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Symmetry criteria for the equality
of interior and exterior shape
factors with exact solutions
Lienhard [1] reported that the shape factor of the interior of a simply-connected region (Ω)
is equal to that of its exterior (R2\Ω) under the same boundary conditions. In that study,
numerical examples supported the claim in particular cases; for example, it was shown
that for certain boundary conditions on circles and squares, the conjecture holds. In the
present paper, we show that the conjecture is not generally true, unless some additional
condition is met. We proceed by elucidating why the conjecture does in fact hold in
all of the examples analysed by Lienhard. We thus deduce a simple criterion which,
when satisfied, ensures the equality of interior and exterior shape factors in general.
Our criterion notably relies on a beautiful and little-known symmetry method due to
Hersch [2] which we introduce in a tutorial manner. In addition, we derive a new formula
for the shape factor of objects meeting our 𝑁-fold symmetry criterion, encompassing exact
solutions for regular polygons and more complex shapes.

Keywords: heat conduction, shape factor, interior, exterior, symmetry, conformal map-
ping, regular polygons, N-fold symmetry

1 Introduction
We consider steady heat conduction inside or outside a planar

object. The object has different sections of its boundary at one of
two temperatures, with the isothermal sections separated from one
another by adiabatic sections. Heat 𝑄 [W/m] then flows from the
high temperature portion of the boundary to the low temperature
portion of the boundary at a rate

𝑄 = 𝑆𝑘Δ𝑇 (1)

where 𝑆 is the shape factor, Δ𝑇 [K] is the temperature differ-
ence, and 𝑘 [W/m-K] is the object’s thermal conductivity. In two-
dimensional problems, 𝑆 is dimensionless and 𝑄 is the heat flow
per unit distance normal to the plane. The shape factor is scale
invariant and determined exclusively by the particular object’s ge-
ometry and boundary conditions. Shape factor theory is discussed
in detail in Refs. [3–5].

The heat flow can be calculated by solving the Laplace equation
in the domain of interest, and then integrating the heat flux exiting
the high temperature portion of the boundary. The shape factor
conveniently summarizes the result of such an analysis. In most
cases, the shape factor inside a two-dimensional object is easier to
compute (analytically or numerically) than the shape factor outside
the object, even for an apparently simple object like a square (see,
e.g., [6, §7.2]). Thus, a relationship between the interior and exte-
rior shape factors allows a potentially difficult exterior calculation
to be replaced by a more tractable interior calculation or an already
known result.

The present paper examines the shape factor in two dimensions
using techniques from complex analysis and conformal mapping.
To proceed mathematically, we precisely define the “object” bound-
ary as a Jordan curve: a closed non-self-intersecting curve that
divides the plane into an interior region and an unbounded exterior
region. For example, the interior and exterior problems relative to
a rectangular arc are illustrated in Figs. 1(a) and 1(b). The bound-
ary is partitioned into a finite number of sections, each prescribed
a boundary condition that is either adiabatic (a zero Neumann con-
dition) or isothermal (a constant Dirichlet condition) at one of two
temperatures. Sections with different temperatures must be sepa-
rated by an adiabatic section to ensure a finite rate of heat transfer.
However, any number of sections may be at each temperature.
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To mathematicians, the shape factor is the reciprocal of the
extremal distance—a conformal invariant of interest in function
theory that is equal to the reciprocal of the Dirichlet energy2 [7,
pg. 65]. Useful properties of the extremal distance are outlined
by Ahlfors [7, pg. 48]. When the boundary curve is split into
precisely four segments, the extremal distance is equal to the con-
formal modulus, which was studied by Hersch [2,8] in geometries
possessing certain symmetries. By exploiting the Schwarz reflec-
tion principle, Hersch derived analytical results for a variety of
geometries.

More recently, Lienhard [1] made the striking claim that interior
and exterior shape factors are always equal. To reach this conclu-
sion, he first used the Riemann mapping theorem to argue that the
interior and exterior of a Jordan curve may always be related by a
conformal map. Indeed, such a map is guaranteed to exist [9].

Lienhard proceeded by further assuming that each boundary sec-
tion possessing a given boundary condition is invariant under the
interior-to-exterior mapping (up to an overall reflection); we label
this assumption A. When true, assumption A does indeed imply
that the interior and exterior shape factor problems are conformally
equivalent (see §2), and thus they possess the same shape factor,
𝑆𝑖 = 𝑆𝑒 [7]. Based on assumption A, Lienhard [1] conjectured that
𝑆𝑖 = 𝑆𝑒 must always hold. He subsequently analysed the shape fac-
tors for a disc and a square, under various boundary conditions,
and found in each case that 𝑆𝑖 = 𝑆𝑒, thus gaining support for the
conjecture. However, we now demonstrate that 𝑆𝑖 = 𝑆𝑒 need not
hold in more general cases than those considered by Lienhard.

Consider the following counter-example: a rectangle with
isothermal sides of width 𝑎 and adiabatic sides with height 𝑏.
For the case of a square, when 𝑎 = 𝑏, it is clear that 𝑆𝑖 = 𝑆𝑒 = 1
as was demonstrated previously [1]. However for rectangles with
𝑎 ≠ 𝑏, the two shape factors diverge rapidly, as seen in Fig. 1(c).

The purpose of the present paper is twofold. First, we shall elu-
cidate why Lienhard’s conjecture is not universally true. Second,
we provide an additional criterion that does ensure the equality
of interior and exterior shape factors. The new criterion relies on
a little-known method due to Hersch [8], and we thus take this
opportunity to explain that method in an expository manner. In
addition, we derive a simple formula for the shape factor of many
geometries that satisfy our symmetry criterion.

2For a harmonic function 𝜙, defined over a domain 𝐷 ⊆ R2, the Dirichlet energy
is defined by the following integral over the domain area:

∫
𝐷

(∇𝜙 · ∇𝜙) 𝑑𝐴.
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Fig. 1 Interior and exterior shape factor for a rectangle of aspect ratio a/b . The interior shape factor is exactly a/b . The exterior
values are from FEM calculations (see Appendix A). The interior and exterior shape factors are equal only for the case of a square
(a = b) but unequal for rectangles with a ≠ b .

2 Conformally Equivalent Shape Factor Problems
The failure of assumption A ultimately spoils the conformal

equivalence between the interior and exterior problems, as we now
describe.

Consider two Jordan curves 𝜕𝐶 and 𝜕𝐷. Then let 𝐶 be the
domain defined as either the interior or exterior of 𝜕𝐶. Let 𝜕𝐷 be
the domain defined as either the interior or exterior of 𝜕𝐷. Sup-
pose that each boundary curve is partitioned into a finite number
of sections with each section assigned either a zero Neumann con-
dition or a constant Dirichlet condition at one of two temperatures.
Again, sections at different temperatures must be separated by an
adiabatic segment to ensure a finite rate of heat transfer.

We say that the two shape factor problems, in the domains 𝐶
and 𝐷, are conformally equivalent if the following criteria hold: 1)
the two problem domains are related by a conformal map; and 2)
under that mapping, the boundary condition at every image point
matches that at the corresponding pre-image point. If two shape
factor problems are conformally equivalent, then they possess the
same shape factor [7]. The case of interest in the present paper
is that for which 𝐶 is the interior and 𝐷 the exterior of the same
Jordan curve.

The Riemann Mapping Theorem guarantees the existence of a
conformal map 𝑓 (𝑧) between the interior and exterior of a Jordan
curve, thus guaranteeing the satisfaction of criterion 1. However,
the mapping theorem only offers three degrees of freedom: one
can always construct a map that sends three points on the original
domain boundary to three chosen points on the target domain’s
boundary [9, pg. 290]. Note that the choice of the three image
points is not completely arbitrary: their order along the boundary
must be preserved under the mapping. Once the image locations of
three pre-image points are chosen, the map becomes fully specified
so that the location of any other point cannot be chosen at will.

Shape factors, however, are determined by a minimum of four
points, one at the end of each isothermal section. As a result,
Riemann’s theorem does not guarantee that the boundary condi-
tions are preserved when mapping from the interior to the exterior
domain. It follows that the interior and exterior boundary value
problems are not necessarily conformally equivalent, meaning that
the interior and exterior shape factors are not necessarily equal. An

additional constraint or symmetry must be present to ensure that
the map leaves the boundary conditions invariant, as will be dis-
cussed in §3. By chance, the specific cases examined by Lienhard
each tacitly embodied such symmetries, which led to the incorrect
deduction that 𝑆𝑖 = 𝑆𝑒 must always hold.

3 A Non-trivial Class of Geometries with Equal
Interior and Exterior Shape Factors

In this section, we apply a powerful method for analysing
Laplace problems that was described by Hersch in another con-
text [8]. The method builds upon the Schwarz reflection principle.
By application of this method, we deduce a simple criterion that
ensures 𝑆𝑖 = 𝑆𝑒.

After assuming that the domain boundary 𝜕𝐵 (Jordan curve)
possesses a certain reflectional symmetry, we proceed to construct
a conformal map that translates the interior shape factor problem,
defined on int (𝜕𝐵), into a shape factor problem interior to the
unit disk. We similarly translate the exterior shape factor problem
into a problem interior to the unit disk. Under further symmetry
conditions on the boundary condition placements, we demonstrate
that both shape factor problems (interior and exterior to 𝜕𝐵) map
to the same problem on the interior of the unit circle, and thus
possess identical shape factors.

3.1 Schwarz Reflection Principle: Hersch Sector Reflec-
tions and the Interior Problem. The Schwarz reflection principle
may be stated as follows ([9], pg. 283).

Theorem 1 (Schwarz Reflection) Consider a domain 𝑊 sym-
metric with respect to the real axis, where we define 𝑊+ =

𝑊∩{Im {𝑧} > 0} and𝑊− = 𝑊∩{Im {𝑧} < 0} and 𝑧 ∈ C. Let 𝑓 (𝑧)
be an analytic function defined on 𝑊− satisfying Im { 𝑓 (𝑧)} → 0
as 𝑧 → 𝑊 ∩ R. Then 𝑓 (𝑧) extends to be analytic on 𝑊 such that

𝑓 (𝑧) = 𝑓 (𝑧). (2)

We now illustrate how the Schwarz reflection principle applies
to conformal maps of sectors of the complex plane. Consider a
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Fig. 2 Demonstration of the sector reflection principle of Her-
sch [8]. The Riemann mapping theorem guarantees the exis-
tence of an analytic mapping f (z ) between W −

π/4 and Ω− as
indicated in panel (a). The Schwarz reflection principle guaran-
tees f (z ) may be analytically extended toW with the boundary
correspondence as indicated in panel (b). Rotating clockwise
by π/4 and reflecting again leads to panel (c). By performing
rotations and reflections, the domain of analyticity of f (z ) may
be extended to the entire unit circle. The image and boundary
correspondence of the mapping from the unit circle is given in
panel (d).

circular sector occupying 𝜋/4 radians of the interior of the unit cir-
cle, which we denote 𝑊−

𝜋/4, as depicted in Fig. 2(a). The Riemann
mapping theorem guarantees that this sector can be transformed
into any other simply-connected region by a conformal map. In
particular, the mapping theorem ensures that there exists a map-
ping function 𝑓 (𝑧) to the region Ω− depicted on the right side of
Fig. 2(a), whose boundary we denote as Γ. Figure 2(a) illustrates
just one particular choice of Ω− . If Ω− is taken instead to be the
purple shaded element in Fig. 5(b), the shape obtained by Schwarz
reflections in Fig. 2(d) becomes a regular pentagon. A large class
of shapes can be obtained through Schwarz reflections of various
choices of Ω− , a few of which are illustrated in Fig. 6.

Our analysis applies generally to situations where the boundary

curve Γ has the following properties. Consider a wedge sector
of the complex plane spanning some angle, with its boundaries
defined by two straight lines emanating from the origin. Now
choose one point on each sector boundary and call the straight
segments from the origin to each of these two points 𝐿1 and 𝐿2.
Now connect the open endpoints of 𝐿1 and 𝐿2 to one another with
a non-self-intersecting curve 𝛾 which only intersects the sector
boundaries at its endpoints. We call the outer curve, 𝛾, a primitive
edge. Then, we define the primitive curve, Γ ≡ 𝐿1 ∪ 𝐿2 ∪ 𝛾. We
call the shape bounded by Γ, int (Γ), the primitive shape. Primitive
shapes are shaded in purple in all figures herein.

In addition, we can choose the image location of three pre-image
points under the mapping 𝑓 (𝑧), all of which are labelled as black
circles in Fig. 2(b). Then, 𝑓 (𝑧) maps the domain 𝑊−

𝜋/4 onto its
image Ω− and maps the three pre-image points to the three image
points.

Now consider the region 𝑊 = 𝑊+
𝜋/4 ∪𝑊−

𝜋/4, in the pre-image
domain, which is symmetric about the real axis and illustrated on
the left of Fig. 2(b). It is clear that 𝑊 meets the criterion of the
Schwarz reflection principle, and so it is guaranteed that the domain
of analyticity of 𝑓 (𝑧) may be extended from𝑊−

𝜋/4 to𝑊 . Moreover,
it is guaranteed that the analytic extension of 𝑓 (𝑧) defined over 𝑊
satisfies Eq. (2). It is thus clear that the image of 𝑊 , under the
analytic extension of 𝑓 (𝑧), is Ω = Ω− ∪Ω+, as drawn on the right
of Fig. 2(b).

To extend the mapping domain further, we first rotate the pre-
image 𝑊 from Fig. 2(b) about the origin by 𝜋/4 radians clock-
wise: specifically, the new map is written in terms of the old as
exp(−i𝜋/4) 𝑓

(︁
exp(i𝜋/4)𝑧

)︁
. We next apply the Schwarz reflection

principle about the real axis—again taking 𝑊− to be a sector of
𝜋/4 radians in the unit circle (below the real axis) and Ω− to be
one primitive sector below the real axis—from which we obtain
the extended map illustrated in Fig. 2(c). At this point, we have
constructed a map that takes a wedge spanning 3𝜋/4 radians in
the unit circle to an object containing three primitive shapes (see
Fig. 2(c)).

Repeating the procedure of a rotation followed by a sector re-
flection, one may achieve a mapping of the full unit circle onto the
shape in the right panel of Fig. 2(d). Generally, if a body is com-
posed of 𝑁 primitive shapes, one must perform 𝑁 −1 sector reflec-
tions of the primitive shape to construct a map from the unit circle.
For example, a total of seven reflections are used to generate the
map in Fig. 2(d). Note the geometric requirement that 𝑁 be even.

In Fig. 2(d), the equal length boundary segments labelled 1
through 8 on the unit circle boundary are mapped by 𝑓 (𝑧) to the
corresponding labelled segments in the right panel. Despite the fact
that the Riemann mapping theorem generally only guarantees three
degrees of freedom in a conformal map, symmetry has allowed us
to fix the location of nine points: eight boundary points and the
origin in Fig. 2(d).

More generally, if a Jordan curve 𝜕𝐵 may be constructed from 𝑁

sector reflections of a primitive edge, then there exists a conformal
map from the interior of the unit circle to 𝐵 ≡ int(𝜕𝐵) which maps
each of 𝑁 equal length arcs on the unit circle to a primitive edge
in 𝜕𝐵.

It follows that if boundary conditions are specified (and un-
changing) along each of the 𝑁 primitive edges in 𝜕𝐵, then the
shape factor problem in 𝐵 is conformally equivalent to the prob-
lem interior to the unit circle having the same boundary conditions
specified on 𝑁 arcs of equal length. The conformal transforma-
tion between the two domains is given by 𝑓 (𝑧) as constructed in
Fig. 2(d).

We now move to consideration of the boundary value problem
on the exterior region to 𝐵, C\𝐵, satisfying the same boundary
conditions on 𝜕𝐵. We proceed to show the conformal equivalence
between the interior and exterior boundary value problems under
the following assumptions: 1) 𝐵 may be constructed by sector
reflections of a primitive shape and 2) the boundary conditions on
𝜕𝐵 do not change along any primitive edge.
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3.2 The Exterior Problem: Shapes Built from Sector Re-
flections have 𝑺𝒊 = 𝑺𝒆 . Consider again a Jordan curve 𝜕𝐵 which
may be constructed by 𝑁 − 1 sector reflections of a primitive edge.
For illustration, let this be the same boundary curve 𝜕𝐵 as con-
sidered in the previous section (Fig. 2(d)). We now examine the
heat transfer problem exterior to that curve, in the region ext (𝜕𝐵),
which is shaded on the right of Fig. 3(c). Since the shape factor
is invariant under conformal mapping, we may establish the equal-
ity of the interior and exterior shape factors, relative to the curve
𝜕𝐵, by showing that both the exterior and interior problems can
be mapped onto the same problem on the interior of the unit disk
(illustrated in 2(d)). We now proceed to demonstrate this fact.

We now construct the conformal map from the unit circle in-
terior to ext (𝜕𝐵), as outlined in Fig. 3. First, consider the curve
labelled 1/Γ on the right of Fig. 3(a). This curve is constructed by
transforming each point in the primitive curve Γ, from Fig. 2(a),
according to the mapping 𝑧 → 1/𝑧; the resultant primitive curve is
denoted 1/Γ. By applying the arguments of §3.1 to this new primi-
tive curve, one can construct a mapping 𝑔(𝑧) from the unit circle in-
terior to the interior of the shape in the right side of Fig. 3(b), which
is itself constructed through sector reflections of 1/Γ. The bound-
ary correspondence under the mapping 𝑔(𝑧) is labelled. Note that
the boundary correspondence in Fig. 3(b) is now clockwise (com-
pared to counter-clockwise in Fig. 2(d)) because here the Schwarz
reflection principle was applied to the sector 1/Γ in Fig. 3(a) which
was above the real axis. In a final step, the reciprocal map 1/𝑔(𝑧)
sends the interior of the unit circle to ext (𝜕𝐵), as illustrated in
Fig. 3(c). The boundary correspondence is labelled, the reciprocal
map having reinstated the clockwise order.

As before, if boundary conditions are unchanging over each
primitive edge, the exterior shape factor problem is conformally
equivalent to the problem interior to the unit circle having the same
boundary conditions on equiangular arcs. Figures 2(d) and 3(c)
thus reveal that, under the same boundary conditions on 𝜕𝐵, the
interior and exterior shape factor problems may both be mapped
to the same problem on the unit circle interior. Thus, the interior
and exterior shape factor problems are conformally equivalent and
possess the same shape factor and 𝑆𝑒 = 𝑆𝑖 .

Note that one may apply similar arguments to construct a map-
ping directly between the interior and exterior problems. However,
we find it instructive to introduce the auxiliary problem on the
unit circle interior and to show the conformal equivalence there.
It should be clear to the reader that the map 1/𝑔( 𝑓 −1 (𝑧)) directly
maps the interior problem (right side of Fig. 2(d)) to exterior prob-
lem (right side of Fig. 3(c)) while preserving the locations of the
primitive boundary segments.

3.3 A Precise Statement of the Theorem. The preceding
sections outline a set of criteria whose fulfillment implies the equal-
ity of interior and exterior shape factors. At this stage, the more
mathematical reader will beg the authors to state these criteria
concisely in the form of a theorem. Consider first a definition.

Consider a partition of the complex plane, C, into some positive
whole number, 𝑁 , of equiangular wedge sectors centered on the
origin. For example, the case of 𝑁 = 8 is depicted in the left
of Fig. 2(d), provided each grey line extends to complex infinity
(|𝑧 | → ∞). We call this arrangement an 𝑁-sector partition of the
complex plane.

Theorem 2 (Interior/Exterior Shape Factor Equality) Consider
an 𝑁-sector partition of the complex plane, for an even value
𝑁 ≥ 4. Now consider a Jordan curve 𝜕𝐵 constructed from 𝑁 − 1
sector reflections of a primitive edge. Suppose that each primi-
tive edge of 𝜕𝐵 is subjected to either a zero Neumann (adiabatic)
or a constant Dirichlet (isothermal) boundary condition, with the
Dirichlet constant restricted to one of two temperatures. Addition-
ally, Dirichlet sections at different temperatures must be separated
by at least one adiabatic section. Then, the shape factors for heat
transfer in the domains int (𝜕𝐵) and ext (𝜕𝐵) are equal.

Fig. 3 Construction of the map between the unit circle interior
and the exterior problem, using sector reflections. The Rie-
mann mapping theorem guarantees a mapping g (z )between
W −

π/4 and the region enclosed by 1/Γ, as depicted in (a). By
applying sector reflections (as was done in Fig. 2) the domain
of analyticity of g (z ) is extended to the entire unit disc as il-
lustrated in panel (b). Note that the map in panel (b) is to an
entirely new shape. The map 1/g (z ) then sends the interior of
the unit circle to exterior domain of interest.

Fig. 4 (a) The rectangle can be constructed by successive re-
flections of a smaller primitive rectangle (shaded in purple),
and N = 4. (b) An example shape factor problem where
Si = Se is guaranteed by Theorem 2.

Note that we require 𝑁 to be greater or equal to four because
the boundary conditions may not change along any primitive edge.
Since the simplest heat transfer problem having a finite shape fac-
tor comprises two isothermal segments separated by two adiabatic
segments, a minimum of 𝑁 = 4 is required to specify all four
segments in accordance with the boundary condition criterion.

4 The Unit Disc, Regular 𝑲-gons, and Beyond

We now explain, using the theoretical tools developed in §3.1
and §3.2, why the boundary value problems analysed by Lien-
hard [1] happened to have 𝑆𝑖 = 𝑆𝑒. We shall show that all cases
considered therein were within the scope of Theorem 2. We also
discuss more general shapes and Yin-Yang bodies.
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Fig. 5 Example primitive sectors for the (a) square (N = 8)
and (b) pentagon (N = 10) are shaded in purple. The conformal
map from the interior of the unit disk to the square maps each
wedge spanning 2π/N to each of the primitive shapes in Fig. 5.

4.1 The Counterexample of the Rectangle. We now de-
scribe how the rectangle violates the assumptions laid out in The-
orem 2. Any rectangle may be constructed from successive reflec-
tions of a smaller interior similar rectangle (the primitive shape)
as depicted in Fig. 4(a). Theorem 2 thus guarantees the equality
of interior and exterior shape factors if boundary conditions are
specified along the associated primitive edge, as illustrated in Fig
4(b). For the rectangle shown in Fig. 1(a), however, each boundary
conditions is specified along portions of two primitive edges (e.g.,
the entire top), and so Theorem 2 is not applicable.

4.2 The Square. The square interior domain comprises eight
of the primitive triangles shaded in purple in Fig. 5(a). It fol-
lows from the developments of §3.1 and 3.2 that the mapping from
the square’s interior to its exterior will preserve the eight primi-
tive edges (segments connecting each pair of adjacent black circles
in Fig. 5(a)). Lienhard [1] numerically tested two configurations
of boundary conditions on the square. Both examples considered
therein specified boundary conditions unchanging along each prim-
itive edge, in accordance with the assumptions of Theorem 2, and
it was indeed found that 𝑆𝑖 = 𝑆𝑒.

Nonetheless, the equality of interior and exterior shape factors
does not generalize to arbitrary problems. Symmetries of both the
domain boundary shape and the boundary condition specification
are required to guarantee the equality of interior and exterior shape
factors: 1) the shape interior int (𝜕𝐵) must be constructable from
sector reflections of a primitive shape; and 2) boundary conditions
must be unchanging along each primitive edge.

4.3 Regular 𝑲-gons. A regular 𝐾-gon can be constructed
from 𝑁 = 2𝐾 copies of a primitive triangle; we illustrate the prim-
itive triangles for the cases 𝐾 = 4 and 𝐾 = 5 in Fig. 5. If only one
boundary condition is specified as unchanging along each primitive
edge, then the interior and exterior shape factors are guaranteed to
be equal, in accordance with Theorem 2.

Specifically for regular 𝐾-gons, primitive edges are half-faces.
Thus, a single boundary condition must be specified along the
entirety of each half-face to ensure that 𝑆𝑖 = 𝑆𝑒. For example, the
square of §4.2 has 𝐾 = 4, but boundary conditions are allowed
to vary between its 𝑁 = 2𝐾 = 8 primitive edges (half-faces), for
Theorem 2 to be applicable and thus to ensure the equality of
interior and exterior shape factors.

To validate this somewhat surprising result, we use FEM to
compute the interior and exterior shape factor of the hexagon with
half-heated faces in the last row of Table 1. Here, the top and
bottom faces of the hexagon have opposite halves at different tem-
peratures, while the remainder of the hexagon boundary is taken to
be adiabatic. The computed interior and exterior shape factors are
shown together with the analytical result for the interior problem
given by Hersch [2], 𝑆𝑖 = 1/

√
3. The interior value is within 0.03%

of the exact result and the exterior value is within 1.3%. While the
exact solution 𝑆𝑖 = 1/

√
3 given by Hersch was computed for the

Fig. 6 Example of some irregular shapes that may be con-
structed from sector reflections of a primitive shape (shaded
in purple) for cases of: (a) N = 8; (b) N = 16; (c) N = 12; (d)
N = 8; (e) N = 12; and (f) N = 8. Panels (e) and (f) demon-
strate that gear-like configurations satisfy the conditions of
Theorem 2.

interior problem, Theorem 2 indicates the same exact result for the
exterior problem, as is supported by our numerical calculations.

4.4 The Disc. For the disc, the map 1/𝑧 takes the interior
problem to the exterior problem with the same boundary conditions
(up to a reflection, which does not affect the shape factor). Thus,
for any alternating sequence of constant Dirichlet and Neumann
conditions around the boundary of a circle, the interior and exterior
problems are conformally equivalent and 𝑆𝑖 = 𝑆𝑒 must hold.

In light of §4.3, one may also rationalize the equality of the
interior and exterior shape factors of the circle in the following
manner. Consider the circle as the limit of a regular 𝐾-gon, whose
vertices lie on the unit circle, as 𝐾 → ∞. For the 𝐾-gon, the inte-
rior and exterior shape factors are guaranteed to be equal as long
as boundary conditions are constant along each of the 2𝐾 primi-
tive edges. In the limit of 𝐾 → ∞, the length of each primitive
edge tends to zero. In this limit, any finite segment of the circle
can be decomposed into a union of primitive segments. Thus, for
any shape factor problem on the circle, with finite boundary seg-
ments possessing different boundary conditions, it is guaranteed
that 𝑆𝑒 = 𝑆𝑖 .

4.5 Other Shapes. Note that our criteria, which guaranteed
𝑆𝑖 = 𝑆𝑒, do not require shapes to be regular polygons—or any
other simple shape for that matter. The first criterion (geometric
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criterion) is that the domain may be constructed from sector reflec-
tions of a primitive curve confined to a sector of angle 2𝜋/𝑁 with
𝑁 ≥ 4 being some even integer. Some examples of more complex
objects are given in Fig. 6, with primitive shapes shaded in purple.
Note that for Theorem 2 to apply, ensuring the equality of interior
and exterior shape factors, applied boundary conditions must be
unchanging along each primitive edge.

4.6 Yin-Yang Bodies have 𝑺𝒊 = 𝑺𝒆 = 1. We here demon-
strate how Schwarz reflections may be used to prove another in-
teresting symmetry of shape factors, the Yin-Yang property [10],
which is outlined as follows.

Suppose a Jordan curve 𝜕𝐵 has an axis of reflectional symme-
try, as shown in Fig. 7. The boundary on one side of the axis
contains an isothermal segment and an adiabatic segment; on the
reflected side, the isothermal and adiabatic conditions have been
interchanged. When a shape factor problem embodies all the afore-
mentioned symmetries, we say it embodies the Yin-Yang symmetry.
Lienhard [10] stated that Yin-Yang problems have a shape factor
of unity, although no formal proof was given.

Here, we use Schwarz reflections to provide a proof that all such
shape factor problems are conformally equivalent to a problem
on the square which possesses 𝑆 = 1. Consider a shape factor
problem embodying the Yin-Yang symmetry as in Fig. 7(a). Now
consider single half of the domain (shaded purple), as defined by
a cut made along the axis of symmetry (grey dotted line). By
the Riemann mapping theorem, there exists a mapping between
the purple region in Fig. 7(a) and the purple half of the square
(Fig. 7(b)), wherein we are free to dictate the image location of
three boundary points. In particular, we choose to specify the
images of the three following boundary points (shown with black
circles): the two intersections of 𝜕𝐵 with the reflection axis, and the
point where the isothermal boundary segment adjoins the adiabatic
boundary segment. We choose as the images of these three points
the three vertices of the square also indicated by black circles. The
boundary condition correspondence is coloured in both panels.
The Schwarz reflection principle then implies the image of the
remainder of the domain (white region), for which the boundary
correspondence is also indicated in Fig. 7. Since the shape factor
of Fig. 7(b) is trivially 𝑆 = 1, the conformal invariance of the shape
factor shows that 𝑆 = 1 in the Fig. 7(a) as well.

By a similar argument to §3.2, the proof also holds for the
exterior Yin-Yang problem, so that the interior and exterior Yin-
Yang shape factor problems must have 𝑆𝑖 = 𝑆𝑒 = 1.

Finally, we note that the Yin-Yang problem shows that, although
our criteria in Theorem 2 are sufficient to guarantee 𝑆𝑖 = 𝑆𝑒, they
are not necessary criteria: many Yin-Yangs do not meet the criteria
of Theorem 2, but all have equality of their interior and exterior
shape factors.

5 Validation for Several Cases
We now show several explicit results to support our conclusion.

5.1 Interior and Exterior Numerical Results Compared to
Exact Shape Factors. Table 1 contains several cases for which
exact interior shape factors are known. Interior and exterior simu-
lations are shown, along with the computed shape factors. The inte-
rior FEM results are accurate to 0.05% or better (see Appendix A).
The exterior FEM results are accurate to about 1.5%, with most
of the error attributable to a finite outer domain. In all cases, the
exact, interior, and exterior results agree to within the apparent ac-
curacy of the FEM computations. Additional numerically validated
𝐾-gons are shown in Appendix D.

Note that in the third row in Table 1 the two upper segments
have the same temperature, but are not connected. Theorem 2
applies to such cases without limitation.

The exact values for the first, second, and fourth cases in Ta-
ble 1, 𝑆 = 1, arise because these problems have Yin-Yang symme-
try (§4.6). The exact results for third and fifth cases were found by

Fig. 7 Conformal equivalence of Yin-Yangs and the square
problem with S = 1. The domain in panel (a) embodies the Yin-
Yang symmetry as described in §4.6. By the Riemann mapping
theorem, there exists a mapping between the purple shaded
section of the domain in (a) and the half-square with the drawn
boundary correspondence as drawn in panel (b).The Schwarz
reflection principle then gives the remainder of the map (white
region with the illustrated boundary correspondence. Since
the shape factor of (b) is trivially equal to unity, by the confor-
mal invariance of the shape factor, S = 1 in (a) as well.

Hersch for the interior geometries [2]. We have proven herein that
Hersch’s exact values for the interior domain are also those for the
exterior problem. Thus, we label these exact results 𝑆exact since
there is distinction between the interior and exterior shape factors.
Our numerical results support our proof.

5.2 The Compass Rose. The Compass Rose is a design tradi-
tionally used to display the cardinal directions on a map, consisting
of four orthogonal arms of one length and four of another at a 45°
rotation. In the language of the present paper, the Compass Rose
has an 𝑁 = 8 symmetry with a primitive element containing one-
half arm of each length (Fig. 5(a)).

To further demonstrate the applicability of our theorem, we have
simulated heat conduction inside and outside the rose for two ar-
rangements of boundary conditions compatible with Theorem 2
(see Table 2). The first case specifies isothermal boundary condi-
tions on four identical sections of the boundary, with edges in the
upper right-hand and lower left-hand quadrants at different tem-
peratures. This case embodies the Yin-Yang symmetry so that
𝑆exact = 1.

The second case has isothermal boundary conditions specified
in an asymmetric fashion. The two primitive elements in the up-
per right-hand quadrant have edges at one temperature, and one
primitive element in the lower right-hand quadrant a different tem-
perature. (The theoretical value for this case is given in Sect. 6.)

The numerical value of 𝑆𝑖 for the first case is within 0.12% of
the theoretical value. The numerical value of 𝑆𝑒 is 2.6% below
the theoretical value, primarily owing to the difficultly in capturing
the very strong singularities of the heat flux at the tips of the long
arms. A further difficulty with this, and other, exterior compu-
tations is the need to truncate the infinite domain with an outer
boundary of sufficient size (see Appendix A.2). If nothing else,
these difficulties illustrate the great value in knowing that 𝑆𝑒 can
be found through the much easier computation of 𝑆𝑖 . The interior
agreement is similar for second case, with the outside value lower
than the theoretical value by 3.5%.

5.3 Known Conformal Maps for 𝑲-gons. The explicit
Schwarz-Christoffel transformations between the unit circle and
the 𝐾-gon interior and exterior, show that the interior and exterior
problems are conformally equivalent when each 𝐾-gon face adopts
a single boundary condition [11]. These transforms are discussed
briefly in Appendix B. While the Schwarz-Christoffel maps show
that 𝑆𝑒 = 𝑆𝑖 when boundary conditions do not vary over each
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Table 1 Shape factors for selected K -gons, comparing known exact values to interior and exterior FEM results. Far field bound-
ary conditions for the exterior are: square—dipole temperature field with radius 20; hexagon—adiabatic outer boundary with
radius 30; octagon—adiabatic outer boundary with radius 35. Each polygon has sides of length 2. Interior and exterior flux plots
with isotherms in black and adiabats in red, except second and third exterior cases, which show temperature field and isotherms.
Note that the fifth case satisfies N = 2K = 12, as discussed in §4.3, with boundary conditions specified on half-sides.

𝑵 Interior 𝑺𝒊 (FEM) 𝑺exact 𝑺𝒆 (FEM) Exterior

8 1.0000 1 0.9948

12 0.9998 1 0.9882

12 1.1544 1.15470 · · ·(︁
2
/︁√

3
)︁ 1.1427

16 0.9994 1 0.9896

12 0.5776 0.57735 · · ·(︁
1
/︁√

3
)︁ 0.5700

full face, our results in §3.2 indicate a less restrictive requirement:
boundary conditions must not vary over each half -face.

6 An Analytic Expression for Shape Factors with
𝑵-fold symmetry

We now present an expression for the shape factor for a quadri-
lateral—a shape with four distinct boundary sections—that has an
𝑁-fold symmetry. Consider a polygon with 𝑁 sides. Begin with
the hot isothermal segment of the boundary, and suppose this ex-
tends over 𝑁𝐻 sides of the polygon. Next, proceeding clockwise
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Table 2 Shape factors for the Compass Rose. The temperature field and isotherms are shown. The far field boundary is
adiabatic with radius 30. The long arms have a radial length of 1.5, the short arms have 1.17, and the inner vertices have 0.6.

𝑵 Interior 𝑺𝒊 (FEM) 𝑺exact 𝑺𝒆 (FEM) Exterior (near field)

4

T1

T2

0.9988 1 0.9740

8

T1

T2

0.8187 0.819644 · · · 0.7907

around the polygon, suppose the length of the adjacent adiabatic
section is 𝑁𝐴. Proceeding clockwise again, suppose the adjacent
the cold isothermal section spans 𝑁𝐶 sides. Then the remaining
adiabatic side spans 𝑁 − (𝑁𝐻 + 𝑁𝐴 + 𝑁𝐶 ) polygon sides. In this
case the shape factor is given by:

𝑆(𝑁𝐻 , 𝑁𝐴, 𝑁𝐶 , 𝑁) =
𝐾
(︁√

1 − 𝐶2)︁
𝐾 (𝐶) (3)

𝐶 (𝑁𝐻 , 𝑁𝐴, 𝑁𝐶 , 𝑁) =

⌜⃓⃓⃓⃓⎷ sin
(︂
𝑁𝐴𝜋
𝑁

)︂
sin

(︂
(𝑁𝐴+𝑁𝐶+𝑁𝐻 ) 𝜋

𝑁

)︂
sin

(︂
(𝑁𝐴+𝑁𝐶 ) 𝜋

𝑁

)︂
sin

(︂
(𝑁𝐴+𝑁𝐻 ) 𝜋

𝑁

)︂ (4)

𝐾 (𝑥) =
∫ 1

0

𝑑𝑘
√

1 − 𝑘2
√

1 − 𝑘2𝑥2
. (5)

Note that the definition the definition of the elliptic function in
Eq. (5) varies between authors; for example the elliptic function
in Mathematica, 𝐾MA, is related to our definition by 𝐾 (𝑥) =

𝐾MA (𝑥2). In the context of Laplace problems, we find the defi-
nition presented in Eq. (5) to be most common. This formula is
proved in Appendix C.

To demonstrate the utility of our formula, we now compute the
shape factors for several non-trivial problems; the values are veri-
fied numerically using FEM analysis in Appendix D. For example,
the first pentagon in Table 6 has 𝑁 = 5, 𝑁𝐻 = 1, 𝑁𝐴 = 2, 𝑁𝐶 = 1,
in which case our formula gives 𝑆(1, 2, 1, 5) = 0.896256, which
agrees with the FEM calculation to 0.005%. As another exam-
ple, the last hexagon in Table 6 has 𝑆(2, 1, 2, 6) = 1.27926, within
0.02% of the numerical result. The Compass Rose problem illus-
trated in the bottom row of Table 2 has 𝑁 = 8, 𝑁𝐻 = 1, 𝑁𝐴 = 3, and
𝑁𝐶 = 2, and our formula Eq. 3 returns 𝑆(1, 3, 2, 8) = 0.819644 · · · ,
within 0.12% of the numerical value in Table 2. The Compass
Rose has many exterior corner singularities which are hard to re-
solve with FEM, as was noted in §5.2, emphasizing the utility of
Eq. (2).

As a final demonstration of the power of Eq. 3, we note that the
elliptic integral can be evaluated exactly is certain cases. In the

half-square geometry TL in Table 7, the shape factor is given by
𝑆(1, 2, 1, 8). With Eq. (4)

𝐶 (1, 2, 1, 8) = csc(3𝜋/8)
21/4 =

23/4√︁
2 +

√
2
. (6)

Letting 𝐾′ (𝑥) = 𝐾
(︁√

1 − 𝑥2
)︁
, we make use of the relation [12,

pp. 16] 𝐾′ (𝑥)/𝐾 (𝑥) = (1/2)𝐾′ (𝜂)/𝐾 (𝜂), where 𝜂(𝑥) =
(︁
1 −√

1 − 𝑥2)︁/(︁1+√1 − 𝑥2)︁ . Applying this identity to Eq. (3), with ar-
gument 𝐶 (1, 2, 1, 8) as given in Eq. (6), we find 𝜂(𝐶 (1, 2, 1, 8)) =√

2 − 1 and

𝑆(1, 2, 1, 8) = 1
2
𝐾′ (

√
2 − 1)

𝐾 (
√

2 − 1)
=

1
√

2
, (7)

where we have used 𝐾′ (
√

2 − 1)/𝐾 (
√

2 − 1) =
√

2 [12, pp. 27].
Since 1/

√
2 = 0.707107 · · · , the numerical result in Table 7 agrees

with the analytical result to within 0.03%.
The new analytical solution, Eq. (3), is not restricted to poly-

gons or star shapes. As long as a body has an 𝑁-fold symmetry,
and the quadrilateral boundary conditions are specified along full
entire segments of the primitive element, Eq. (3) is valid. For ex-
ample, consider the puffy snowflake in Fig. 6(b). The shape has
16 primitive edges. Suppose one edge is set to 𝑇1. Then, pro-
ceeding clockwise, let the next five primitive edges be adiabatic.
Continuing clockwise, let the next four primitive edges be isother-
mal at 𝑇2, with the remainder adiabatic. The shape factor is then
𝑆(1, 5, 4, 16) = 0.6869 · · · . One may proceed similarly to find the
shape factor in a wide variety of problems including all of those
in Fig. 6.

Our analytical solution holds whenever shapes have an appro-
priate symmetry, but it does not rely on the specific details of
the primitive elements. Thus, in even very complicated geome-
tries that are extremely difficult to tackle numerically (for example,
Fig. 6(c)), Eq. (3) holds. The formula may thus be used as a
benchmark for numerical methods meant to deal with such ex-
treme geometries [13]. Further, as a result of Theorem 2, Eq. (3)
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yields the shape factor exterior to such complex shapes, for which
numerical solutions would be very challenging to obtain.

7 Analogues in Darcy Flows and Electrostatic
Capacitance

The results presented in §3 have precise mathematical analogues
in fluid flow through porous media and in electrical capacitance,
which we now briefly outline.

7.1 Darcy Flow Through Porous Media. Pressure-driven
flow through a porous media has a velocity given by 𝒖 = −𝜎∇𝑃,
where 𝜎 is the hydraulic conductivity, and 𝑃 is the pressure. Mass
conservation for an incompressible fluid then implies that the pres-
sure satisfies the Laplace equation. Consider a situation where flow
is driven between isobaric segments held at two different pressures,
and separated by impermeable segments, with a pressure difference
Δ𝑃. Then, the volume flux between the isobaric segments, 𝑄𝑓 , can
be written in terms of a flow shape factor 𝑆𝑓 which depends on the
geometry according to

𝑄𝑓 = 𝑆𝑓 𝜎Δ𝑃. (8)

The present results apply to flow through a porous media after
the following modifications: 𝑘 is replaced by the hydraulic con-
ductivity 𝜎; Δ𝑇 is replaced by the pressure differential between
isobaric segments Δ𝑃; the heat flux 𝑄 is replaced by the vol-
ume flux 𝑄𝑓 ; and the shape factor is replaced a flow shape factor
𝑆𝑓 . Note also that in the fluid flow context, thermal conductors
and insulators are replaced by isobaric segments and imperme-
able boundaries, respectively. In the fluid flow context, Theorem 2
guarantees the equivalence of the flow shape factors interior and
exterior to a body.

7.2 Electrostatic Capacitance. When a voltage differential is
established between two perfect electrical conductors, a charge of
magnitude 𝑞 is established on each conductor. For a given voltage
differential Δ𝑉 , the amount of charge 𝑞 is characterized by the
electrostatic capacitance 𝐶, which is a function of the geometry,
according to

𝑞 = 𝐶Δ𝑉. (9)

Our results apply to the electrical capacitance, 𝐶, after the follow-
ing substitutions: Δ𝑇 is replaced by electrical potential difference
between conducting segments Δ𝑉 ; 𝑄/𝑘 is replaced by the con-
ductor surface charge 𝑞; and the shape factor is replaced by the
electrical capacitance 𝐶. Thermal conductors and insulators must
be replaced by electrical conductors and insulators, respectively.
Theorem 2 guarantees the equivalence of the electrostatic capaci-
tances interior and exterior to a body.

8 Summary
Interior and exterior shape factors are not universally equal,

contrary to a previous report. In this paper, we first demonstrated
why the interior and exterior shape factors are not always equal.
We then provided a set of criteria sufficient to guarantee equality.
In particular, the interior and exterior shape factors will be equal
if specific symmetries are present: 1) the shape boundary must
be constructed from sector reflections of a primitive sector edge;
and 2) the boundary conditions—either zero Neumann (adiabatic)
or constant Dirichlet (isothermal)—must not change along each
primitive edge. This result is stated precisely in Theorem 2.

Objects that meet the conditions of the theorem include not only
regular polygons and discs, but also much more complex shapes
like those shown in Fig. 6. These results have direct analogies
in flow through porous media and in electrostatic capacitance, as
outlined in §7.

We have further derived an exact expression for the shape factor
of appropriately symmetric 𝑁-sided objects that have contiguous

sides at one temperature separated from contiguous sides at an-
other temperature by one or more adiabatic sides. This expression,
Eq. (3), applies not only to regular polygons and star shapes, but
also to any other shape that has 𝑁-fold symmetry. We have vali-
dated this powerful result with FEM analysis of multiple configu-
rations.

We have tested our theorem against independent results from
finite-element simulations and from Schwarz-Christoffel maps.
Additionally, a brief tabulation of shape factors in geometries that
meet the conditions of Theorem 2 is provided in Appendix D.

We note that this paper may be useful also as an accessible tuto-
rial for applying symmetry methods to Laplace problems through
the exploitation of the Schwarz reflection principle.

Acknowledgment
K.M. would like to thank Alex Cohen and Darren Crowdy for

valuable discussions. Both authors would like to thank Nick Tre-
fethen for useful comments and for pointing out the work of Hersch.

Funding Data
K.M. was supported by a MathWorks Fellowship during this

work. He was also supported by a STEM Chateaubriand Fel-
lowship from Ambassade de France aux États-Unis and hosted at
ESPCI, Paris during the completion of the paper.

Nomenclature
𝐵 = a planar body (interior of a Jordan curve,

𝜕𝐵)
𝑎, 𝑏 = dimensions of rectangle
𝑏𝑘 = pre-vertices on unit disc

𝑐1, 𝑐2, 𝑐3 = constants, App. B
CR = cross-ratio, Eq. (C10)
C = the set of complex numbers

𝐶 (𝑁𝐻 , 𝑁𝐴, 𝑁𝐶 , 𝑁) = see Eq. (4)
ext(𝜕𝐵) = region exterior to 𝜕𝐵

𝑓 (𝑧), 𝑔(𝑧) = conformal maps
𝐻max = maximum mesh size for FEM

int(𝜕𝐵) = region interior to 𝜕𝐵
𝑘 = thermal conductivity (W m−1 K−1)
𝐾 = number of sides in polygon

𝐾 (𝑥) = complete elliptic integral of the first kind,
Eq. (5)

𝐾′ (𝑥) = Complementary elliptic integral,
𝐾
(︁√

1 − 𝑥2
)︁

𝐿1, 𝐿2 = straight lines along each sector boundary
extending from the origin to the ends of the
primitive edge, Fig. 2a

𝑁 = number of primitive elements composing a
shape

𝑁𝐴, 𝑁𝐶 , 𝑁𝐻 = number of contiguous adiabatic, cold, and
hot sides

𝑄 = heat flow (W m−1)
𝑆 = shape factor (–)

𝑆(𝑁𝐻 , 𝑁𝐴, 𝑁𝐶 , 𝑁) = see Eq. (3)
𝑇 = temperature (K)
𝑥 = coordinate along the bottom wall, App. A.1
𝑊 = domain in the complex 𝑧 plane
𝑧 = coordinate in the complex plane

Greek Letters
𝛼 = angle on disc, see Fig. 8
𝛾 = outer section of boundary denoted a

primitive edge, Fig. 2a
Γ = closed curve defined by Γ = 𝐿1 ∪ 𝐿2 ∪ 𝛾,

and denoted the primitive curve
Δ𝑇 = temperature difference (K)
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𝛿𝑥 = 𝐻max/2
𝜂1 = 𝐾/[2(𝐾 + 2)]
𝜇𝑖 = exterior angles as fraction of 𝜋
Ω = range in the mapped plane

Superscripts and Subscripts
𝑒 = exterior value
ℎ = hexagon
𝑖 = interior value
𝑝 = pentagon
𝑧 = complex conjugate of 𝑧

Appendix A: FEM convergence
A.1 Rectangles. For a rectangle with isothermal sides of

width 𝑎 and adiabatic sides of height 𝑏, the interior shape factor is
exactly 𝑆𝑖 = 𝑎/𝑏. The exterior shape factor was computed using
Matlab’s finite-element method (FEM) tools. Mesh convergence
was evaluated by reducing the maximum mesh size, 𝐻max, until
machine memory limits were exceeded (Table 3). Localized mesh
refinement was applied at each outside vertex and edge, limiting
the maximum mesh to 𝐻max/40. The computation is sensitive to
the outer boundary condition of the domain, which was set to a
circle of radius 20. The far field temperature was shown to limit to
a dipole distribution in [6], and that boundary condition was used
on the outside edge.

The heat flow was determined by integrating the computed heat
flux along the bottom edge. The heat flux has an integrable singu-
larity at each vertex (𝑥 = ±1), so corner corrections were applied as
described in [6]. Specifically, the computed heat flux normal to the
bottom boundary was fit the first and third terms of the expansion
for corner singularities (Eq. (68) in [6]):|︁|︁|︁|︁ 𝜕𝑇𝜕𝑛 |︁|︁|︁|︁ = 𝐴𝜂1 (1 + 𝑥)𝜂1−1 + 𝐵𝜂1 (1 − 𝑥)𝜂1−1

+ 𝐶 (5𝜂1) (1 + 𝑥)5𝜂1−1 + 𝐷 (5𝜂1) (1 − 𝑥)5𝜂1−1 (A1)

where 𝑥 is the coordinate along the bottom wall, 𝜂1 = 𝐾/[2(𝐾+2)]
for a regular 𝐾-gon or a rectangle (𝐾 = 4), and 𝐴, 𝐵, 𝐶, 𝐷 are fitting
coefficients. When curve fitting the flux and when integrating for
the shape factor 𝑆, both ends of the bottom edge are omitted over
a distance 𝛿𝑥 = 𝐻max/2, based on the observed break-down of
the flux calculation near the endpoints. Integrating the fitted flux
distribution a distance 𝛿𝑥 from each corner gives

Δ𝑆Δ𝑇 ≅ (𝐴 + 𝐵) (𝛿𝑥)𝜂1 + (𝐶 + 𝐷) (𝛿𝑥)5𝜂1 (A2)

for 𝑘 = 1. We then add Δ𝑆 to 𝑆.
The horizontal dimension of the rectangle was held fixed at

𝑎 = 2 and 𝑏 was varied. Table 3 shows the results. The computed
value for 𝑎/𝑏 = 1 is within 0.5% of the exact value, 1, when
𝐻max = 0.02. Obviously, 𝑆𝑒 (𝑎/𝑏) = 1/𝑆𝑒 (𝑏/𝑎). This relationship
is satisfied to about 1% over the range considered. For the two
largest 𝑎/𝑏, the convergence is less, but likely better than 2%. The
values for 𝐻max = 0.02 are plotted in Fig. 1. In these calculations,
the far-field dipole temperature distribution was based on a strength
2𝑆𝑒 at a separation 𝑏.

A.2 Regular 𝑲-gons. The exterior shape factors were com-
puted using the same procedure as for the rectangles (with accom-
modations for the 𝑆2-2 hexagon, Fig. 6, in which an isothermal edge
adjoins the bottom edge). The exterior results are within 1.4% of
the interior FEM results. The specific choice of outer boundary
condition (isothermal, adiabatic, or dipole) affects the results. For
the maximum radii and minimum mesh sizes achievable, isother-
mal outer boundaries run a fraction of a percent higher than dipole
boundaries, and adiabatic boundaries run lower by 1–1.5%.

The interior FEM calculations were straightforward, and com-
parison to known exact values and reciprocal relationships, to-
gether with grid convergence studies, places their accuracy at about
0.05%. The reciprocal relationship [2] states that, when isother-
mal and adiabatic boundaries are interchanged, the resulting shape
factor is the reciprocal of the original shape factor. Thus, in Fig. 6
the following relationships are met, as is evident upon compari-
son of the respective flux plots: 𝑆1-1

𝑝 = 1/𝑆2-1
𝑝 , 𝑆1-1

ℎ
= 1/𝑆2-2

ℎ
,

𝑆1-1𝑅
ℎ

= 1/𝑆3-1
ℎ

. The reciprocal values agree to 0.05% to 0.1%.
For 𝐾 > 4, the interior flux has a weak singularity at corners

that join isothermal and adiabatic segments, but grid refinement
was sufficient to account for these. For the hexagon with half of a
side isothermal (Table 1, last item), a stronger interior singularity
is present at the transition point from isothermal to adiabatic (see
[6], §6.2), and a numerical correction was applied using methods
similar to Appendix A.1.

Appendix B: Schwarz-Christoffel Mappings for
Regular 𝑲-gons

The interior Schwarz-Christoffel mapping, in general, is

𝑓 (𝑧) = 𝑐1

∫ 𝑧
0

𝑑𝑧

(𝑏1 − 𝑧)𝜇1 · · · (𝑏𝐾 − 𝑧)𝜇𝐾 + 𝑐2 (B3)

where 𝑐1 and 𝑐2 are constants [11]. The mapping of the interior of
the unit disc to either the interior or the exterior of a regular 𝐾-gon
uses as pre-vertices the 𝐾 roots of unity, 𝑏𝑘 = exp(2𝜋i𝑘/𝐾). The
exterior angles of the 𝐾-gon are 𝜋𝜇𝑖 = 2𝜋/𝐾 . With

𝐾∏︂
𝑘=1

(𝑏𝑘 − 𝑧) =
𝐾∏︂
𝑘=1

(︂
𝑒2𝜋i𝑘/𝐾 − 𝑧

)︂
=
(︁
1 − 𝑧𝐾

)︁
(B4)

the mapping of the unit disc to the interior of a regular 𝐾-gon
reduces to

𝑓 (𝑧) =
∫ 𝑧

0

𝑑𝑧(︁
1 − 𝑧𝐾

)︁2/𝐾 (B5)

where we take 𝑐1 = 1 and 𝑐2 = 0.
The mapping of the disc interior to the exterior of a polygon is

𝑓 (𝑧) = 𝑐3

∫ 𝑧
𝑧0

(𝑏1 − 𝑧)𝜇1 · · · (𝑏𝐾 − 𝑧)𝜇𝐾 𝑑𝑧
𝑧2

, 𝑧0 ≠ 0 (B6)

with 𝑐3 a constant [11]. We have the same pre-vertices and exterior
angles as for the interior case. With 𝑐3 = 1, the mapping of the
disc to the exterior of the 𝐾-gon is

𝑓 (𝑧) =
∫ 𝑧
𝑧0

(︁
1 − 𝑧𝐾

)︁2/𝐾
𝑑𝑧

𝑧2
, 𝑧0 ≠ 0 (B7)

Since the same points, the pre-vertices, are conformally mapped
to the vertices of either the interior or exterior 𝐾-gon, and since
isotherms map to isotherms and adiabats to adiabats, the boundary
conditions are identical for the interior and exterior problems. It

Table 3 Exterior shape factor Se for a rectangle of width a
and height b , by FEM. For the interior, Si = a/b . Far field has
a dipole temperature distribution at radius 20.

𝑎/𝑏 (= 𝑆𝑖)
𝐻max 0.25 0.5 1 2 4 8 16

𝑆𝑒 0.05 0.7496 0.8584 0.9885 1.138 1.301 1.471 1.637
0.02 0.7535 0.8637 0.9948 1.146 1.314 1.491 1.670
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Fig. 8 Disc with isothermal sectors of angle α .

follows immediately see that the shape factor, a conformal invari-
ant, is the same for the interior and the exterior problems on the
𝐾-gon. (Note that we have not shown that the interior and exterior
𝐾-gons have the same dimensions or the same vertices—neither
question is relevant to our result.)

Appendix C: Proof of Equation (3)
We first note that the shape factor for the disc problem in Fig. 8

was given by Hersch [2, pg. 222] as

𝑆(𝛼) = 𝐾 (𝑠)

𝐾

(︂√
1 − 𝑠2

)︂ , (C8)

where

𝑠 = sin
(︂𝛼

2

)︂
. (C9)

(The shape factor is the inverse of Hersch’s conformal modulus.)
Equation (C8) is readily evaluated to find the shape factor for any
angle 𝛼.

Now consider a quadrilateral with 𝑁-fold symmetry, where
boundary conditions do not change along each primitive edge. Four
points demarcate the junctions of isothermal and adiabatic sections
on the quadrilateral. By the construction of Section 3, each prim-
itive edge of the shape under consideration will be mapped onto
a segment on the unit disc spanning 2𝜋/𝑁 radians. This map-
ping takes four boundary points on the quadrilateral onto four
distinct points of the form exp (i2𝜋𝑚/𝑁). The four values of
𝑚 are determined as follows. Suppose that, in clockwise order,
the boundary conditions are 𝑁𝐻 primitive sides isothermal at 𝑇1,
followed by 𝑁𝐴 adiabatic primitive sides, followed by 𝑁𝐶 prim-
itive sides isothermal at 𝑇2, followed by 𝑁 − (𝑁𝐻 + 𝑁𝐴 + 𝑁𝐶 )
adiabatic sides. Then the four boundary points are located at
𝑧1 = 1, 𝑧2 = exp(−i2𝜋𝑁𝐻/𝑁), 𝑧3 = exp[−i2𝜋(𝑁𝐻 + 𝑁𝐴)/𝑁],
and 𝑧4 = exp[−i2𝜋(𝑁𝐻 + 𝑁𝐴 + 𝑁𝐶 )/𝑁].

For some value of 𝛼, the unit disk can be mapped onto itself
while taking each boundary point of the quadrilateral to the the four
boundary points in Fig. 8. Since the Riemann mapping theorem
only allows one to set the image of three points, the mapping is
only possible for a specific value of 𝛼 that is determined as follows.

We first note that the cross-ratio of four points on the boundary,
defined as

CR(𝑧1, 𝑧2, 𝑧3, 𝑧4) =
(𝑧1 − 𝑧3) (𝑧2 − 𝑧4)
(𝑧1 − 𝑧4) (𝑧2 − 𝑧3)

, (C10)

is invariant under linear fractional transformations [14, pp. 78];
a subclass of such transformations map the unit circle to itself.
One such transformation takes our quadrilateral domain onto the
domain depicted in Fig. 8 for a particular value of 𝛼 that we shall
now deduce. Proceeding clockwise on the geometry of Fig. 8, the
cross-ratio is calculated using 𝑧1 = exp(i𝛼), 𝑧2 = 1, 𝑧3 = − exp(i𝛼)

Table 4 Shape factor for various angles on a symmetric sec-
tor disc. (Numerical details in Appendix A.)

𝜶° 90.00 75.00 60.00 45.00 30.00 15.00
𝑺 1.0000 0.8865 0.7817 0.6806 1/

√
3 0.4595

𝜶° 90.00 105.00 120.00 135.00 150.00 165.00
𝑺 1.0000 1.1280 1.2793 1.4692

√
3 2.1761

Table 5 Angle producing various shape factors on a symmet-
ric sector disc.

𝑺 1.0000 1.5000 2.0000 3.0000 5.0000
𝜶° 90.00 137.07 160.24 175.88 179.82

𝑺 1.0000 0.7500 0.5000 0.3000 0.2000
𝜶° 90.00 55.32 19.76 2.439 0.01779

and 𝑧4 = −1. We find CR = sec2 (𝛼/2). Meanwhile, the cross-ratio
for a body with 𝑁-fold symmetry is

CR =

sin
(︂
(𝑁𝐴+𝑁𝐶 ) 𝜋

𝑁

)︂
sin

(︂
(𝑁𝐴+𝑁𝐻 ) 𝜋

𝑁

)︂
sin

(︂
𝑁𝐴𝜋
𝑁

)︂
sin

(︂
(𝑁𝐴+𝑁𝐶+𝑁𝐻 ) 𝜋

𝑁

)︂ (C11)

For the appropriate value of 𝛼, these cross-ratios must be equal,
revealing the identity

𝐶2 = cos2
(︃
𝛼

2

)︃
=

sin
(︂
𝑁𝐴𝜋
𝑁

)︂
sin

(︂
(𝑁𝐴+𝑁𝐶+𝑁𝐻 ) 𝜋

𝑁

)︂
sin

(︂
(𝑁𝐴+𝑁𝐶 ) 𝜋

𝑁

)︂
sin

(︂
(𝑁𝐴+𝑁𝐻 ) 𝜋

𝑁

)︂ , (C12)

where we define 𝐶2 as shown. With cos2 (𝑥) = 1 − sin2 (𝑥), we
obtain

𝑆(𝑁𝐻 , 𝑁𝐴, 𝑁𝐶 , 𝑁) =
𝐾 (

√
1 − 𝐶2)
𝐾 (𝐶) , (C13)

where

𝐶 =

⌜⃓⃓⃓⃓⎷ sin
(︂
𝑁𝐴𝜋
𝑁

)︂
sin

(︂
(𝑁𝐴+𝑁𝐶+𝑁𝐻 ) 𝜋

𝑁

)︂
sin

(︂
(𝑁𝐴+𝑁𝐶 ) 𝜋

𝑁

)︂
sin

(︂
(𝑁𝐴+𝑁𝐻 ) 𝜋

𝑁

)︂ . (C14)

Appendix D: A Short Catalog of Results
In this appendix, we provide a brief tabulation of shape factors

for a few additional objects for which interior and exterior shape
factors are equal. This catalog is by no means exhaustive.

Yin-yang bodies. A Yin-Yang body has an axis of symmetry
about which isothermal and adiabatic boundaries are interchanged
(§4.6). Every Yin-Yang body is conformally equivalent to a square
and has 𝑆𝑖 = 𝑆𝑒 = 1.

Discs. A disc with symmetric isothermal angular sectors is
shown in Fig. 8. Equation (C8) provides the shape factor as a
function of the angle 𝛼. Shape factors for several angles are given
in Table 4; and the angles that yield several shape factors are given
in Table 5. For all discs, 𝑆𝑖 ≡ 𝑆𝑒.

The case 𝛼 = 30° has the analytical solution 𝑆 = 1/
√

3 [2];
and, because the case 𝛼 = 150° simply interchanges the boundary
conditions, reciprocity [2] shows it to have the analytical solution
𝑆 =

√
3. Similarly, the shape factor for 𝛼 is the reciprocal of the

shape factor for 180° − 𝛼. The case 𝛼 = 90° is a Yin-Yang body
with 𝑆 = 1. The results are accurate to the number of digits shown
in the tables.
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Table 6 Interior flux plots for all unique regular pentagons and hexagons, with exact shape factors obtained through Eq. (3)
along with numerical values from FEM. Black curves are isotherms, and red curves are adiabats. Isothermal sides are shown
with thick lines.

Case 𝑺exact 𝑺𝒊 (FEM) Case 𝑺exact 𝑺𝒊 (FEM)

𝑆1-1
𝑝 0.896256 0.8963 𝑆2-1

𝑝 1.11575 1.1157

𝑆1-1
ℎ

0.781701 0.7815 𝑆1-1𝑅
ℎ

0.854584 0.8544

𝑆2-1
ℎ

1 0.9998 𝑆3-1
ℎ

1.17016 1.1699

𝑆2𝑛-1
ℎ

2
/︁√

3

(1.15470 · · · )

1.1544 𝑆2-2
ℎ

1.27926 1.2790

Regular 𝐾-gons. Interior flux plots for all unique regular pen-
tagon and regular hexagon problems are shown in Table 6. The
isothermal sides are indicated with heavy lines, and the other sides
are adiabatic. In all cases, the bottom side has a different tem-
perature than the top sides. The specific boundary conditions are
apparent from the flux plots. The exact shape factors from Eq. (3)
are shown alongside the numerical results obtained through FEM
analysis.

The FEM results are accurate to 0.03% or better. The exact
value for 𝑆2-1

ℎ
stems from the Yin-Yang symmetry while the exact

result for 𝑆2𝑛-1
ℎ

is due to Hersch [2]).
The exterior shape factors were computed numerically and, in

each case, we found an agreement of 1.4% or better with the inte-
rior FEM value; the difference is within the accuracy of the exterior
computation. (FEM convergence was discussed in Appendix A.)
These results support the equality of interior and exterior shape fac-
tors for regular 𝐾-gons, and they serve to further confirm Eq. (3).

Shape factors on half squares. If each side of a square is di-
vided into two equal parts, we have eight-fold symmetry. Consider
the shape factor when two half-sides are at different temperatures

and are separated by one or more adiabatic sides. Four unique ar-
rangements exist, with other arrangements being simple rotations
of the others.

To construct the four unique cases, we hold the bottom-left half-
side at 𝑇1 and vary the side at 𝑇2. Table 7 shows the possible
combinations with the interior shape factors calculated by FEM as
before.

Cases TL and UR both have 𝑆𝑖 = 1/
√

2 because these two shapes
are conformally equivalent. By mapping the square problems onto
the unit circle, using the method laid out in §3, it is readily seen
that both TL and UR correspond to the same problem on the unit
circle and are thus conformally equivalent. Conformally equivalent
problems have the same shape factor.

The half-square geometry is also conformally equivalent to an
octagon. Therefore, these shape factors also apply to octagons
with two isothermal faces separated by the appropriate number of
adiabatic faces.
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