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Abstract—Physiological variables, such as heart rate (HR),
blood pressure (BP) and respiration (RESP), are tightly regulated
and coupled under healthy conditions, and a break-down in the
coupling has been associated with aging and disease. We present
an approach that incorporates physiological modeling within a
switching linear dynamical systems (SLDS) framework to assess
the various functional components of the autonomic regulation
through transfer function analysis of nonstationary multivariate
time series of vital signs. We validate our proposed SLDS-based
transfer function analysis technique in automatically capturing (i)
changes in baroreflex gain due to postural changes in a tilt-table
study including 10 subjects, and (ii) the effect of aging on the
autonomic control using HR/RESP recordings from 40 healthy
adults. Next, using HR/BP time series of over 450 adult ICU pa-
tients, we show that our technique can be used to reveal coupling
changes associated with severe sepsis (AUC=0.74, sensitivity=0.74,
specificity=0.60). Our findings indicate that reduced HR/MAP
coupling is significantly associated with severe sepsis even after
adjusting for clinical interventions (P<=0.001). These results
demonstrate the utility of our approach in phenotyping complex
vital-sign dynamics, and in providing mechanistic hypotheses in
terms of break-down of autoregulatory systems under healthy
and disease conditions.

Index Terms—Switching Linear Dynamical Systems, Physio-
logical Control Systems, RSA, Baroreflex, HRV.

I. INTRODUCTION

Physiological control systems achieve autoregulation
through feedback among multiple physiological variables, with
the objective of maintaining homeostasis in the presence of
internal and external disturbances. The resulting time series of
vital signs, such as heart rate (HR), blood pressure (BP), and
respiration (RESP), can exhibit complex variability patterns
over multiple time scales [1], [2], [3]. A goal of physiological
signal analysis is to quantitatively track the evolving dynam-
ics and interactions among multivariate vital-sign signals to
probe the underlying physiological control systems, and derive
mechanistic understanding of how vital-sign dynamics are
altered in health and disease. Spectral and non-linear dynamics
of heart rate variability (HRV) [4], [5], [6], [7] and multi-
variate cardiovascular coupling analyses [8], [9], [10] have
been used for assessment of autoregulation. HRV analysis has
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revealed several spectral peaks which have been attributed to
the sympathetic, parasympathetic, renin-angiotensin, and ther-
moregulatory mechanisms [11]. For instance, high-frequency
(HF) oscillations in HR time series have been shown to
mostly reflect parasympathetic modulations; specifically, HF
oscillations (~0.15 to 0.4 Hz) at the respiratory frequency
are commonly referred to as the respiratory sinus arrhythmia
(RSA). Low-frequency (LF) oscillations (~0.04 to 0.15) [1]
of HR time series reflect mostly sympathetic modulations.
The very low-frequency (VLF) components (~0.003 to 0.04
Hz) [1] have been postulated to reflect thermoregulation as
well as low-frequency oscillations in breathing [12]. The
LF/HF ratio of the HR spectrum has been used as an index
of sympathovagal activation; increased LF/HF ratio may be
due to sympathetic modulations [1], [5] or slow respiration.
Moreover, cross-spectral techniques have been developed to
investigate the frequency-dependent relationships between os-
cillations in HR, BP, and RESP [13], [14]. Nonlinear model
identification techniques, such as the nonlinear autoregressive
models, have been adopted to study coupling of multivariate
cardiovascular time series [15], [16].

However, application of spectral, cross-spectral, and non-
linear coupling analyses to critical care patients has been
limited due to the nonstationary characteristics of the under-
lying time series, recording noise and artifacts, as well as, the
difficulty of accounting for clinical context and interventions.
Traditional techniques assume time series stationarity, and
cannot properly model transient phenomena or track evolving
dynamics effectively. More recently, time varying autoregres-
sive and point process based techniques have been developed
to quantify the relationship between multiple variables in
nonstationary physiological time series and to extract spectral
indices of autonomic control [17], [18]. However, these tech-
niques model each time series individually, and as a result, it
is not clear how they can be applied to identify phenotypic
dynamic behaviors exhibited across a patient cohort.

In this work, we present a switching linear dynamical sys-
tems (SLDS) approach to study various functional components
of autonomic regulation through transfer function analysis of
vital-sign time series. In particular, we incorporate a physi-
ological model of cardiovascular control within a switching
vector autoregressive (SVAR) processes framework [19] to
characterize autonomic regulation, and model the evolving
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vital-sign dynamics of a patient cohort in terms of a collection
of simpler linear dynamical systems (or modes). Each such
dynamic mode can be used to derive both indices of mono-
variate variability (similar to HRV analysis) and directional
transfer functions of multivariate time series, and thereby
capture autoregulatory changes in response to internal (such as
onset of infection) and external perturbations (such as postural
changes).

Our technique allows for simultaneous learning of a shared
library of dynamic modes and segmentation of individual time
series into regimes of approximate stationary dynamics. By
jointly modeling multiple time series from a patient cohort
in a probabilistic framework, our approach identifies shared
dynamic behaviors across multiple multivariate nonstationary
time series, and enables association analysis and interpretation
of distinct dynamic behaviors in a given clinical context. We
show that given a learned SVAR model from a collection of
time series, the autoregressive coefficients corresponding to
each of the discovered dynamic modes can be used to capture
the spectral characteristics and oscillations that are present
within the individual time series, and therefore can be used
to extract useful indices of HR and BP variability. Moreover,
given multivariate time series of vital signs, one can use
the learned dynamics to derive the coupling strength among
multiple observed time series and the directional transfer
functions of the system (e.g., baroreflex control of beat-by-
beat HR and BP) [20].

The underlying premise of our approach is that although
autonomic regulation includes nonlinear components and is
likely subject to non-Gaussian physiological noise, the system
behavior can be described in terms of a convex combination of
J linear dynamical systems (or modes), where the combination
weights are given by the probability of belonging to each
mode. This is known as soft-switching within the machine
learning literature [21], and has been applied to modeling
and tracking the complex dynamics of maneuvering airplanes
[22]. For example, if the two basic dynamical modes of
an airplane trajectory cover horizontal and vertical motion,
one can represent turns using a convex combination of the
individual modes [21]. In this work, we used an SLDS based
soft-switching approach to model physiological time series,
and introduce the concept of mode proportioned power spectra
and transfer functions, i.e, weighting the contribution of power
and gain from the j-th dynamic mode at time ¢ according to
the posterior probability that the observations at time ¢ were
generated by the j-th mode.

Our previous work based on the SVAR framework focused
on using dynamics of blood pressure and heart rate time
series from ICU patients to predict hospital mortality [19]. In
contrast, our current work is focused on deriving mechanistic
understanding of the observed vital-sign dynamics in terms of
the directional influences among the interacting variables at
specific frequency bands, and studying how oscillations and
directional couplings are altered in diseased states.

The rest of the paper is organized as follows: we validate
the proposed technique in tracking the changes in baroreflex
gains from a laboratory study of subjects undergoing a tilt-
table test, where the timing of occurrences of the different

dynamics and the sharing of the dynamics across multiple
time series/subjects were known a priori. Next, we validate
the ability of our approach in capturing the influence of
respiration on heart rate (or the RSA) using the Fantasia
dataset, consisting of 20 young (21-34 years) and 20 older
(68-85 years) adults. Finally, using minute-by-minute HR and
BP time series from a cohort of over 450 ICU patients in
the MIMIC II database [23], we evaluated the performance
of our approach in capturing the HR/BP coupling differences
between patients with vs. without severe sepsis.

II. MATERIALS AND METHODS
A. Model

Figure 1 presents a schematic diagram of the proposed algo-
rithm for model-based analysis of multivariate time series in a
nonstationary setting. As depicted in Panel (a), we employed
SVAR processes to model a physiological time series cohort
via Markov transitions among a collection of simpler linear
dynamical systems [21]. For the n-th patient (n = 1--- N),
let ygn) be a M x 1 vector of observed values of the vital
signs at time ¢ (¢t = 1--- T("). We assume that there exists
a library of J possible dynamics or modes; parameterized by
0, = {AY),QUW}I_,, where AW = {aéj)}gzl is a set of
multivariate autoregressive model coefficient matrices of size
M x M, with maximal time lag P, and the corresponding
noise covariance Q).

Let s§") be a switching variable indicating the active dy-
namic mode of the n-th patient at time ¢, and evolving ac-
cording to a Markovian dynamic with initial distribution (™)
and a J x J transition matrix Z. Following these definitions,
an SVAR model for the n-th patient is defined as:

P
" Sin) n o™ RED) (™)
yt()ZE aé )y2§—217+w(t )’w(r )NN(O,Q(t ))
p=1

(1)

where the fluctuation term w(:"”) is assumed Gaussian dis-
tributed with covariance Q(Stn ),

A collection of nonstationary multivariate time series can
be modeled as switching among these J dynamic behaviors,
each describing a locally coherent linear model that persists
over a segment of time. Inference was performed as in [21]
to learn the set of switching variables (i.e., segmentation
of the time series) and the modes (i.e., the parameters 6).
Briefly, we used expectation-maximization (EM) [21] to find
the maximum-likelihood set of model parameters (M step), as
well as a factored estimate of the posterior distribution over the
latent switching variables (E step). Sharing of the dynamics
across the entire cohort was achieved by pooling together all
calculated and inferred statistics across all the subjects (from
the E step) to learn a shared set of modes in the M step.
Iteration through several steps of the EM algorithm resulted in
learning a set of j shared modes and a global transition matrix
Z for all the patients. We define the term mode proportion,
nlgn), to denote the proportion of time the n-th patient spends
within the j-th mode. Given the learned distribution of the
switching variables s; from the EM algorithm, we have
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Fig. 1. Schematic diagram of the proposed algorithm. The graphical model representation of a switching vector autoregressive (VAR) model is shown in

panel (a). A given dynamical mode is defined in terms of a set of VAR coefficients and the corresponding noise terms (6;; see main text), and switching among
the different modes is governed by a Markov chain with transition matrix Z. An illustrative example of marginal probabilities of the switching variables is
shown in panel (b), with colors blue and red denoting the low and high probability modes, respectively. Each VAR model corresponds to a set of coefficients
that can be used to describe the interaction among the observed variables both in time and frequency domain. For instance, assuming input variables are heart
rate (HR) and blood pressure (BP) (y = [HR BP]T), the VAR parameters can be used to derive the frequency-dependent transfer functions corresponding
to the Baroreflex control of HR in response to changes in BP, and the “circulatory dynamics” effects [24] which capture the influence of changes in HR on
BP, as depicted in panel (c) and described in section II-A.

can be represented as the following [20]:

n 1 T(n> n . - ; A(J) . 4
n = ; Pr(s™ = j) @ w(f) = — AT f)%‘,l DO +w(H) @

where Pr denotes the probability, and the entire quantity in- For instance, in the bivariate case, with variables [ and m we

side the summation is the inferred state marginal probabilities, s
which are calculated during the E step. A@) (f) 1
1) Calculations of Gain and Power Spectrum: For the j- u(f) = L(J)ym(f) + 7(”101(]0) %)
th mode, the AR coefficients A can be used to drive the L= Al,l (f) 1= Al,l
transfer functions between any two variables, and to extract the AU )l (f) 1
parametric power spectra of each variable. The transfer func- Ym(f) = m{i-)yl(f )+ ﬁwm(f ) (©)
1= Aom(f) 1— Amm

tion analysis enables us to quantify the frequency dependent
1nﬂ}1ence of any one varl'able on any of the remaining M —1 Assuming I and m represent HR and BP respectively, the
variables. For instance, in the bivariate case (M = 2), with ) ) AD (p)

: . . transfer function T = —Lbme s
HR and BP as the variables of interest, the transfer function m—l 1-A9 (f)
between BP and HR (denoted as Tgp_gr) describes the BP variability on heart rate, and the Baroreflex gain can be
influence of changes in BP on HR at different frequencies estimated as the absolute value of this transfer(f%lnction. On the

. . J
(see Fig. 1, panel (c)). other hand, the transfer function Tl(i)m = % captures
Mode-Specific Transfer Function Gains and Power Spectra:  the mechanical effect of HR variability on B157L[7§5], [8], [24]

Given a dynamic mode j and any two variables [ and m, the  vja the Windkessel function [8] or the circulatory dynamics
block transfer function of the two variables can be defined as  [24).

captures the effect of

a function of the AR parameters. Let In the analysis involving HR and RESP, the RSA gain,
P which measures the respiratory modulation of heart rate, can
AW (f) = Z o) [i,m] - o2V =1fp 3) be derived similarly. Furthermore, we derive the parametric

l,m - D ) )

= power spectra corresponding to the individual modes using
the autoregressive coefficients:

where f is the index of frequency. The relationship between W) W) G ) T

the variables [ and all other variables in the frequency domain PY(f)=HY (f)JQVHY(f)", )
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where HUO)(f) = (I—AY)(f))~*, and PY(f) and P (/)
define the power spectra of the [-th and m-th variables,
respectively.

Nonstationary Power Spectral and Transfer Function Anal-
ysis: Given the inferred state marginal probabilities from the
SVAR model, one can compute the patient-specific “mode-

proportioned” transfer function gains and power spectra as:

J
7 () =S 0T (), 8)
=1
J J |
P = nMP9 (f) ©)
Jj=1

Similarly, the instantaneous transfer function gains and power
spectra can be computed via a weighted combination of the as-
sociated quantities for the individual modes, where the weights
are given by the state marginal probabilities Pr(sgn) =j).

B. Dataset

1) Tilt-Table dataset: The tilt-table dataset, publicly avail-
able via PhysioNet [26], contains HR and BP recordings from
10 healthy subjects (five males, five females) undergoing a
tilt-table test of orthostatic tolerance [27]. The mean age was
28.7 + 1.2 years. The details of the protocol are described
in Heldt et al. [27]. Briefly, subjects were placed in a supine
position. Tilting was performed from horizontal position to
vertical position and back to supine. All waveforms were
recorded at 250 Hz sampling frequency, for approximately 60
minutes (varying from 55 to 74 minutes) per subject. Each
heartbeat was annotated using an automated beat detection
algorithm, and the blood pressure time series was sampled for
each RR interval at the times of the R wave peaks. Since we
were interested in the dynamics of interaction between HR
and BP in the frequency range pertinent to sympathetic and
parasympathetic regulation [1], time series of HR and BP were
high-pass filtered to remove the steady-state baseline and any
oscillation in the time series slower than 100 beats/cycle. This
filtering was done using a 7th order Butterworth digital filter
with cutoff frequency of 0.01 cycles/beat.

2) Fantasia: Time series of heart rate and respiration were
extracted from the Fantasia database publicly available at the
PhysioNet [6], [26], consisting of 20 young subjects (21 to
34 years) and 20 older adults (68 to 85 years). Each group
had equal numbers of males and females (10 in each group).
The subjects underwent 120 minutes of continuous monitoring
in resting supine position while watching the movie Fantasia.
Continuous time-synchronized measurements of electrocardio-
gram (ECG) and respiration (impedance plethysmography)
were collected in all subjects. All waveforms were recorded
at 250 Hz sampling frequency.

We used the automatically detected, visually verified and
corrected ECG R-peak annotations available on the PhysioNet
website [26] to derive time series of peak-to-peak (RR) in-
tervals. To derive the corresponding respiratory time series,
we first removed the baseline drift (often seen in impedance
plethysmography-based measurement of respiratory volume)
by fitting a cubic spline function through all the breath

onsets, and subtracting the resulting baseline curve from the
respiratory waveform; the resulting volume waveform started
at zero upon the onset of each breath. Next, we constructed
a respiratory volume time series for each RR interval from
the volume difference at the times of the R wave peaks, as
previously described in Nemati et al. [28].

3) MIMIC II: The MIMIC II database [23], publicly avail-
able via PhysioNet [26], includes clinical (laboratory values,
IV medications, etc.) and physiological data (heart rate, blood
pressure, oxygen saturation, etc.) collected from the bedside
monitors (Component Monitoring System Intellivue MP-70;
Philips Healthcare, Andover, MA) in ICUs of the Beth Israel
Deaconess Medical Center (BIDMC) in Boston. This study
included 453 adult patients from the MIMIC II waveform
database [23] with clinical information, and at least eight
hours of continuous minute-by-minute HR and invasive BP
measurements during the first 24 hours of their ICU stays. The
data set contained over 9,000 hours of minute-by-minute HR
and invasive mean arterial BP measurements (over 20 hours
per patient on average) from 453 adult patients. HR and BP
time series were detrended by removing the mean. Gaussian
noise was used to fill in for the missing blocks (median length
of 3 minutes with interquartile range of [2,9] minutes) of data.
(This allows for all missing data blocks to get assigned to a
single dynamic mode.)

Among the 453 patients, 106 were determined to have had
severe sepsis during the first 24 hours of their ICU stay, using
the criteria described next. Approximately 30% of the patients
(139 out of 453) had severe sepsis at some point during their
hospital stays based on the Angus criteria; as indicated by
their International Classification of Diseases (ICD-9) codes
[29]. Patients who met the Angus sepsis criteria were screened
to establish their status of having sepsis on first day of ICU
admission based on the SIRS criteria, microbiology culture
test (with cultures sampled for microbiology test within 48-
hours from the start of ICU admission or 24-hours post
ICU admission), antibiotics prescription (prescribed within
48-hours from the start of ICU admission or 24-hours post
ICU admission), and mentioning of sepsis or infections in
the nursing notes during the first 24-hours in the ICU. The
status of severe sepsis on first day of ICU admission was
identified as sepsis (as described above) with tissue hypoper-
fusion or organ dysfunction indicated by any of the following:
hypotension (MAP decrease to 60mmHg or lower), acute
kidney injury (creatinine at least 50% or > 0.3 mg/dL increase
from baseline), acute lung injury as indicated by the use of
mechanical ventilation, lactate above 2 mmol/L, bilirubin >
2mg/dL, plateletes < 100,000uL, coagulopathy (International
Normalized Ratio or INR > 1.5) [30].

C. Model Parameter Setting

We modeled the beat-by-beat HR/BP time series for the
tilt dataset and the HR/Resp time series for the Fantasia
dataset as a switching AR(S) process to model most of the
parasympathetic responses and at least some of the sympa-
thetic effects, without introducing an unduly complex model.
Minute-by-minute HR and BP time series from MIMIC II
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were modeled as a switching AR(S5) process to capture two
real oscillations and a possible trend per mode; the number
of dynamic modes (J=25) was determined with the Bayesian
Information Criterion (BIC) [31] using the bi-variate HR/MAP
data. Similarly, based on the BIC criteria, four dynamic modes
were used for both the Tilt-table and the Fantasia datasets.

D. Analysis and Evaluation

Transfer function gains and spectral power were calculated
and reported as a function of frequency; specifically, periods
of 2 to 20 beats (or 0.5 to 0.05 cycles-per-beat) for the Tilt
and Fantasia, and periods of 3 minutes to 4 hours (0.3242 -
0.0042 cycles-per-minute) for the MIMIC II dataset. For beat-
to-beat analysis, frequency was defined by cardiac beats (or
cycles/beat). For beat-to-beat HR, LF/HF ratio was computed
as the ratio of the low (LF: periods of 7-20 beats) to high (HF:
periods of 2-6 beats) frequency power of the HR. In addition to
reporting frequency-specific gains, patient-specific mean gains
were computed by averaging mode-proportioned gains, over
the entire frequency range unless otherwise specified.

Non-parametric Wilcoxon rank-sum test was used to assess
the differences in the derived spectral and coupling indices
(i.e., spectral powers, LF/HF HR power ratios, and gains)
between different outcome groups (i.e., supine vs. non-supine,
young vs. old, or absence vs. presence of severe sepsis).
Additionally, we used logistic regressions to examine the as-
sociations between mode proportions (or mode-specific gains)
and outcomes. Two-sided P values less than 0.05 were con-
sidered statistically significant. In tests that involve frequency-
by-frequency or mode-specific multiple comparisons, test of
statistical significance was based on P values after correcting
for multiple comparisons using FDR (false discovery rate)
[32].

In the MIMIC 1I study, multivariable logistic regression as-
sociation analysis was conducted on the top ten most common
dynamic modes to test the association between dynamic modes
and severe sepsis. In the multivariable logistic regression
analysis, we report the adjusted P values and odds ratios
(ORs) with 95% confidence intervals (CI). The dynamic mode
proportion or gain were the primary predictive variables;
APACHE-III [33] and interventions (use of sedatives, pressors,
mechanical ventilation, and pacemaker) were added as con-
founding co-variates. The Hosmer-Lemeshow (HL) P values
were reported to assess the model fit, with values of over
0.05 indicating a good fit. Dynamic modes were considered as
high-risk or low-risk based on their odds ratios from logistic
regression analysis with severe sepsis as an outcome measure.

In evaluating the classification performance of our approach
in detecting severe sepsis, we characterized each time series
with its corresponding mode proportioned gains (a 1 x K
feature-vector, where K is the number of frequencies) as
features, and used a logistic regression classifier with 10-
fold cross validation. Comparison of area under the receiver
operating curves (AUCs) was based on the method described
in [34].
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Fig. 2. Example segmentation (top panel) and the derived instantaneous gain
and LF/HF ratio of the HR/BP recordings a subject from the Tilt table study. In
the top panel, the color indicates the inferred dynamic mode assignment. The
algorithm consistently assigned the Mode 1 (red) to the non-supine position.
The supine position was captured by Mode 3 (blue). The second panel shows
the state marginal probability of the observations belonging to each mode,
with the yellow color denoting high probability mode. The third and fourth
panels plot the calculated gain and HR power LF/HF ratio respectively for
the same subject, as the subject transitions between dynamic Mode 3 (blue)
and Mode 1 (red) while alternating between supine and non-supine positions.
The third and fourth panel show the instantaneous mean baroreflex gain and
the LF/HF HR power ratios over time respectively, calculated from learned
AR coefficients weighted by mode proportion at each beat. For the top panel,
actual values were in gray (Y-axis on left) and filtered values (Y-axis on right)
were color-coded based on the inferred dynamical modes. Annotations for the
actual tilt procedures performed were plotted as horizontal bars on the bottom
of the top panel and are color coded (green to cyan: slow tilt up and down
to supine; red to pink: rapid tilt up and down to supine; yellow: stand up and
back to supine).

III. RESULTS
A. Tilt

We evaluated the performance of our approach in capturing
the autonomic changes corresponding to tilting procedures by
comparing the baroreflex gains and the LF/HF HR power ratios
(an index of sympathetic activation) between the supine vs. the
non-supine segments. Figure 2 shows the SVAR segmentation
of the HR and MAP time series of one of the 10 subjects, while
alternating between supine and non-supine positions. The third
and fourth panel of Fig. 2 show the instantaneous mean
baroreflex gains and the LF/HF HR power ratios of Subject
1 over time, respectively. The gains were calculated from
the learned AR coefficients weighted by the state marginal
probabilities on a beat-by-beat basis. Note that SVAR is able
to track changes in baroreflex gains and HR power LF/HF
ratios as the subject alternates between supine vs. non-supine
positions.

Supine Non-Supine P
LE/HF | 0.91 [0.62, 1.07] | 1.44 [1.33, 1.55] | < 0.0001
Gain 0.57 [0.54, 0.65] | 0.49 [0.47, 0.52] | < 0.0001

TABLE I
TiLT: LF/HF RATIOS AND MEAN GAINS DURING SUPINE VS. NON-SUPINE
POSITIONS. POPULATION MEDIANS [INTERQUARTILES] SHOWN.
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Fig. 3. Tilt: comparison of computed baroreflex gains in supine vs. non-
supine positions. Plot shows means and standard errors.

Next, we compared the LF/HF HR power ratios and the
baroreflex gain of the supine vs. the non-supine positions
calculated using all 130 time series segments (70 supine and 60
non-supine segments) from ten subjects. For each of the 130
time series segments, we calculated the mode-proportioned
gains; the LF/HF ratios were computed similarly, with the LF
range corresponding to periods of 7-20 beats, and HF range
corresponding to periods of 2-6 beats.

Table 1 shows the population medians and interquartiles
(IQRs) of the LF/HF ratios and the mean baroreflex gains
of the supine (70 time series segments) vs. the non-supine
positions (60 time series segments). The P values shown were
from the Wilcoxon test. We observed an increase in the ratio
of the low (LF: periods of 7-20 beats) to high (HF: periods
of 2-6 beats) frequency power of the HR (also known as the
LF/HF ratio) from supine to tilting. Table I confirms that the
LF/HF ratios of the non-supine (tilt) positions were larger than
those in the supine positions, and that the baroreflex gains of
the non-supine (tilt) positions were smaller than those in the
supine positions. These results are consistent with prior studies
involving posture induced changes in autonomic function that
reported a significant increase in LF/HF ratios and a reduction
in baroreflex gains in the upright positions due to an enhanced
sympathetic drive [5], [25].

Figure 3 shows a comparison of the baroreflex gains of
the supine vs. the non-supine positions across the power
spectra (between 0.05 to 0.5 cycles-per-beat). Non-parametric
Wilcoxon ranksum tests on frequency-by-frequency compari-
son of the gains (in the frequency range > 0.1) between the
two groups with FDR adjustment for multiple comparisons
confirmed that the baroreflex gains of the supine positions
were statistically significantly smaller than those of the non-
supine (tilt) positions, particularly in the frequency range
between 0.1 to 0.3 cycles-per-beat (P<0.0001).

B. Fantasia

Using the Fantasia dataset, we evaluated the performance of
our approach in capturing the differences between the old vs.
the young subjects in terms of their autonomic functions by
comparing their mode-proportioned RSA gains and the LF/HF
HR power ratios. Our results indicated that the young and the
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Fig. 4. Fantasia: RSA gains of the young vs. the old. Plot shows means
and standard errors. Old and young subjects were statistically significantly
different in their RSA gains when frequencies were > 0.15 (P<0.001), and
in particular in the frequency range > 0.29 (P<0.0001).

elderly subjects exhibit distinctly different mode distributions.
Association analysis showed that both Modes 1 and 2 were
significantly associated with aging; Mode 1 had a significantly
higher odds for aging (P=0.0084, OR=1.47 [1.10 1.96]), while
Mode 2 had a lower odds for aging (P=0.0162, OR=0.57
[0.37 0.90]). Using 10-fold cross validation, the classification
performance (young vs. old) using the mode proportions from
all four modes achieved a median [interquartiles] AUC of 1.00
[0.75, 1.00]. Mode 1 had a mode-specific RSA mean gain of
3.31, and LF/HF HR power ratio of 0.48. Mode 2 had a higher
mode-specific mean gain of 8.65, and LF/HF HR power ratio
of 0.13. These results indicate that the dynamic mode with a
significantly higher odds of aging had a blunted RSA.

Young Old P
LF/HF 0.40 [0.22, 0.50] | 0.51 [0.48, 0.55] | 0.0016
RSA Gain | 5.54 [4.01, 7.65] | 3.20 [2.94, 3.71] | 0.0001

TABLE II
FANTASIA: LF/HF RATIOS AND MEAN GAINS FOR YOUNG VS. OLD. N=40.

Table II shows the population median and interquartile
range of mode-proportioned LF/HF HR power ratios and the
mode-proportioned mean RSA gains of the old vs. the young
subjects. We observed a decrease in the RSA gains and an
increase in the ratio of the low (LF: periods of 7-20 beats)
to high (HF: periods of 2-6 beats) frequency power of the
HR in the old. The increase in the LF/HF HR power ratios
among the old is consistent with prior findings which reported
a reduction in high-frequency contribution of respiration to
heart rate variability patterns due to aging [28].

Figure 4 shows a comparison of the RSA gains of the young
vs. the old across the power spectra. Non-parametric Wilcoxon
ranksum tests on frequency-by-frequency comparison of RSA
gains (in the frequency range > 0.1) between the two groups
with FDR adjustment for multiple comparisons confirmed
that the RSA gains of the old were statistically significantly
smaller than those of the young in the frequency range > 0.15
cycles-per-beat (P<0.001) and, in particular in the frequency
range > 0.29 (P<0.0001). These results are consistent with
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ALL No Severe Sepsis (N=347) Severe Sepsis (N=106) P
Male(%) 59% 63% 45% 0.001
Age 69 [57, 79] 68 [57, 77] 71 [58, 80] 0.12
Hosp. Mort. 15% 9% 34% <0.0001
ICU LOS 4.00 [2.27, 7.67] 3.38 [2.02, 5.84] 7.91 [3.68, 15.82] <0.0001
Hosp. LOS 9.00 [6.00, 15.00] 8.00 [6.00, 12.00] 14.00 [8.00, 24.00] <0.0001
ICU (CCU/CSRU/MICUY/SICU) 21% 1 42% 1 26% 1 12% 20% / 55% / 13% 1 12% 23% 1/ 1% | 67% 1 9% -
Pressor/MV/Sedative 57% 1 32% | 65% 59% 1 20% | 67% 53% 1 12% | 57% -

Primary Diagnosis

Coron Atheroscler Native (19%)

Coron Atheroscler Native(24%)

Septicemia Nos(10%)

AMI, Subendocard Infact(8%)

AMI, Subendocard Infact(10%)

Respiratory Failure(8%)

Aortic Valve Disorder(6%)

Aortic Valve Disorder(7%)

Pneumonia, Organism Nos(7%)

Co-morbidities Hypertension(76%) Hypertension(68%) Congestive Heart Failure(35%) -
Congestive Heart Failure(73%) Diabetes(57%) Chronic Pulmonary(20%) -
Diabetes(70%) Chronic Pulmonary(48%) Cardiac Arrhythmias(17%) -

TABLE III

MIMIC II PATIENT CHARACTERISTICS: COMPARISON OF PATIENTS WITH AND WITHOUT SEVERE SEPSIS. LOS - LENGTH-OF-STAY (DAYS). MV -

MECHANICAL VENTILATION. AMI - ACUTE MYOCARDIA INFARCTION. CCU - CORONARY CARE UNIT. CSRU - CARDIAC SURGERY RECOVERY UNIT.

MICU - MEDICAL INTENSIVE CARE UNIT. SICU -SURGICAL INTENSIVE CARE UNIT.

previously established findings [28] that aging is associated
with a diminished autonomic control.

C. MIMIC II

Table III displays the patient characteristics, including the
most prevalent primary diagnosis as well as co-morbidities
(based on the ICD-9 codes) from the MIMIC II cohort; P val-
ues are from Wilcoxon ranksum test for continuous variables,
and from chi-square test for proportions. As expected, patients
with severe sepsis tended to have longer ICU and hospital
length-of-stays, and had higher hospital mortality. We also note
that patients with severe sepsis had different distributions in
primary diagnosis, co-morbidities, and care units than the ones
without.

We performed multivariable logistic regression analysis to
identify dynamic modes which were significantly associated
with severe sepsis (see Table VI in Appendix A). Mode
proportion of individual mode for each patient was used as
a primary predictive features. Our results indicate that three
dynamic modes (2, 5, and 9) were significantly associated
with severe sepsis even after adjustment for interventions and
APACHE-III: mode 2 was associated with an increased odds
of sepsis (adjusted P=0.0001, OR with 95% CI 1.64 [1.28,
2.11]) and therefore was considered “high-risk mode’. Modes
5 and 9 were associated with a lower odds of severe sepsis
(mode 9 - adjusted P=0.0022, OR with 95% CI 0.23 [0.09,
0.59], mode 5 - adjusted P=0.0095, OR with 95% CI 0.34
[0.15, 0.77]) and were thus considered “low-risk modes”.

Figure 5 plots the bivariate dynamic modes 2, 5 and 9 and
the frequency-specific gains of the three modes. Note that
the high-risk mode 2 appeared to have low gains across all
frequency spectra; whereas the low-risk modes 5 and 9, on
the contrary, had a distinct peak in HR/MAP gains at the LF
range of 0.16-0.18 cycles-per-minute (0.0027 - 0.003 Hz) or
5-6 minutes cycle.

Figure 6 shows an example learned HR/MAP segmentation
from SVAR, of two patients with and without severe sepsis,
over a five-hour period during the first day in the ICU. The
corresponding dynamic state marginals, and gains of each
patient are also shown. Note that the patient with severe sepsis

(panel b) spent significant proportion of time in the high-risk
mode 2 (red); whereas the patient without severe sepsis (panel
a) exhibited high mode proportions in low-risk dynamic modes
5 (purple) and 9 (green), and had higher gains in comparison
to the patient with severe sepsis.

1) Frequency-by-Frequency Comparison of HR/MAP Gain
and Spectral Power between Patients with and without Se-
vere Sepsis: Figure 7 compares patients with and without
severe sepsis using mode-proportioned HR/MAP gains and
spectral power. Only modes with significant association with
severe sepsis after adjusting for APACHE-III and interventions
(modes 2, 9 and 5) were included to compute the mode-
proportioned gains or spectral power. For HR/MAP gains
(Figure 7a), the most statistically significant association oc-
curred at the frequency range of 0.1342 - 0.1942 cycles-per-
minute (approximately 5 to 7 minute cycle) after adjusting for
interventions (P=0.0001). With FDR adjustment, the gains re-
mained statistically significantly associated with severe sepsis
(P<0.01 for over 85% of the frequencies examined). Non-
parametric ranksum tests on frequency-by-frequency compari-
son of mode-proportioned HR/MAP gains (in the frequency
range between 0.1 and 0.3) between the two groups with
FDR adjustment for multiple comparisons confirmed that the
gains of the severe sepsis group were statistically significantly
smaller than those without (P<<0.0002).

2) Severe Sepsis Classification Performance: Table IV
shows the 10-fold cross-validated classification performance
of our approach using the mode-proportioned gains or powers
in the frequency range [0.1, 0.3] cycles-per-minute to identify
patients with severe sepsis. HR/MAP gains achieved an AUC
of 0.74 [0.68, 0.79]). State-of-the-art APACHE-III achieved
a higher AUC of 0.79 [0.74, 0.85]), though the differences
were not statistically significant (P=0.10). Combining the bi-
variate gains and APACHE-III yielded a slight improvement in
APACHE-III’s performance from an AUC of 0.79 [0.74,0.85]
to 0.82 [0.77, 0.87] (P=0.12). Combining the HR or MAP
power and APACHE III achieved similar performance.

3) Comparison of Mean HR/MAP Gains and Spectral
Power between Patients with and without Severe Sepsis: Table
V compares the HR/MAP mode-proportioned mean gains and
power spectra of patients with and without severe sepsis. Mean
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AUC (95% CI) Sens. | Spec.
HR.MAP ,in 0.74 [0.68, 0.79] | 0.74 0.60
HRpower 0.73 [0.67, 0.79] | 0.69 0.65
MAPower 0.72 [0.66, 0.78] | 0.68 0.63
APACHE-III 0.79 [0.74, 0.85] | 0.81 0.71
HR,MAP ;4 +APACHE-IIl | 0.82 [0.77, 0.87] | 0.74 0.78
TABLE IV
PERFORMANCE OF SEVERE SEPSIS CLASSIFICATION. AUC,
SENSITIVITY, AND SPECIFICITY SHOWN.
Non-Sev. Sepsis Sev. Sepsis P Padj
Gain 0.05 [0.03, 0.06] 0.03 [0.01, 0.06] | 0.0001 | 0.0003
HR, 15.76 [7.50, 19.95] | 7.45[1.52, 16.93] | 0.0001 | 0.0002
MAP, | 13.35[6.16, 16.15] | 6.15 [1.29, 14.52] | 0.0001 | 0.0001

TABLE V
COMPARISON OF HR/MAP MEAN GAINS AND POWER SPECTRAL
CONTENT OF PATIENTS WITH SEVERE SEPSIS (N=106) VERSUS THOSE
WITHOUT (N=347). P,4; INDICATES ADJUSTED P VALUE.

gains and spectral powers were computed by averaging over
the frequency range of (0.1, 0.3) cycles per minute. Our results
indicate that HR/MAP mean gains and power spectra were
significantly associated with severe sepsis (P<0.001) even
after adjusting for interventions. Ranksum test confirmed that
patients with severe sepsis had statistically significantly lower
mean gains and HR/MAP power spectral content than those
without (P<0.0001).

IV. DISCUSSION AND CONCLUSIONS

We presented a switching linear dynamical systems based
framework for learning physiologically interpretable features
in time series of vital signs from a patient cohort. The method
is fully multivariate, handles nonstationarity, and can be used
to extract spectral signatures of the individual vital-sign time
series, as well as transfer functions pertinent to autonomic
regulation. The proposed approach incorporates models of
autonomic controls within a machine learning framework to
provide mechanistic interpretation of the learned dynamics,
allowing one to identify possible physiological mechanisms
(e.g., baroreflex) driving the cardiovascular oscillations, and
study how directional influences and spectral power at specific
frequency bands are altered in aging or diseased states.

The tilt-table and the Fantasia datasets were used to validate
the ability of our approach in modeling baroreflex and RSA
gains, which have been widely studied as indices of autonomic
regulation [35], [25], [36], [37]. We showed that the proposed
technique can reliably detect alterations in cardiopulmonary
control parameters due to orthostatic stress and aging. In the
tilt table study, we demonstrated that our approach was able
to automatically identify dynamic modes corresponding to
sympathovagal activation due to a postural change from supine
to non-supine position. We observed an increase in the LF/HF
HR power ratios and a decrease in the baroreflex gain when
subjects were transitioned to a non-supine position, indicating
possible sympathetic activation. In the Fantasia study, our
analysis showed a significant reduction in the RSA gain in
the elderly population, consistent with previous results that
aging is associated with a blunted autonomic control [38].

We investigated the low-frequency spectral characteristics
and coupling strengths of non-stationary HR and BP time
series for patients in ICUs and their associations with severe
sepsis using minute-by-minute heart rate and blood pressure
time series from the MIMIC II database. Our findings indicate
that reduced HR/MAP coupling is significantly associated with
severe sepsis even after adjusting for clinical interventions
(P<0.001). The diminished HR/MAP variability and gains
of the severe sepsis patients may reveal a breakdown of the
inter-organ communication and coupling due to inflammatory
responses [39], [40], which are known to have downstream
effects on the sympathetic and parasympathetic components
of the heart rate and blood pressure variability [41]. These
findings are in accordance with the “uncoupling” hypothesis
[42], [43] that sepsis and progression into severe sepsis and
multiple organ dysfunction syndrome reflects progressive un-
coupling among physiological regulatory mechanisms.

By jointly modeling multivariate time series from a cohort
of patients, our approach enabled discovery of phenotypic dy-
namic modes that correspond to nonstationary changes within
a subject and phenotypic differences across subjects. We
demonstrated that such a framework can be used to quantify
the association between a given clinical condition and vital-
sign dynamics at a population level. In the MIMIC II study,
we observed that patients with the severe sepsis exhibited
dynamic behaviors with significantly reduced low-frequency
oscillations and gains than those without; the association
remained significant even after adjusting for interventions.
Studies that examined low-frequency oscillations and gains
of multivariate vital-sign time series and their associations
with pathophysiological conditions in a critical care setting
have been sparse. Our findings suggest that patients who
exhibited dynamic modes with a distinct peak at the 5-7
minute cycle in the HR/MAP gains had a significantly lower
odds of having severe sepsis. Low frequency modulations of
HRV (between 0.025 and 0.07 Hz) have been attributed to
influences from renin-angiotensin system, endothelial factors,
local influences related to thermoregulation, and others [11].
The source of the very low-frequency modulation and coupling
at 3-7 minutes cycle that characterized “healthier” patients in
our MIMIC II cohort remains to be elucidated, but is likely
due to thermoregulatory vasomotor control [44].

Several prior works have investigated the prognostic values
of HR and BP variability for early detection of neonatal
sepsis and prediction of clinical outcomes [45], [46], [47],
including variants of the switching linear dynamical systems
model presented here [48], [49], [19]. However, previous
approaches have been primarily focused on outcome pre-
diction or classification of the physiological states, rather
than providing mechanistic interpretations of the observed
dynamics. While previous works on cross-spectral techniques
also assessed coupling among physiological variables [13],
[14], our approach addresses the problem of nonstationarity of
physiological time series in realistic settings. The time-varying
vector autoregressive (VAR) models have been used [50],
[18] to quantify the cardiovascular and respiratory feedback
loops. Our approach differs from these previous works in
that we explicitly account for dynamic regime changes, and
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jointly model multivariate dynamics of time series to learn
the shared dynamics across a heterogeneous patient cohort.
Finally, the prognostic value of each dynamic mode can be
determined using a logistic regression classifier and therefore
enable analysis to focus on the most predictive modes for a
given clinical question.

In an ICU environment, changes in dynamics reflect the
underlying pathological processes as well as interventions
aimed at restoring normal physiological states. However, these
states are often defined in terms of mean values of the vital
signs, and the notion of normality is defined with respect to the
healthy individuals and at the population level. There remains
significant controversy regarding the normal range of vital
signs in the critically ill patients under various pathological
conditions [51], [52]. Given the importance of healthy vari-
ability and autoregulatory mechanisms, it has been suggested
that goal-directed therapies should aim at restoring the healthy
vital signs variability and coupling [53], [54]. Future work may
involve utilizing the healthy dynamical modes as biomarkers
to guide interventional strategies in the critically ill patients
[55].
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APPENDIX

A: Association Analysis of Individual Dynamic Modes and
Severe Sepsis

[Mode | P | OR(O35%CD | P4 | AdjOR(5%CD | HLP |
2 0.0000 | 1.95(1.59, 2.40) | 0.0001 | 1.64(1.282.10) | 0.25
9 0.0001 | 0.19(0.08, 0.44) | 0.0022 | 0.23(0.09,0.59) | 035
5 0.0017 | 0.35(0.19, 0.68) | 0.0095 | 0.34(0.150.77) | 042
3 0.0032 | 2.26(1.31, 3.90) | 03311 | 1.46(0.68,3.12) | 0.24
8 0.0048 | 0.41(0.22, 0.76) | 0.3645 | 0.71(0.34, 1.49) | 0.16
T 0.1953 | 0.88(0.72, 1.07) | 0.7630 | 1.04(0.79, 1.38) | 0.29
3 02146 | 1.19(0.90, 1.58) | 0.3465 | 1.19(0.83, 1.69) | 0.29
10 04948 | 0.90(0.66, 1.22) | 0.2009 | 0.78(0.53, 1.14) | 021
7 05116 | 0.84(0.51, 1.40) | 0.9839 | 1.01(0.55, 1.85) | 030
6 06159 | 0.91(0.62, 1.33) | 03118 | 0.77(0.46, 1.28) | 033

TABLE VI
ASSOCIATIONS BETWEEN THE DURATION OF TIME (MEASURED AS MODE
PROPORTIONS) PATIENTS SPENT IN EACH OF THE TEN MOST COMMON
HR/MAP DYNAMIC MODES AND THE ODDS OF SEVERE SEPSIS. HL P - P
VALUE FROM HOSMER LEMESHOW.

Table VI summarizes the association analysis of the mode
proportion in each of the top ten most common bivariate
HR/BP dynamic modes and severe sepsis. We built a separate
univariable/multivariable logistic regression model for each of
the top ten most common dynamic modes. In the multivariable
logistic regression model, we report the adjusted P values and
ORs of the dynamic mode proportion variables after adjusting
for clinical interventions and patients’ severity of illness as
measured by their APACHE-III scores.



