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Abstract

In the context of medical decision making, counterfactual prediction enables clinicians
to predict treatment outcomes of interest under alternative courses of therapeutic actions
given observed patient history. In this work, we present G-Transformer for counterfactual
outcome prediction under dynamic and time-varying treatment strategies. Our approach
leverages a Transformer architecture to capture complex, long-range dependencies in time-
varying covariates while enabling g-computation, a causal inference method for estimat-
ing the effects of dynamic treatment regimes. Specifically, we use a Transformer-based
encoder architecture to estimate the conditional distribution of relevant covariates given
covariate and treatment history at each time point, then produces Monte Carlo estimates of
counterfactual outcomes by simulating forward patient trajectories under treatment strate-
gies of interest. We evaluate G-Transformer extensively using two simulated longitudinal
datasets from mechanistic models, and a real-world sepsis ICU dataset from MIMIC-IV.
G-Transformer outperforms both classical and state-of-the-art counterfactual prediction
models in these settings. To the best of our knowledge, this is the first Transformer-based
architecture that supports g-computation for counterfactual outcome prediction under dy-
namic and time-varying treatment strategies.

1. Introduction

Clinicians often have to choose among multiple treatment options for their patients but do
not have the ability to test every strategy before making a decision. In selecting among
competing dynamic treatment strategies, it is useful to obtain counterfactual predictions
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regarding a patient’s probability of experiencing adverse outcomes under each alternative
strategy, based on their observed covariate history.

Counterfactual prediction in medical decision-making involves the estimation of poten-
tial future trajectories of covariates of interest under alternative courses of action given
observed history. Treatment strategies of interest are typically time-varying, indicating de-
cisions span multiple time points, and dynamic, implying that each treatment decision at
a given time point is influenced by the preceding history up to that point. Recent works
presented deep learning approaches to estimate time-varying treatment effects (Lim et al.,
2018; Bica et al., 2020a,b; Melnychuk et al., 2022). However, most previous approaches
focus on estimating counterfactual outcomes under static time-varying treatment strategies
where treatments are not dependent on past covariate history.

In this work, we present G-Transformer, a transformer-based (Vaswani et al., 2017)
framework for counterfactual prediction under dynamic and time-varying treatment strate-
gies. G-Transformer supports g-computation, a causal inference technique for estimating
treatment effects under dynamic treatment regimes (Robins, 1986, 1987). G-Transformer
estimates the conditional distribution of relevant covariates given covariate and treatment
history at each time point using an encoder architecture, then produces Monte Carlo es-
timates of counterfactual outcomes by simulating forward patient trajectories under treat-
ment strategies of interest. We evaluated G-Transformer extensively using multiple simu-
lated datasets from two mechanistic models where ground-truths under the counterfactual
strategies can be measured, and a real-world sepsis dataset to assess G-Transformer’s po-
tential clinical utility in counterfactual predictions under alternative dynamic fluid admin-
istration regimes. Our contributions are the following:

• G-Transformer architecture. We introduce a novel Transformer-based architecture
that enables counterfactual predictions under dynamic and time-varying treatment
strategies to provide estimates of individual treatment effects. We present a custom
sequential training procedure for supporting g-computation that performs better than
the seq2seq training typically used in Transformers.

• Evaluation under static time-varying treatment regimes. Using a simulated tumor
growth dataset, we demonstrated that G-Transformer out-performed other state-of-
the-art deep learning approaches, including rMSN (Lim et al., 2018), CRN (Bica et al.,
2020a), G-Net (Li et al., 2021), and Causal Transformer (Melnychuk et al., 2022), in
counterfactual prediction under static time-varying treatments, in which treatments
are time-varying but do not depend on past covariate history.

• Evaluation under dynamic and time-varying treatment regimes. We used CVSim
(Heldt et al., 2010), a mechanistic model of the cardiovascular system, to simulate
counterfactual patient trajectories under various dynamic fluid and vasopressor ad-
ministration strategies, and demonstrated that G-Transformer out-performed other
baselines, including G-Net and a linear implementation of g-computation, in counter-
factual prediction under dynamic and time-varying treatment regimes.

• Evaluation under real-world ICU dataset. Using real-world data of a sepsis cohort
from the MIMIC-IV database (Johnson et al., 2023b; Goldberger et al., 2000), we
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evaluated the performance of G-Transformer in predicting outcomes under observa-
tional treatment regimes, and demonstrated G-Transformer’s potential clinical utility
in generating counterfactual predictions under alternative dynamic fluids administra-
tion regimes.

Generalizable Insights about Machine Learning in the Context of Healthcare

G-Transformer can facilitate treatment decision making by predicting time-varying treat-
ment outcomes over time under alternative dynamic treatment strategies of interest. Our
extensive experiments show strong empirical performance of G-Transformer under both
static and dynamic time-varying treatment strategies over other state-of-the-art techniques.
Although we focus on applications in healthcare in this proposed work, the G-Transformer
architecture can be applied to other sequential decision making tasks that involve dynamic
and time-varying interventions.

2. Related Work

Recent works by Lim et al. (2018); Bica et al. (2020a,b) presented deep learning approaches
to estimate time-varying treatment effects. Bica et al. (2020a) applied ideas from domain
adaptation to estimate treatment effects over time while Lim et al. (2018) used RNN regres-
sion models with history adjusted marginal structural models (MSMs) (Van der Laan et al.,
2005) to make counterfactual predictions. Causal Transformer (CT) has recently been pro-
posed a Transformer-based architecture to estimate counterfactual outcomes (Melnychuk
et al., 2022). However, previous approaches focus on estimating counterfactual outcomes
under time-varying treatment strategies where treatments are not dependent on past co-
variate history. None of these approaches are designed to estimate effects under dynamic
treatment strategies, in which treatment depends on recent covariate history. In contrast,
our work focus on estimating treatment effects under dynamic treatment strategies, in which
treatments depend on covariate history.

Dynamic-MSMs can be used to estimate expected counterfactual outcomes under re-
stricted classes of simple dynamic treatment regimes (Orellana et al., 2010; Shahn et al.,
2020). It performs time-varying confounding adjustment via inverse probability weight-
ing. The limitation with dynamic-MSMs is that the optimal treatment strategy of realistic
complexity may not be included in the restricted class considered.

G-computation can be used to estimate the average effect of a dynamic treatment regime
(DTR) on the population, or the conditional effect given observed patient history. Previous
implementations of g-computation used classic linear models (Taubman et al., 2009) or
recurrent neural networks based architectures, such as LSTM (Li et al., 2021). G-Net
(Li et al., 2021) is based on g-computation and used LSTMs for counterfactual prediction
of time-varying treatment outcomes under alternative dynamic treatment strategies. In
contrast, our work focused on a Transformer-based architecture to better capture complex
dependencies in time-varying data. DeepACE (Frauen et al., 2023) is a recurrent neural
network based model that leverages the g-computation framework to address time-varying
confounding, but primarily focuses on estimating the Average Causal Effect (ACE).

Schulam and Saria (2017) proposes an implementation of continuous-time g-computation,
focusing on static, time-varying treatment strategies. While their approach could poten-
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tially be extended to accommodate dynamic strategies, it is known that Gaussian Processes
(GPs) become intractable for large datasets. Recent work by Wu et al. (2023) presented an
alternating sequential model that used Transformers for clinical treatment outcome predic-
tion, but their work did not support counterfactual prediction. Seedat et al. (2022) and Holt
et al. (2024) focused on Continuous-Time Modeling, attempting to predict counterfactual
treatment effects over irregular time lengths. They utilized neural controlled differential
equations to model patient historical trajectories and attempted to make uncertainty esti-
mates based on this model. T4 (Liu et al., 2023) introduced a LSTM-based neural network
architecture for predicting the counterfactual treatment effects of sepsis. They also esti-
mated the uncertainty associated with treatment effects.

3. Methods

3.1. Background: G-computation and Problem Setup

G-computation Robins (1986) can be used to estimate the average effect of a dynamic
treatment regime (DTR) on the population, or the conditional effect given observed patient
history. In the latter case, we can estimate the expected counterfactual trajectory of out-
comes of interest under alternative treatment strategies of interest for a particular patient
history.

Problem Setup Our goal is to predict patient outcomes under alternative future treat-
ment strategies given observed patient histories. We follow notations introduced in Li et al.
(2021) in this study.
Let:

• t ∈ {0, . . . ,K} denote time, assumed discrete, with K being the end of followup;

• At denote the observed treatment action at time t;

• Yt denote the observed outcome at time t

• Lt denote a vector of covariates at time t that may influence treatment decisions or
be associated with the outcome;

• X̄t denote the history X0, . . . , Xt and Xt denote the future Xt, . . . , XK for arbitrary
time varying variable X.

At each time point, we assume the causal ordering (Lt, At, Yt), i.e. the treatments are
administered after having observed the covariates at time step t. Let Ht ≡ (L̄t, Āt−1)
denote patient history preceding treatment at time t. A dynamic treatment strategy g
is a collection of functions {g0, . . . , gK}, one per time point, such that gt maps Ht onto a
treatment action at time t. An example dynamic strategy might be to administer treatment
A if the patient’s vital signs, e.g. arterial blood pressure, drops below certain threshold.

Let Yt(g) denote the counterfactual outcome that would be observed at time t, had
treatment strategy g been followed from baseline (Robins, 1986). Further, let Yt(Ām−1, gm)
with t ≥ m denote the counterfactual outcome that would be observed had the patient
received their observed treatments Ām−1 through time m− 1 then followed strategy g from
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time m onward. Here, the treatment strategy g is typically specified by the domain experts,
e.g. clinicians. In this work, the outcome Yt can be deemed to be a variable in the vector
Lt+1.

In counterfactual point prediction, our goal is to estimate expected counterfactual pa-
tient outcome trajectories

{E[Yt(Ām−1, gm)|Hm], t ≥ m} (1)

given observed patient history through time m for any m and any specified treatment
strategy g, where g is specified by a domain expert, e.g. a clinician. It may be of interest
to estimate the counterfactual outcome distributions at future time points

{p(Yt(Ām−1, gm)|Hm), t ≥ m}. (2)

The g-computation algorithm enables the estimation of (1) and (2) under the following
assumptions (Robins, 1986): Consistency, Sequential Exchangeability, and Positivity.

Assumption 3.1. Consistency asserts that the observed outcome is equal to the
counterfactual outcome that would have occurred had the observed treatment been applied.

Assumption 3.2. Sequential exchangeability requires that there is no unobserved
confounding, i.e., all drivers of treatment decisions prognostic for the outcome are included
in the data.

Assumption 3.3. Positivity posits that the counterfactual treatment strategy of
interest has some non-zero probability of actually being implemented.

Under assumptions 3.1-3.3, for t = m we have that

p(Ym(Ām−1, gm)|Hm) = p(Ym|Hm, Am = gm(Hm)), (3)

i.e. the conditional distribution of the counterfactual is the conditional distribution of
the observed outcome given patient history and given that treatment follows the strategy of
interest. For t > m, we need to adjust for time-varying confounding. With Xi:j = Xi, . . . , Xj

for any random variable X, under assumptions 1-3 the g-formula yields

p(Yt(Ām−1, gm) = y|Hm)

=

∫
lm+1:t

p(Yt = y|Hm, Lm+1:t = lm+1:t, Am:t = g(Hm:t))

×
t∏

j=m+1

p(Lj = lj |Hm, Lm+1:j−1 = lm+1:j−1,

Am,j−1 = g(Hm, lm+1:j−1)). (4)

We can approximate this integral through Monte-Carlo simulation.
G-computation algorithm requires the ability to simulate from joint conditional distribu-

tions p(Lt|L̄t−1, Āt−1) of the covariates given patient history.These conditional distributions
need to be estimated from data. Most implementations of g-computation use generalized
linear regression models (GLMs) to estimate the conditional distributions of the covariates.
These models often do not capture the complex temporal dependencies in the patient data.
We propose the G-Transformer for this task.
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Figure 1: G-Transformer Architecture. In this diagram, G-Transformer uses two distinct encoders
for categorical (Lca) and continuous variables (Lco) respectively. The diagram illustrates
(i) the training process through time steps T-1 and T, and (ii) the counterfactual simu-
lation process starting at time T, with the counterfactual strategy gc initiated at the end
of time T-1. Teacher forcing is used during training.

3.2. G-Transformer Architecture

We utilized two Transformer encoders as the sequential model to separately learn hidden
representations for continuous and categorical covariates in G-Transformer. We use the
teacher forcing in the training process. Although we have presented our model architecture
with two Transformer encoders—one for continuous variables and another for categorical
variables— G-Transformer can be extended to support multiple encoders. For instance, a
separate Transformer encoder can be used to model the conditional distribution of each
individual covariate.

Let L0
t , ..., L

p
t denote p components of the vector of covariates Lt. When we calcu-

late joint conditional distributions p(Lt|L̄t−1, Āt−1) at time t, we leverage the conditional
probability identity as in (Li et al., 2021):

p(Lt|L̄t−1, Āt−1) = p(L0
t |L̄t−1, Āt−1)

× p(L1
t |L0

t , L̄t−1, Āt−1)

× · · ·
× p(LP−1

t |L0
t , . . . , L

P−2
t , L̄t−1, Āt−1) (5)

In this work, unless otherwise noted, we divide covariates into two groups, one for the
categorical variables Lca

t , and the other for the continuous variables Lco
t . For simplicity, our

description assumes categorical variables are simulated before continuous variables within
each time step. However, our implementation does not impose any specific ordering require-
ments among the covariates.
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We use two Transformer encoder models to perform representation learning for categor-
ical variables and continuous variables respectively. At each time step t, we can compute
representation of patient history Rt = rt(L̄t, Āt; θ), where θ denotes the learnable param-
eters from model rt. We will introduce the specific content of model rt in the following
section. In this work, the outcome Yt can be deemed as a covariate in the vector Lt+1. For
example, the outcome of interest can be blood pressure in the next time step.

Representation Learning. For the input of categorical encoder, we concatenate all
the historical treatments Āt and covariates L̄t together, and use a linear layer to obtain
their combined representation hrca:

hrca = Linear(concat(Āt, L̄t)) (6)

Afterwards, we feed the combined representations of treatments and outcomes hrca into a
Transformer encoder to obtain the final representation of past covariate history:

hca = Transformer Encoderca(hrca) (7)

The internal architecture of the Transformer encoder sublayers follows the original Trans-
former paper (Vaswani et al., 2017), including a multi-head self-attention layer, feed-forward
network, and layer normalization mechanism. After obtaining hca, we map the hidden rep-
resentation to the predicted future time step through a linear layer, followed by a softmax
layer for normalization before loss calculation.

L̂ca
t+1 = Linear(ReLU(hca)) (8)

During the training phase, we use teacher forcing to guide the training of the cate-
gorical and continuous encoders. In addition to the patient’s historical sequences (Āt, L̄t),
we also use observed value Lca

t+1 as input into the continuous encoder:

hrco = Linear(concat(Āt, L̄t, L
ca
t+1)). (9)

As with categorical variables, we use a Transformer encoder to obtain a hidden representa-
tion hco that incorporates the preceding variables. Then we utilize a linear layer to modify
the hidden state to generate the final output L̂co

t+1:

hco = Transformer Encoderco(h
r
co) (10)

L̂co
t+1 = Linear(hco) (11)

3.3. Training of G-Transformer

Since g-computation models the joint conditional probability distribution of the next time
step p(Lt|L̄t−1, Āt−1) given the observable sequence, it aligns more closely with the modeling
methods used in RNN-like regression models. However, due to the Transformer’s nature
as a seq-2-seq model, with its multi-head self-attention mechanism, it is typically used to
generate an entire sequence at a time. We developed a customized training procedure that
is aligned with the g-computation algorithm (see Algorithm 1). As a comparison, we present
results from alternative training methods on our counterfactual prediction task, including
the conventional Seq-2-Seq approach, and the results are shown in the Appendix A.1.
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We use cross-entropy loss and MSE (Mean Squared Error) loss to optimize the prediction
results for categorical and continuous variables, respectively. For categorical variables:

Lce = − 1

N(K −m)Dca

N∑
i=1

Dca∑
d=1

K∑
t=m

C∑
c=1

Lc,ca
idt log(pc,caidt ) (12)

where Dca denotes the number of categorical variables, N denotes the number of paitents,
θ denotes the model parameters, and C denotes the number of classes in this categorical
variable. We assume the class label of Lca

d is represented as a one-hot encoded vector
(L1

d, L
2
d, ..., L

C
d ) where Lc

d = 1 for the correct class and 0 for all other classes. We separately
calculated the cross-entropy losses of different variables and computed their averages to
account for the needs of multi-class variables. For continuous variables, we utilize the MSE
loss:

Lmse =
1

N(K −m)Dco

N∑
i=1

Dco∑
d=1

K∑
t=m

||Ld,co
t,i − L̂d,co

t,i ||2 (13)

where L̂co
t,i denotes the output of continuous encoder part of G-Transformer for patient i

in time t, N denotes number of patients, K denotes length of time and Dco denotes the
number of continuous variables. Algorithm 1 illustrates the overall training process of G-
Transformer.

Algorithm 1: G-Transformer training algorithm

Input: Training set D data tuples: D = {(L̄, Ā)} ; The number of the prediction
length K; The number of the observed historical length m; Model parameters
θca and θco; The number of the learning epochs E,.

while e < E do
for t = m to K do

Use categorical encoder to compute the L̂ca
t = fca(L̄1:t−1, Ā1:t−1; θca).

Use continuous encoder to compute the L̂co
t = fco({L̄1:t−1, Ā1:t−1, L

ca
t }; θco).

Save the L̂co
t , L̂ca

t for loss calculation.

end

Concatenate the results of all predicted time steps L̂ca
m:K = {L̂ca

m , ..., L̂ca
K} and

L̂co
m:K = {L̂co

m, ..., L̂co
K}.

Update model parameters θca and θco by minimizing (12) and (13) with gradient
descent.

end
return updated model parameters θca and θco

3.4. Simulation

After having trained a sequential model f(R; θ), we can perform Monte-Carlo simulations,
and sequentially simulate from p(Lp

t |L̄t−1, L
0
t , . . . , L

p−1
t , Āt−1) as follows. If Lp

t is multi-
nomial, its conditional expectation defines its conditional density. If Lp

t has a continuous
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density, we simulate from its conditional distribution as follows. Without making paramet-
ric assumptions, we simulate from:

Lp
t ≃ Ê[(Lp

t |L0
t , ..., L

p−1
t , L̄t−1, Āt−1)] + ϵpt (14)

where ϵpt is a draw from the empirical distribution of the residuals Lp
t − L̂p

t in a holdout set.
We use Algorithm 2 for each time t = {m, ....,K} to perform multi-timestep simulations.
Figure 1 illustrates the simulation process. Different from the training process, since we
do not have access to the ground truth, we sample from the learned conditional distribu-
tion when performing counterfactual predictions. For categorical variables, the predicted
probabilities from L̂ca, produced by the categorical encoder, are used to parameterize a
categorical distribution (or a Bernoulli for binary indicator variables). We then sample
from the resulting distribution. For the continuous variables, we added noise sampled from
the empirical distribution collected from the validation set to the output of the continuous
encoder.

Algorithm 2: Simulation (one time-step)

Set a∗m = gm(Hm)
Sample l∗m+1 from p(Lm+1|Hm, Am = a∗m)
Set a∗m+1 = gm(Hm, l∗m+1, a

∗
m)

Sample l∗m+2 from p(Lm+2|Hm, Lm+1 = l∗m+1, Am = a∗m, Am+1 = a∗m+1)
Continue simulations through time K

We repeat the g-computation simulation (Algorithm 2) M times, where M is the number
of Monte-Carlo simulations. At the end of this process, we have M simulated draws of the
counterfactual outcome for each time t = {m, . . . ,K}, where m is beginning time step of
simulation and K is the end time step of simulation. For each t, the empirical distribution
of these draws constitutes a Monte-Carlo approximation of the counterfactual outcome
distribution (2). The sample averages of the draws at each time t are an estimate of the
conditional expectations (1) and can serve as point predictions for Yt(Ām−1, gm) in a patient
with history Hm.

3.5. Evaluation

To evaluate G-Transformer, we use simulated data in which counterfactual ground truth
can be known. Specifically, we use CVSim (Heldt et al., 2010), a well-established mech-
anistic model of the cardiovascular system, to simulate counterfactual patient trajectories
under various dynamic fluid and vasopressor administration strategies. Additionally, using
a simulated tumor growth data set, we compare G-Transformer with recently introduced
G-Net (Li et al., 2021), Recurrent Neural Networks (CRN) (Bica et al., 2020a), a Recurrent
Marginal Structural Network (R-MSN) (Lim et al., 2018), a recurrent neural network imple-
mentation of a history adjusted marginal structural model for estimating static time-varying
treatment effects, and Causal Transformer (Melnychuk et al., 2022).

We applied our proposed G-Transformer approach to predicting outcomes of sepsis pa-
tients in the ICU under alternative fluid resuscitation treatment regimes (e.g. aggressive vs.
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conservative) using de-identified real-world intensive care units (ICU) data from the MIMIC-
IV (Johnson et al., 2023b) publicly available from PhysioNet Goldberger et al. (2000). We
quantitatively evaluate G-Transformer’s performance in predicting patient trajectories un-
der observational treatment regimes learned from the ICU data. This entails using the
G-Transformer architecture to predict treatment at each time-step under the observational
treatment regime in the observational data. Under predictive check, the treatments are from
G-Transformer predicted actions conditioned on patient history, and we evaluate by com-
paring the predicted time-varying outcomes (averaged across M Monte-Carlo simulations)
with the actual observed trajectories from individual patients.

4. Experiments on Simulated Data from Mechanistic Models

4.1. Cancer Growth Experiments and Results

Cancer Growth Data Generation As in Lim et al. (2018); Bica et al. (2020a); Li
et al. (2021); Melnychuk et al. (2022), we generate simulated ‘observational’ data from a
pharmacokinetic-pharmacodynamic (PK/PD) model of tumor growth under a stochastic
regime (Geng et al., 2017). In this simulation, chemotherapy and radiation therapy com-
prise a two dimensional time-varying treatment impacting tumor growth. Under the obser-
vational regime, probability of receiving each treatment at each time depends on volume
history, so there is time-varying confounding.

We use the same experiment settings and data generation procedure as reported in Li
et al. (2021). Briefly, we generated four test sets in which four counterfactual regimes were
followed for the final four time points in the test set: (1) give only radiotherapy, (2) only
chemotherapy, (3) both chemotherapy and radiotherapy, and (4) no treatment. We gener-
ated 10,000 trajectories for training, and 1,000 simulated trajectories for hyperparameter
optimization (validation data), with another 1,000 for testing. See Li et al. (2021) for full
details of the data generation process. These counterfactual regimes are static time-varying
regimes (in which treatments do not depend on prior patient history), as rMSN, CRN,
and Causal Transformer are intended to estimate counterfactuals under static time-varying
regimes.

Table 1 presents the percent root mean square error (RMSE) of predictions from rMSN,
CRN, linear implementation of g-computation, G-Net, Causal Transformer, and G-Transformer
in the final four time steps when counterfactual strategies were in effect, conditioned upon
previous time points. The raw RMSE values were divided by the maximum possible tumor
volume, 1150 cm2, as in Lim et al. (2018), to calculate the percent RMSE. Details of the
model training and hyper-parameter settings are described in the Appendix.

We observe that G-Transformer achieved the best overall RMSE performance in three of
the four cancer growth datasets, demonstrating its advantages in counterfactual prediction
task compared to other state-of-the-art deep learning models, including rMSN, CRN, G-
Net and Causal Transformer. Causal Transformer outperformed other models under the
chemotherapy (Chemo) counterfactual regime, but fall short in other counterfactual regimes.
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Table 1: Cancer growth data: Percent RMSE for various prediction horizons. A = Overall. CT =
Causal Transformer. Best performing models in bold.

rMSN CRN Linear G-Net CT G-Transformer
t – – g-comp – –

No 1 1.13 1.00 0.63 0.25 0.67 0.26
Treat 2 1.24 1.20 1.21 0.47 0.65 0.44

3 1.85 1.49 1.78 0.72 0.63 0.55
4 2.60 1.78 2.35 1.01 0.63 0.66
A 1.68 1.40 1.62 0.67 0.65 0.48

Radio 1 5.27 4.91 7.14 3.29 5.15 2.74
2 5.38 4.92 7.43 3.14 2.98 2.50
3 5.13 4.94 7.05 3.02 2.72 2.40
4 4.81 4.92 6.50 3.00 2.53 2.52
A 5.15 4.92 7.04 3.11 3.35 2.54

Chemo 1 1.42 1.04 1.58 0.34 0.66 0.36
2 1.27 1.09 3.14 0.63 0.50 1.16
3 1.46 1.03 4.52 0.84 0.44 1.95
4 1.69 1.02 5.47 0.89 0.41 2.45
A 1.47 1.05 3.96 0.71 0.50 1.48

Radio 1 4.76 4.66 7.76 3.10 8.40 2.48
Chemo 2 3.59 4.36 7.32 2.28 7.72 2.04

3 2.76 3.65 6.13 1.50 7.79 1.54
4 2.30 2.95 4.88 1.18 7.67 1.10
A 3.48 3.96 6.62 2.15 7.90 1.79

4.2. CVSim Experiments and Results

CVSim Data Generation To evaluate counterfactual predictions, it is necessary to
use simulated data in which counterfactual ground truth for outcomes under alternative
treatment strategies is known. To this end, we performed experiments on data generated by
CVSim, a program that simulates the dynamics of the human cardiovascular system (Heldt
et al., 2010). We used a CVSim 6-compartment circulatory model which takes as input
28 variables that together govern a hemodynamic system. We built on CVSim by adding
stochastic components and interventions for the purposes of evaluating our counterfactual
simulators.

We generated an ‘observational’ dataset Do under treatment regime go and two ‘coun-
terfactual’ datasets Dc1 and Dc2 under treatment regimes gc1 and gc2. The data generating
processes producing Do and Dcj were the same except for the treatment assignment rules.
For each j, gcj was identical to go for the first m− 1 simulation time steps before diverging
to a different treatment rule for time steps m to K. Full details are in the Appendix C.

Experiment As in Li et al. (2021), we generated a total of 12,000 trajectories in Do

(No = 12, 000), of which 80% were used for training, and the remaining 20% for validation.
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For testing, we generated 1000 observations in the Dcj datasets (Nc = 1000). We included
a total of 20 output variables (i.e. two treatment variables and 18 covariates influencing
treatment assignment under go) from CVSim to construct Do and Dcj ; each trajectory is
of length 66 time steps (d=20, K=66). In each Dcj , the switching time point m from go to
gc is fixed at 34 for all trajectories (m = 34).

Given observed covariate history through 34 time steps and treatment history through
33 time steps of each trajectory in each Dcj , we computed both the population-level and
individual-level RMSE, as well as the calibration, of counterfactual predictions from G-
Transformer and its counterparts for time steps 35 to 66. Moreover, we presented the
estimated and actual population-level average trajectories under gc1 and gc2 for selected
variables.

CVSim Counterfactual Prediction Performance in RMSE. We use RMSE to as-
sess our model’s accuracy in counterfactual prediction for continuous variables in CVSim
data. Individual-level RMSE is calculated by first determining the square root of the mean
squared differences between each patient’s observed and predicted trajectories. We also
report population-level RMSE, by comparing the average population-level trajectory of the
predicted and the ground-truth.

For G-Transformer, G-Net and the linear implementation of g-computation, the pre-
dicted trajectory is averaged from 100 Monte Carlo simulations. The RMSE values across
all patients are then averaged to derive individual-level RMSE.

Table 2: CVSim: Counterfactual prediction under gc1 and gc2. Performance of various models in
predicting remaining 32-hour patient covariate trajectories based on first 34-hour patient
covariate trajectories. Values reported represent the population-level and individual-level
RMSE between the predicted and counterfactual trajectories. * Causal Transformer mod-
ified to update treatment assignment at each time-step under gc1 and gc2.

Population Level Individual Level
Model RMSEgc1 RMSEgc2 RMSEgc1 RMSEgc2

Causal Transformer∗ 0.576 ± 0.078 1.323 ± 0.257 1.473 ± 0.272 1.694 ± 0.407
Linear(g-comp) 0.255 ± 0.001 0.442 ± 0.002 1.103 ± 0.001 1.307 ± 0.001

G-Net 0.066 ± 0.001 0.329 ± 0.101 1.020 ± 0.002 1.220 ± 0.048
G-Transformer 0.055 ± 0.006 0.299 ±0.110 1.019 ± 0.002 1.210 ± 0.045

Table 2 presents a comparison of individual-level and population-level RMSE among
linear implementation of g-computation, G-Net, Causal Transformer, and G-Transformer
under gc1 and gc2. The G-Transformer outperforms linear implementation of g-computation
and G-Net, and considerably outperforms Causal Transformer in this counterfactual predic-
tion task. Table 6 in the Appendix A.2 presents performance in RMSE over-time. It should
be noted that Causal Transformer Melnychuk et al. (2022) can estimate counterfactual
outcomes under time-varying treatments, but it is not designed to estimate counterfactual
outcomes under dynamic treatment regimes, where treatments depend on past covariate his-
tory during counterfactual prediction. Nevertheless, we modified the Causal Transformer’s
implementation to update the sequential treatment assignment at each time-step according
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to the specified dynamic treatment rule depending on the past covariates, and present its
performance here as a baseline.

(a) AQ (gc1) (b) AP (gc1) (c) HR (gc1)

(d) AQ (gc2) (e) AP (gc2) (f) HR (gc2)

Figure 2: Plots (a) to (f) show the estimated and actual population average trajectories for three
selected variables: arterial flow (AQ), arterial pressure (AP), and heart rate (HR), ac-
cording to three models’ predictions under gc1 vs gc2.

Population-Level Trajectories The G-Transformer, G-Net, and linear implementa-
tion of g-computation can be used to quantitatively demonstrate counterfactual outcomes
through population average trajectories. The estimated and actual population-level average
trajectories under gc1 and gc2 for selected variables, specifically arterial flow (AQ), arterial
pressure (AP), and heart rate (HR), are presented in Figure 2 (a) to (f). The plots show
that G-Transformer outperforms G-Net and linear implementation of g-computation, and
more accurately predict AQ, AP, and HR counterfactual trajectories from the population
level.

Calibration We assess the calibration of a G-Transformer, G-Net, or linear implementa-
tion of g-computation, denoted as G, as follows. Given lower and upper quantiles αlow and
αhigh, the calibration measures the frequency with which the actual counterfactual covariate

Lh,cj
ti is between the αlow and αhigh quantiles of the M simulations {L̃h,cj

ti (Hcj
mi, G, k) : k ∈

1 : M}. If this frequency is approximately αhigh − αlow, then G is well calibrated.
Figure 3 depicts calibration for G-Transformer, G-Net, and linear implementation of

g-computation with lower and upper quantiles of 0.05 and 0.95. G-Transformer generally
performed better than G-Net and linear implementation of g-computation over all time
steps.
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(a) Calibration under gc1 (b) Calibration under gc2

Figure 3: Calibration over time for gc1 and gc2

5. Experiments on MIMIC Data

5.1. MIMIC Cohort

The data employed in this study was extracted from the Medical Information Mart for
Intensive Care IV database (MIMIC-IV v1.0), containing medical records from more than
523,500 hospital admissions and 76,500 ICU stays at the Beth Israel Deaconess Medical
Center (BIDMC) between 2008 and 2019 Johnson et al. (2023a). Our cohort consists of
ICU patient identified as septic under the Third International Consensus Definitions for
Sepsis and Septic Shock (Sepsis-3) Singer et al. (2016) and did not meet exclusion criteria
(see Appendix D for details). Our final sepsis cohort consisted of 8,934 total patients
which we further split into 7,147 patients, 893 patients, and 894 patients for the training,
validation, and test data respectively.

5.2. Study Design

Since there is no ground-truth observations available for the MIMIC data for counterfactual
predictions, we first assess our models’ performance through a “predictive check” using data
collected during the first 24 hours of patients’ stay in the ICU. This involved conducting
Monte Carlo simulations and projecting forward patient covariate trajectories within the
test set under the observational regime. Subsequently, we compared these simulated trajec-
tories (averaged across 100 Monte Carlo simulations per patient) to the ground-truth data.
Following predictive check, we assess our model in performing counterfactual predictions.
In the MIMIC experiment, we use a separate Transformer encoder for each covariate in
G-Transformer. For G-Net, we use a separate LSTM for each covariate.

5.3. Predictive Checks

For each patient in the test set, we use G-Transformer and other baseline approaches to
simulate their trajectories under the observational treatment regime from hour k up to
hour 24, conditioned on the observed covariates and treatment history up to and including
hour k-1. Under predictive check in G-Transformer, we use a Transformer encoder to
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predict the treatment action at each time step under the observational treatment regime.
Similarly, for G-Net, we use an LSTM model to predict the treatment at each time step
during predictive checks. We compared the trajectories between predicted and ground-truth
under G-Transformer, G-Net, and Causal Transformer. We use individual-level RMSE as a
metric. Since patient trajectories can be censored due to events such as death and release
in MIMIC data, individual-level RMSE is adjusted to account for error due to over- and
under-prediction in the trajectory length as in Su et al. (see Appendix B.1 for details).

We also compared the models’ performance in predicting the occurrence of adverse clin-
ical outcomes during the first 24-hours patients were in the ICU. To generate a probability
for the 24-hour window, we first assigned a binary label for each Monte Carlo simulation
based on whether the outcome is predicted to have occurred: 1 if outcome of interest was
predicted to occur between timestamps k to 24, and 0 otherwise. Then the average across
the Monte Carlo simulations per patient was used as the predicted probability for that
patient. The ground truth was determined in the same manner by looking for the presence
of the outcome of interest in the ground-truth trajectory.

5.4. Predictive Check: Individual-Level RMSE

Table 3 presents the predictive check on individual-level RMSE for continuous variables.
We aim to assess the performance of G-Transformer, G-Net, and Causal Transformer in
predicting 24-hour patient covariate trajectories, starting at time k conditioned on covariates
from the previous k−1 hours in the ICU. Values reported represent the RMSE of continuous
covariates between the predicted and ground-truth trajectories. To account for mismatch
in trajectory length due to over- and under-prediction of death and release time, for both
predicted and actual trajectories, depending on nature of covariates, post-death timesteps
are padded with one of the following values: normalized zero, normalized minimum value in
dataset, or normalized logarithmic zero. The post-release timesteps are consistently padded
with normalized population mean.

Results in Table 3 indicate that G-Transformer consistently outperforms G-Net and
Causal Transformer across different values of k. Although Causal Transformer Melnychuk
et al. (2022) is not intended to estimate counterfactual outcomes under dynamic treatment
regimes, nevertheless, we present the performance from a modified version of Causal Trans-
former (where treatments depend on past covariate history during simulations) here as a
baseline.

Predictive Check: an Illustrative Example from G-Transformer’s Monte Carlo
Simulations Figure 4 illustrates the Monte Carlo simulations generated by G-Transformer
for selected variables, specifically systolic blood pressure (SBP) and heart rate (HR), given
an example MIMIC patient from test dataset. We observe that the predicted trajectory
averaged from 100 Monte Carlo simulations follow closely with the ground-truth trajectory.

Predictive Check: 24-Hour Outcomes Predictions Table 4 presents AUCs in pre-
dicting clinical outcomes within the first 24 hours of ICU admission at varying simulation
start times from G-Transformer and G-Net. There are four outcomes of interest: diagnosis
of pulmonary edema, use of a mechanical ventilator (MV), administration of diuretics, and
dialysis. We observe that the predicted 24-hour clinical outcomes of interest tend to be
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Table 3: MIMIC-IV Experiments: Predictive check on continuous variables at individual-level
RMSE. k is the simulation start time relative to the ICU admission time. Performance in
predicting 24-hour patient covariate trajectories, starting at hour k conditioned on covari-
ates from the previous k − 1 timesteps of post-ICU admission. Values reported represent
the individual-level RMSE of continuous covariates between the predicted and ground-
truth trajectories. Individual-level RMSE is adjusted to account for error due to over-
and under-prediction in the trajectory length as a result of death and discharge. *Causal
Transformer modified to update treatment assignment at each time-step based on pre-
dicted action.

Individual Level RMSE
Model / k (hours) 2 6

Causal Transformer∗ 14.37 15.73
G-Net 7.017 7.670

G-Transformer 6.993 7.643

(a) SBP (b) HR

Figure 4: Illustration of predictive check on an example MIMIC test set patient. G-Transformer
simulated systolic blood pressure (SBP) and heart rate (HR) trajectories (100 Monte
Carlo simulations in light blue, average in solid dark blue) compared with ground truth
(red) for one patient with predicted treatments under the observational treatment regime
(simulation starting at hour 6).

more accurate as the value of k increases, and G-Transformer performs slightly better than
G-Net when conditioned on a longer history (i.e. k=6) except in the case of predicting
diuretics use.

5.5. Counterfactual Experiments

Our counterfactual strategies are adapted from established clinical trials studying the early
treatment of sepsis. This strategy imposes a fluid cap on the total amount of fluids intake
of a patient to X liters, and ceases administration once the fluid cap is reached or when
the patient is fluid-overloaded. More specifically, this strategy was based on the Crystalloid
Liberal or Vasopressors Early Resuscitation in Sepsis (CLOVERS) clinical trial (Self et al.).
For a patient with blood pressure below 65mmHg at time t, a 1000mL bolus was adminis-
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Table 4: MIMIC-IV Experiments: Predictive check on clinical outcomes within the first 24 hours
of ICU admission at varying simulation start times. Values reported are AUCs. Edema
represents presence of Pulmonary Edema.

Model k Edema MV Diuretics Dialysis

G-Net 2 0.802 0.898 0.735 0.878
G-Transformer 2 0.817 0.896 0.644 0.880

G-Net 6 0.850 0.938 0.713 0.846
G-Transformer 6 0.864 0.945 0.650 0.958

tered if the total volume of fluids (including both treatment and maintenance) they received
up until that time point did not exceed X liters and if they did not exhibit any signs of fluid
overload (as indicated by the presence of pulmonary edema based on chest x-ray radiology
reports). We experimented with imposing a fluid cap of 5L as fluid conservative strategies,
and a fluid strategy with no fluid cap to represent a fluid liberal strategy.

Illustrative Examples in Counterfactual Prediction We used G-Transformer to sim-
ulate covariate trajectories for patients in the test dataset under one conservative fluids
strategies (with 5L fluid cap) and a fluid liberal strategy (with no cap). Selected covari-
ates are presented in Figure 5, allowing for comparison of the two counterfactual regimes.
Population-level average trajectories were calculated from the test set (N=894). Counter-
factual strategies are applied starting at time step 1, conditioned on observations up until
the first hour in the ICU. For each patient, we perform 100 Monte Carlo simulations. The
plotted values are averaged across simulated trajectories for all test patients.

Figure 5: Illustrative examples of population-level trajectories of selected covariates under counter-
factual fluids strategies. G-Transformer’s predictions for selected covariates under various
counterfactual fluids strategies, including one fluids conservative (purple) strategy with
5L fluids cap, and a fluids liberal (green) strategy without fluid cap.

We provide illustrative examples of patient trajectories at a population-level to demon-
strate G-Transformer’s capability to generate clinically meaningful counterfactual predic-
tions. The trends depicted in Figure 5 generally align with our physiological and clinical
expectations. Under fluid liberal strategies, the bolus volume and blood pressure exhibit
higher values, following the expected trends at a population level. Conversely, the higher
levels in creatinine under the fluids conservative regime also align with expected outcomes.
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Readers should exercise caution when interpreting these plots in Figure 5 as indicators
of treatment effects, as the number of patients (or trajectories) contributing to the average
may not remain constant throughout the entire 24-hour period. Simulated trajectories may
end prematurely within the 24-hour period due to death or discharge.

6. Discussion and Conclusion

In this paper, we present G-Transformer, a Transformer-based framework supporting g-
computation, to estimate clinical outcomes under counterfactual treatment strategies using
both synthetic datasets and a real-world sepsis patient cohort. Our experiments using Can-
cer Growth and CVSim data, demonstrated that G-Transformer achieved better overall
performance compared to other state-of-the-art methods. Using a real-world sepsis dataset,
we demonstrated G-Transformer’s potential clinical utility in forecasting covariate trajec-
tories under alternative counterfactual fluid limiting regimes. Although we focus on appli-
cations in healthcare in this study, the G-Transformer architecture can be applied to other
sequential decision making tasks that involve dynamic and time-varying interventions.

Limitations One limitation of this work is that counterfactual predictive density esti-
mates in our experiments do not take into account uncertainty about model parameter es-
timate. Specifically, given G-Transformer parameters, the distribution of the Monte Carlo
simulations produced by g-computation algorithm constitute an estimate of uncertainty
about a counterfactual prediction. However, this estimate ignores uncertainty about the
G-Transformer parameter estimates themselves. An important area of future work for G-
Transformer is adding support for quantification of model uncertainty.
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Appendix A. Additional CVSim Results

A.1. Alternative G-Transformer Architecture Experiment

Our proposed G-Transformer training process differs from the traditional Transformer, in
the way it is iteratively trained on time-series data. Conditioning on observations from
the first time step, we treat each time step starting from the second one as an independent
subsequence, and use this subsequence to predict the next time step. Then, we concatenated
the results of the last time step of each sub-sequence to form a complete prediction sequence
for optimization. In contrast, traditional Transformers directly use a sequence-to-sequence
framework, shifting the training sequence to obtain the sequence that needs to be predicted.
The reason for doing this is to meet the needs of g-computation and dynamic prediction.
While g-computation calculates probability distributions based on the sequence leading
up to the time step being predicted, the Transformer is a typical end-to-end model. We
compared the performance of models implemented with these two training methods on the
CVSim dataset, and the results are shown in Table 5.

We can observe that models trained using the sequence-to-sequence approach, includ-
ing the sequence-to-sequence G-Transformer (Seq2seq G-Transformer) and Causal Trans-
former, perform notably worse in term of individual-level RMSE compared to proposed
G-Transformer in this paper, which uses the iterative training approach. One possible ex-
planation is that during the simulation process, we need to dynamically model the outcomes
and treatment variables. This simulation algorithm and our training algorithm share a sim-
ilar step-by-step approach in term of generating results. Therefore, although both training
methods attempt to optimize MSE loss over sequences of the same time step length, our iter-
ative training approach can capture some biases introduced when using predicted outcomes
and treatment variables as input for the prediction of next time step, thereby achieving
better predictive performance.

Furthermore, as demonstrated in Table 5 and Figure 6, our experiments with the full
Transformer architecture variant, the sequence-to-sequence G-Transformer featuring the full
Encoder-Decoder architecture (Seq2seq G-Transformer + ED), did not perform as expected,
possibly due to overfitting caused by an excessive number of parameters. Particularly over
longer time intervals, the large number of parameters introduced by the decoder may have
adversely affected the simulation process.

Table 5: CVSim: Counterfactual prediction under gc1. Performance of different variants of G-
Transformer in predicting remaining 32-hour patient covariate trajectories based on first
34-hour patient covariate trajectories. Values reported represent the individual-level
RMSE between the predicted and counterfactual trajectories. ED stands for using en-
tire Transformer Encoder-Decoder rather than just using Transformer Encoder.

Individual Level
Model RMSEgc1

Seq2seq G-Transformer 1.550
Seq2seq G-Transformer + ED 1.935

Causal Transformer 1.473
Proposed G-Transformer 1.016
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Figure 6: Individual-level RMSE over time under gc1 from different variants of G-Transformer

A.2. Individual-Level RMSE Over Time

Table 6 presents the selected time step-specific individual-level RMSE across different mod-
els in CVSim experiment. G-Transformer generally performs better than linear implemen-
tation of g-computation and G-Net across the time steps.

Table 6: CVSim: Counterfactual prediction under gc1 and gc2. Performance of various models in
predicting remaining 32-hour patient covariate trajectories based on first 34-hour patient
covariate trajectories per time step. Values reported represent individual-level RMSE
between the predicted and counterfactual trajectories.

Linear GNet GT
t g-comp G-Transformer

gc1 1 0.688 0.654 0.615
8 1.062 1.020 1.023
16 1.125 1.049 1.042
24 1.168 1.052 1.047
32 1.255 1.106 1.092

gc2 1 0.791 0.752 0.720
8 1.122 1.079 1.077
16 1.208 1.131 1.123
24 1.286 1.188 1.165
32 1.348 1.213 1.186
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Appendix B. MIMIC Experiments

B.1. Adjustment of Individual-Level RMSE

Individual-level RMSE is adjusted to account for error due to over- and under-prediction in
the trajectory length as a result of death and discharge. We use the same technique as in
Su et al. to calculate the individual-level RMSE. Specifically, to account for potential over
or under-predictions in trajectory length compared to ground truth, we adopt the following
approach to modify the individual-level RMSE calculation. First, for patients who died
within the first 24 hours, we replace all subsequent time steps of continuous variables with
zero (normalized) until the 24th hour. Covariates with potential negative values are filled
with the normalized minimum value in the dataset, while covariates following a log-normal
distribution are filled with a normalized logarithmic zero. Second, for patients who were
released from the hospital before the end of the first 24 hours in the ICUs, we fill all time
steps following hospital release with the population-mean for all continuous variables (up
until hour 24). Third, we do the same for the predicted chains (after the predicted death and
release outcomes during the first 24 hours) so that all chains have lengths of 24-hours. We
then compute the average RMSE across all patients by comparing the predicted trajectory
(averaged across 100 Monte Carlo simulations per patient) and the ground-truth trajectory
of each patient across all continuous variables.

Appendix C. CVSim Data Generation

We follow the same procedure as in Li et al. (2021) in generating the CVSim dataset.
Briefly, a CVSim 6-compartment circulatory model takes as inputs 28 variables that together
govern a hemodynamic system. It then deterministically simulates forward in time a set
of 25 output variables according to a collection of differential equations (parameterized
by the input variables) modeling hemodynamics. Important variables in CVSim include
arterial pressure (AP), central venous pressure (CVP), total blood volume (TBV), and
total peripheral resistance (TPR). In real patients, physicians observe AP and CVP and
seek to keep them above a clinically safe threshold. They do this by intervening on TBV
(through fluid administration) and TPR (through vasopressors).

We defined simulated treatment interventions that were designed to mimic the impact
of fluids and vasopressors. These simulated interventions alter the natural course of the
simulation by increasing either TBV (in the case of the simulated fluids intervention) or TPR
(in the case of the simulated vasopressor intervention). We generated patients by randomly
initiating baseline inputs (which we hid from our models to make this a stochastic modeling
problem) within plausible physiologic ranges, then using CVSim to simulate covariates
forward, intervening according to the relevant treatment strategy at each timestep.

Under (stochastic) observational treatment strategy go, the probability of receiving a
non-zero vasopressor or fluid dose at a given time increases as MAP and CVP decrease
according to a logistic regression function. Given that a dose is non-zero, the exact amount is
drawn from a normal distribution with mean inversely proportional to MAP and CVP. Since
all drivers of treatment under go are observed in our data, the sequential exchangeability
assumption holds and g-computation may be validly applied.
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gc1 is similar to go, except it is a deterministic treatment strategy and the functions
linking treatment and dose to covariates have different coefficents. Under gc2, treatment is
always withheld.

Appendix D. MIMIC Data and Cohort

Our cohort was limited to ICU stays in which the patient was identified as septic under
the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) Singer
et al. (2016). Patients with missing records of pre-ICU fluids or admitted to the ICU
following cardiac, vascular, or trauma surgery were removed.

We use AUC to evaluate our 24 hour outcome prediction performance. For each delay k,
we do not include patients who have experienced death or release before hour k. A patient
is positively labelled if they experience an outcome from hours k to 24. Table 7 presents
these test cohort statistics.

Table 7: 24-Hour Cohort Statistics. Size of the test sets used to evaluate AUCs and the respective
percent of patients experiencing each outcome from hour k to 24.

k Edema MV Diuretics Dialysis
2 (894, 29.98%) (894, 40.94%) (894, 15.10%) (894, 2.68%)
6 (894, 29.75%) (894, 38.81%) (894, 12.75%) (894, 2.68%)

As predictors to our model, we selected covariates that are typically monitored in the
ICU and important for determining sepsis intervention strategies, as well as potential con-
founders. The covariates we used were similar to that of Li et al. Li et al. (2021), en-
compassing, but not limited to, basic demographic information, an Elixhauser comorbidity
score, a SOFA score, laboratory values and vital signs, and urine output Li et al. (2021).
A comprehensive list is provided in Tables 8 and 9. The demographics, comorbidities, and
pre-ICU fluids were regarded as static while the remaining variables were modeled and
regarded as dynamic (time-varying).

Table 8: MIMIC static variables. All variables were used as inputs to our models.

Variable Name Variable Type Units

Age Continuous years
Gender Binary N/A

Pre-ICU Fluid Amount Continuous mL
Elixhauser Score Continuous N/A

End Stage Renal Failure Binary N/A
Congestive Heart Failure Binary N/A
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Table 9: MIMIC time-varying variables. All variables were used as inputs to our models,
and boluses and vasopressors were also intervention variables. *Refers to mainte-
nance fluids (not an intervention).

Variable Name Variable Type Units

Heart Rate Continuous beats/min
Diastolic Blood Pressure Continuous mmHg
Systolic Blood Pressure Continuous mmHg
Mean Blood Pressure Continuous mmHg

Minimum Mean Blood Pressure Continuous mmHg
Minimum Change in Mean Blood Pressure from Baseline Continuous mmHg

Minimum Mean Blood Pressure from Baseline Continuous mmHg
Minimum Change in Mean Blood Pressure from Previous Continuous mmHg

Temperature Continuous degree C
SOFA Score Treated as Continuous N/A

Change in SOFA Score from Baseline Treated as Continuous N/A
Change in SOFA Score from Previous Treated as Continuous N/A

Platelet Continuous counts/109L
Hemoglobin Continuous g/dL

Calcium Continuous mg/dL
BUN Continuous mmol/L

Creatinine Continuous mg/dL
Bicarbonate Continuous mmol/L

Lactate Continuous mmol/L
O2 Requirement Level Continuous N/A

Change in O2 from Baseline Continuous N/A
Change in O2 from Previous Continuous N/A

pO2 Continuous mmHg
sO2 Continuous %

spO2 Continuous %
pCO2 Continuous mmHg

Total CO2 Continuous mEq/L
pH Continuous Numerical[1,14]

Base excess Continuous mmol/L
Weight Continuous kgs

Change in Weight Continuous kgs
Respiratory Rate Continuous breaths/min
Fluid Volume* Continuous mL
Urine Output Continuous mL

Cumulative Edema Binary N/A
Pulmonary Edema Indicator Binary N/A

Diuretics Indicator Binary N/A
Dialysis Indicator Binary N/A

Mechanical Ventilation Indicator Binary N/A
Vasopressor Indicator Binary N/A

Bolus Volume Continuous mL
In-Hospital Mortality Indicator Binary N/A

Release Indicator Binary N/A
Cumulative Fluids Continuous mL

Fluid Balance in ICU Continuous mL
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Appendix E. Hyperparameter Settings

E.1. Settings in Cancer Growth Experiments

Hyperparameter optimization on Cancer Growth data was performed by searching over the
hyperparameter space shown in Table 10 with optimal parameters starred. The exper-
iments were performed on NVIDIA Tesla K80 GPU with 12 vCPUs + 110 GB memory.
Hyperparameter settings of rMSN and CRN were as reported in Li et al. (2021).

Table 10: Hyperparameter search space in Cancer Growth experiments.

Hyperparameters Search Range

Linear (g-comp) Learning Rate 0.001∗, 0.01

Number of Layers 1∗, 2
Hidden Dimension (Continuous) 8, 16, 32, 64∗

G-Net Learning Rate 0.001, 0.01∗

Hidden Dimension (Continuous) 4, 16, 64∗

Number of Layers 2, 4∗, 6
Hidden Dimension 32, 64∗, 128

Batch Size 16∗, 32
G-Transformer Learning Rate 0.0001

E.2. Settings in CVSim Data

Hyperparameter optimization on CVSim data was performed by searching over the hyperpa-
rameter space shown in Table 11 with optimal parameters starred. All models were trained
using the Adam optimizer with early stopping with patience of 10 epochs for a maximum of
50 epochs. Also, we utilized the CosineAnnealingWarmRestarts scheduler from PyTorch’s
optimization module, configured with parameters T0 = 10 and eta min = 0.00001, to adjust
the learning rate following a cosine annealing pattern. The experiments were performed on
NVIDIA Tesla T4 GPU with 8 vCPUs + 15GB of dedicated memory.

E.3. Settings in MIMIC Data

Hyperparameter optimization on MIMIC data was performed by searching over the hyper-
parameter space shown in Table 12 with optimal parameters starred. All models were
trained using the Adam optimizer with early stopping with patience of 10 epochs for a
maximum of 50 epochs. For each covariate, the corresponding Transformer encoder in
G-Transformer and LSTM in G-Net were optimized through a grid search of the follow-
ing hyperparameters. The experiments were performed on NVIDIA Tesla T4 GPU with 8
vCPUs + 15GB of dedicated memory.
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Table 11: Hyperparameter search space in CVSim experiments.

Hyperparameters Search Range

Batch Size 16
Linear (g-comp) Learning Rate 0.0001

Number of Layers 2∗, 3
Hidden Dimension (Categorical) 64, 128∗

Hidden Dimension (Continuous) 64, 128∗

Batch Size 16
G-Net Learning Rate 0.0001

Number of Layers 3
Hidden Dimension 32, 64, 128∗

Batch Size 16
G-Transformer Learning Rate 0.0001

Table 12: Hyperparameter search space in MIMIC experiments.

Hyperparameters Search Range

Number of Layers 2
Hidden Dimension 64

Batch Size 32
Weight Decay 0.001

G-Net Learning Rate 0.001, 0.0001, 0.00001

Number of Layers 2
Hidden Dimension 64

Batch Size 32
Weight Decay 0.001

G-Transformer Learning Rate 0.001, 0.0001, 0.00001

E.4. Settings for Causal Transformer

Different from the Causal Transformer paper, we did not generate different counterfactual
trajectories on the Cancer Growth dataset at each time step using Single sliding treatment
or Random trajectories. For each patient in the test set, we inserted our counterfactual
treatment at the last 5 time steps and applied this counterfactual treatment in each sub-
sequent time step. In addition, for multi-step time prediction with Causal Transformer,
we predicted the next 4 time steps and τ = 5 in this dataset. In both the CVSim dataset
and the MIMIC dataset, since the experiment setting does not allow access to the actual
treatment, we modified parts of the Causal Transformer’s code to enable the model to use
the predicted treatment as input for predicting the outcomes of the next time step. Specif-
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ically, we set the τ of Causal Transformer to 1, and repeat the entire prediction process n
times. Between each prediction step, we use a function to calculate whether the treatment
is needed. The obtained treatment and the outcome predicted are then added as inputs to
supplement the end of the input queue.

Hyperparameter Settings For MIMIC and Cancer growth dataset, given that the
Causal Transformer has already provided rich information on hyperparameter settings in
the original paper (Melnychuk et al., 2022), we used their hyperparameter settings in ex-
periments. For CVSim dataset, we made slight adjustments to the hidden dimension for
experimentation as its format is similar to that of the MIMIC dataset. The specific hyper-
parameter settings are shown in the table 13.

Table 13: Hyperparameter setting for Causal Transformer in different experiments.

Hyperparameters Search Range

Dropout rates 0.2
Number of Layers 2

Number of attention heads 3
Number of epochs 100
Hidden Dimension 44

MIMIC Learning Rate 0.001

Dropout rates 0.1
Number of Layers 2

Number of attention heads 3
Number of epochs 150
Hidden Dimension 48

Cancer Growth Learning Rate 0.0001

Dropout rates 0.2
Number of Layers 2

Number of attention heads 3
Number of epochs 100
Hidden Dimension 24

CVSim Learning Rate 0.0001

28


	Introduction
	Related Work
	Methods
	Background: G-computation and Problem Setup
	G-Transformer Architecture
	Training of G-Transformer
	Simulation
	Evaluation

	Experiments on Simulated Data from Mechanistic Models
	Cancer Growth Experiments and Results
	CVSim Experiments and Results

	Experiments on MIMIC Data
	MIMIC Cohort
	Study Design
	Predictive Checks
	Predictive Check: Individual-Level RMSE
	Counterfactual Experiments

	Discussion and Conclusion
	Acknowledgements
	Additional CVSim Results
	Alternative G-Transformer Architecture Experiment
	Individual-Level RMSE Over Time

	MIMIC Experiments
	Adjustment of Individual-Level RMSE

	CVSim Data Generation
	MIMIC Data and Cohort
	Hyperparameter Settings
	Settings in Cancer Growth Experiments
	Settings in CVSim Data
	Settings in MIMIC Data
	Settings for Causal Transformer


