the fiber

n = n0y
δ

(24)

where n0 is the droplet density outside the boundary layer and δ is the local boundary layer

thickness2. The number density, n0, is assumed to be independent of x after the point where

spraying is initiated; the spray is also assumed to have a uniform angular distribution about

the fiber. The evaporation rate can now be written with equation (8) as

ṁ′′′ = πρwn0y
2δ

[
U − U

α
ln
(

1+ y
a

)]
D2dD
dx

(25)

where the term dD/dx can be evaluated with equation (20) as

d
dx
D = d

dx

(
D2

0 − kevapt
) 1

2 = 1
2

(
D2

0 − kevapt
)− 1

2
(
−kevap

dt
dx

)
. (26)

The kinematic derivative dt/dx can be replaced by 1
/
u(x,y), and within the differential con-

trol volume of length ∆x, t can be approximated by ∆x
/
u(x,y). (For typical values of ∆x,

D2
0 � kevapt.) The dependence of kevap on local temperature in the boundary layer is repre-

sented using the polynomial fit (equation 21). Equation (26) becomes

d
dx
D = −1

2


D2

0 −
[
A1T 2 + B1T + C1

]
∆x

u(x,y)



− 1

2 (
A1T 2 + B1T + C1

u(x,y)

)
. (27)

Substituting equations (25), (27), and (20) into equation (22) and simplifying, we obtain a dis-
2A linear profile is the simplest assumption that satifies these boundary conditions; however, the decreasing

density is also expected because droplets nearer the fiber will move at higher axial speed, tending to lower particle

concentrations. Given that integral solutions are not strongly sensitive to the profile shape assumed, and given

that more detailed physical information about the number density profile is not currently available, we have

chosen to use the simplest approximation.
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cretized formulation of the integral

⌠⌡ δT
0

q̇e (a+y)dy ∆x = −
⌠⌡ δT

0

πρwhfgn0y(a+y)
4δ(x)

[
A1T(x,y)2 + B1T(x,y)+ C1

]

×

D2

0 −
(
A1T(x,y)2 + B1T(x,y)+ C1

)
∆x

u(x,y)




1
2

dy ∆x. (28)

Numerical Solution

If the boundary layer temperature profile at any point on the fiber is known, then the heat

transfer from the fiber can be calculated directly as

Q = −2πak
∂T
∂y

∣∣∣∣∣
y=o

∆x = −2πak
(−Θf
βa

)
∆x = 2πkΘf

β
∆x. (29)

Hence, a knowledge of β can be used to calculate the axial fiber temperature distribution (cf.,

equation 12). Equations (18) and (19) can be integrated from an initial α value to a final α value

to obtain the β value at any position on the fiber. The initial condition on equation (18) is β = 0

at α = 0, but this results in the equation being of an indeterminant form at α = 0. To evaluate

β for small values of α, a series expansion can be used in which β is approximated as

β = a1α+ a2α2 + a3α3 + · · · (30)

with

a1 = 1
2
(Pr+ 2)

Pr
(31)

a2 = (Pr− 1)(Pr+ 2)+ 4η
9 Pr (Pr+ 1)

(32)

a3 = (Pr− 1)(Pr+ 2)(3 Pr2 − 4 Pr− 2)+ 60(3 Pr2 + Pr+ 2)η+ 360η2

270(Pr+ 1)2(3 Pr+ 2)
(33)

In these relations, η = (ρcp)/(ρf cpf ) as before; η is on the order of 10−3 for glass fibers in

air. Equation (30) is used to evaluate β for α values from 0 to 0.08. The results from the series

expansion are used as initial conditions for equation (18).

To obtain a solution to the fiber temperature profile along the length of the fiber, a Fehlberg

fourth-fifth order Runge-Kutta method was used to forward integrate equations (18) and (19).
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The evaporation integral (equation 28) also lacks a closed form solution and must be evaluated

numerically. An adaptive Newton-Cotes method was used for the simulation. The integration

step length of α was decreased until the fiber temperature profile coverged to within 1 K at

1 m. Decreasing the step length more than this would not change the fiber temperature profile

by more than 1 K total no matter how much smaller the α increment was made, but decreasing

the increment step further greatly increased the number of calculations and the simulation run

time.

The simulation is designed to allow for initial spray induction to begin at any point x along

the fiber; the spray is present from that location onward. Before the spray appears in the bound-

ary layer, a no-spray solution is calculated by setting the spray density to zero. At the initial

point of contact with the spray, the β value from the no-spray solution is used to determine

the temperature profile. This profile is assumed constant over the small interval from αi to

αi+1. This profile along with the corresponding x values are used to evaluate the evaporation

integral. This numerical result is substituted back into the β differential equation which is then

forward integrated to find βi+1. With this value of β, the change in fiber temperature over ∆x

can be found using

∆T =
−2πak∂T∂y

∣∣∣∣
y=0

∆x

πa2ρfcpf U
= −2kΘf
a2βρfcpf U

∆x (34)

The fiber temperature at x + ∆x is simply Tx+∆x = Tx + ∆T , and this value is then used as

input to evaluate the evaporation term over the next interval. At each point, the α and β values

are compared to determine which differential equation for β (18 or 19) should be used. This

procedure is followed over the length of the fiber to solve for the fiber temperature profile.

The droplet diameter distribution at the beginning of any interval ∆x is assumed uniform

and equal to a specified SMD, representing the conditions in the air outside the boundary layer.

Variable property effects are handled by using a local average film temperature and polynomial

fits to tabulated data. The film temperature is changed for each successive increment of the

fiber. This is in contrast to most published results for fiber cooling which have assigned a

single property reference state along the entire length of the fiber.

Validation tests of the numerical model were performed in the limit of no spray. We ran

calculations corresponding to the cases that were evaluated numerically and experimentally

by Bourne and Dixon [6], with excellent agreement. As noted in the Introduction, subsequent

studies of the no-spray situation have repeatedly confirmed the findings in [6].
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Results

The numerical simulation has been run over a wide range of configurations, but for comparison

purposes a baseline case was chosen: a 10 µm diameter fiber drawn at 60 m/s through still air

at 320 K. The initial fiber temperature is 1500 K with a droplet density of 5000 drops/cm3 and

a representative Sauter mean diameter of 70 µm; these values are typical of the nozzles used

in the industrial glass fiber forming process. The spray was injected into the fiber boundary

layer at a distance x = 1.8 cm from the beginning of the fiber (corresponding to α = 5.0). The

baseline results for the no-spray and spray-cooled temperature profile are shown in Fig. 4. The

sprayed fiber cools significantly more rapidly. For example, without spray the fiber reaches

400 K at x = 1.2 m, whereas with spray that temperature is reached at x = 0.72 m, a 40%

reduction in distance. In terms of temperature differences, at a fiber position of x = 1 m the

temperature difference between the spray cooled and no spray case is about 90 K (163◦F).

Fiber temperature profiles were calculated using evaporation coefficients evaluated from

both low and high rate mass transfer theory. Although the evaporation coefficients from the

two theories vary significantly at high temperatures3, the fiber cooling predictions of the two

theories are almost identical. In the region of the boundary layer where the air temperatures

are very high and high rate theory is essential, the total cross-sectional area is very small

(proportional to (y + a)2). The majority of the boundary layer volume is in the region where

the temperatures are lower (T between 400 and 500 K) and the evaporation coefficients for the

high and low rate theories are close. Most of the evaporative cooling takes place in this outer

region of the boundary layer, and the evaporative cooling immediately adjacent to the fiber is

very small owing to the small cross-sectional area and lower droplet density.

One of the primary control variables in the manufacturing process is the spray condition,

specifically, the droplet size distribution and number density. The size distribution can be

changed by changing nozzle types or by operating the nozzles at a different line pressure.

The number density can be varied by changing the number of nozzles, changing the nozzle

placement, changing the nozzle type, or changing the operating pressure. In Fig. 5, the droplet

density varies from 0 to 10000 drops/cm3 while the SMD is held constant. As the droplet

density decreases, the temperature profile approaches the no spray profile. Conversely, as
3The values predicted by the two theories begin to diverge at about 500 K and differ by more than a factor of

two at an air temperature 1500 K. Note that the water temperature is limited to values below 100◦C at an ambient

pressure of 1 atm.
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number density increases, more liquid surface area is present and evaporative cooling effects

are stronger.

Finer atomization of a given liquid volume produces stronger evaporative effects. Figure 6

shows the effect of reducing the SMD of a fixed volume of water per unit volume of air; this is

equivalent to using successively finer atomizers at a fixed liquid flowrate. The spray volume

used corresponds to baseline conditions of 5000 drops/cm3 with an SMD of 70 µm. As SMD

is decreased, the spray number density is increased to keep the ratio of water volume to total

air volume constant. In the figure, as SMD decreases from 300 µm to 10 µm, the cooling of the

fiber becomes progressively more rapid. The smaller the SMD, the more cooling for the same

amount of water.

Figure 7 shows the thermal and momentum boundary layer thickness calculated with and

without spray. As has been established by previous studies of long thin fibers, the boundary

layer thickness may be more than two orders of magnitude greater than the fiber diameter.

Spray cooling greatly thins the thermal boundary layer, and this causes a significant increase

in the convective cooling of the fiber. The kink in the predicted boundary layer thickness with

spray results from the assumption that the spray is instantaneously introduced at x = 1.8 cm.

In reality, of course, the spray will require a certain distance to become distributed into the

boundary layer.

The axial position at which the spray initially enters the boundary layer has an effect on

the temperature profile. Figure 8 shows the fiber temperature profiles for spray entry points

ranging from 1.8 cm below the bushing plate to 71 cm below the bushing plate. In terms of the

fiber temperature beyond 90 cm from the bushing plate, it makes very little difference where

the spray enters the boundary layer. This demonstrates that final fiber temperature is not

sensitive to nozzle positioning along the fiber axis. If the objective is to simply cool the fiber

before the point where the surfactant is applied, then getting spray into the fiber bundle and

around each fiber is more important than having the spray contact each fiber at the same x

position. If the physical properties or residual stress state of the fiber require a certain cooling

rate between two particular temperatures, then vertical placement of the spray may become

critical.

As the position of spray introduction is moved farther down the fiber, the thickness of the

boundary layer into which the spray is injected becomes much greater. This in turn means

that the cooling effect of the spray is greatly increased, since much more spray is contained
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in a thicker boundary layer. That is the reason for the steeper cooling rates that occur in

Fig. 8 when the spray is added far downstream of the bushing plate. Introducing the farther

spray downstream also increases the numerical error in the calculations, owing to the much

more abrupt change in the boundary layer growth rate immediately following the point of

injection. Errors in the vicinity of the injection point affect the temperature profile along the

remaining length of the fiber. In our calculations, when the spray was introduced very close

to the beginning of the fiber (x = 1.8 cm), the numerical increment in α was decreased until

the fiber temperature profile converged within 1 K. When the spray was introduced farther

downstream, limitations in our computation led to errors of roughly 20 K at a distance x = 1 m;

these errors contribute to the separation of the spray-cooled temperature profiles seen in Fig. 8.

The fiber cooling rates with and without spray are affected by the fiber size and drawing

speed. Figure 9 shows the fiber temperature profile for a 10 µm fiber moving at 90 m/s. Spray

conditions in this case are the same as the baseline, with a spray density of 5000 drops/m3

and a SMD of 70 µm. Compared to the 10 µm fiber at 60 m/s (Fig. 4), the fiber temperature is

reduced less over the same length of fiber. The opposite effect is seen for a fiber moving more

slowly than the baseline condition. To illustrate the cooling of other sizes of fiber, Figure 10

shows the fiber temperature profile for a 25 µm fiber being drawn at 10 m/s. Spray cooling

reduces the temperature at x = 1 m from 490 K to 370 K. Fig. 11 shows the temperature profile

for a 5 µm fiber being drawn at 50 m/s. Spray cooling has much less of an effect on this small

fiber. Without spray cooling, the fiber has already cooled to the final state value long before

reaching 1 m. By x = 0.5 m, the fiber temperature is 320 K with spray cooling and 370 K

without.

Summary and Recommendations

A model has been developed to describe the evaporative cooling of spun glass fibers by water

sprays. This model can be used in designing and optimizing the spray processes used in glass

fiber manufacturing.

The main implications of the model results are as follow. Spray cooling acts to thin the

thermal boundary layers surrounding the fibers and to raise the convective heat removal from

the fibers. The effectiveness of spray cooling can be increased by improving the atomization

quality to give smaller droplets and by increasing droplet number density near the fibers. The
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majority of the cooling takes place in the outer edges of a fiber’s boundary layer. The vertical

placement of the spray nozzles within the fiber bundle is a less critical parameter. The degree

of spray cooling varies with fiber size and speed.

Three issues affecting the modeling of spray cooling require further study. The first is the

turbulent transition of the boundary layer, which is ill-characterized in the existing literature.

The second is the spray entrainment and dispersion within the axisymmetric fiber boundary

layer, and, more generally, within the entire bundle of many hundreds of fibers. The last is

the potential for droplet impact at high number density and high transverse droplet injection

speeds. The present results are for laminar boundary layers in which droplets are evenly dis-

persed and travel at the local air speed and in which droplets do not directly interact with the

fibers.
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Figure 1: Coordinate system
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Figure 2: Boundary layer control volume.
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Figure 3: Fiber control volume
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Figure 4: Baseline temperature profile for 10 µm fiber at 60 m/s.
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Figure 5: Temperature profile for varying droplet densities (SMD = 70 µm).
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Figure 6: Temperature profiles for constant volume of sprayed liquid (9.0 × 10−4 m3

water/m3 air). The uppermost curve is for no spray and the lowermost is for an SMD of 10 µm.

28



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.002

0.004

0.006

0.008

0.01

Fiber Position  (m)

B
ou

nd
ar

y 
La

ye
r 

T
hi

ck
ne

ss
  (

m
)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1

2

3

4

5

6
x 10

−3

Fiber Position  (m)

B
ou

nd
ar

y 
La

ye
r 

T
hi

ck
ne

ss
  (

m
)

δ             
δ

T
           

δ
T
 − No Spray

Figure 7: Thermal and velocity boundary layer thickness for baseline fiber conditions.
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Figure 8: Temperature profiles for varying spray contact points.
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Figure 9: Fiber temperature profile for 10 µm fiber at 90 m/s.
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Figure 10: Fiber temperature profile for 25 µm fiber at 10 m/s.
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Figure 11: Fiber temperature profile for 5 µm fiber at 50 m/s.
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