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Abstract

In clinical settings, timely and accurate prediction of adverse patient outcomes can help
guide treatment decisions. While deep learning models have demonstrated strong predictive
performance, they often lack interpretability. To address this gap, we propose a framework
that combines the predictive strength of a black-box discriminative model, such as a deep
neural network, with the interpretability of a latent variable model. Specifically, we develop
a constrained inference approach to train a switching state-space model—an autoregressive
hidden Markov model (AR-HMM)—that learns interpretable discrete latent states from
multivariate clinical time series, enabling the modeling of patient trajectories as transitions
among these states while also achieving high predictive accuracy in downstream outcomes.
Our method leverages knowledge distillation: a high-capacity LSTM ”teacher” model is
first trained to predict a target clinical outcome of interest, and its predictive behavior
is then transferred to an interpretable AR-HMM ”student” model through a similarity
constraint during training. We use a constrained variational inference approach to estimate
the parameters of the AR-HMM with a similarity preserving constraint, ensuring that input
pairs with similar representation in the teacher model also have similar representation in
the student model. We evaluated our approach using two real-world clinical datasets. Our
approach demonstrates predictive performance comparable to state-of-the-art deep learning
models, while producing interpretable latent trajectories that reflect clinically meaningful
patient states.

Keywords: Switching state space models, constrained inference, knowledge distillation,
deep learning, latent variable models, clinical time series, Autoregressive Hidden Markov
Models (AR-HMM), interpretability.

1. Introduction

In order to accurately predict a patient’s outcome in challenging settings such as during
treatment of patients in critical care, one approach is to train a neural network to make these
predictions, and previous approaches have demonstrated effectiveness of these deep learning
models for clinical outcome prediction (Shamout et al., 2021; Rajkomar et al., 2018; Placido
et al., 2023; Boussina et al., 2024; Xiong et al., 2024). While neural networks are powerful
predictive models, they often lack interpretability important for many clinical applications.

© 2025 A. Su, A. Wong, A. Saecedi & L.H. Lehman.



CONSTRAINED SSM FOR CLINICAL OUTCOME PREDICTION

Latent variable models, such as Switching Linear Dynamical Systems (SLDS) and their
variants including the autoregressive Hidden Markov Models (AR-HMM) (Murphy, 1998;
Ghahramani and Hinton, 2001; Fox et al., 2010, 2014), can be trained on clinical time
series data to learn interpretable latent structures that capture a patient’s evolving health
states (Quinn and Williams, 2011; Lehman et al., 2012, 2013, 2018; Nemati et al., 2013)
and provide prognostic insights for forecasting downstream outcomes (Lehman et al., 2012,
2015a). However, while the state representations learned from these models are interpretable
and informative, they are typically not explicitly optimized for predicting specific outcomes.

In this paper, we present a modeling framework that combines the predictive strength of
a black-box discriminative model, such as a deep neural network, with the interpretability
of latent variable models to learn latent state representations from multivariate time series,
enabling discovery of latent states that are both clinically meaningful and highly predic-
tive of downstream outcomes. Our approach leverages knowledge distillation to distill the
knowledge of a high-performing discriminative teacher model into a more interpretable la-
tent variable student model. Specifically, in this work, the teacher is an LSTM trained
for outcome prediction, while the student is an autoregressive hidden Markov model (AR-
HMM) that learns discrete latent states from multivariate clinical time series. We train the
AR-HMM using automatic differentiation variational inference (ADVI) (Kucukelbir et al.,
2016), and introduce a similarity constraint to incorporate guidance from a high-performing
deep learning model as the teacher model during training. This approach allows the AR-
HMM to capture underlying temporal dynamics in the observed data while aligning its
latent structure with the predictive representations of the neural network.

We evaluate the proposed method on two real-world datasets from patients with sepsis
and respiratory failure in the MIMIC-IV database (Johnson et al., 2023). In addition to pre-
dicting mortality, we assess performance on several clinically important outcomes, including
the development of pulmonary edema, initiation of dialysis, administration of diuretics, and
the need for mechanical ventilation. Our results show that the proposed approach outper-
formed baselines without the constrained inference from knowledge distillation, and achieves
predictive performance comparable to that of the deep learning approach, while preserving
strong generative capabilities and interpretability through its latent state structure.

Generalizable Insights In this work, we demonstrate that constrained inference tech-
niques through knowledge distillation can effectively bridge the gap between high-performing
black-box deep learning models and interpretable latent variable models for time series data.
Second, by leveraging switching state space models to capture temporally evolving physi-
ological states, we show that interpretable and dynamic representations of patient health
can be used not only for outcome prediction but also for identifying clinically meaningful
states from multivariate clinical time series data.

2. Related Works

Interpretable Time Series Models A wide range of models have been developed for
time series prediction, with varying approaches to interpretability. For example, deep learn-
ing models such as RETAIN (Choi et al., 2016), and various attention-based approaches
(Song et al., 2018) offer feature-level interpretability by highlighting important variables or
time steps that contribute to predictions. Nemati et al. (2018) proposed a machine learn-
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ing model for early sepsis prediction in the ICU leveraging feature-based interpretability.
In contrast, our approach combines deep learning and and switching state-space models
to provide discrete state-based representations that capture evolving dynamics in patient
trajectories. This structured interpretability enables insight into disease progression and
patient states over time, which feature- or attention-based models may not explicitly model.

(Semi-)Supervised Learning with Probabilistic Graphical Models A common ap-
proach to learning interpretable models to predict final outcomes is a 2-stage approach. In
the first stage, a graphical model is used to infer interpretable latent features for a dataset.
These features are then passed into the second stage of the model, which is a discriminative
model that predicts an outcome. Lehman et al. (2012, 2013, 2014, 2015a) used switching
vector autoregressive (SVAR) processes—also referred to as autoregressive hidden Markov
models (AR-HMMs)—to learn latent states from multivariate clinical time series; they
showed that these latent states capture prognostic information relevant for predicting clin-
ical outcomes, and that incorporating the time-averaged state probabilities per patient as
input features alongside conventional acuity measures significantly improves performance
for clinical outcome prediction. Subsequent studies (Lehman et al., 2015b,c, 2018; Wu et al.,
2017; Ghassemi et al., 2017) also followed the same approach, using state probabilities from
variants of AR-HMM for outcome prediction and reported similar findings. Another ex-
ample of this 2-stage method used a graphical model to derive features that are then used
as input for a linear regression to predict neuroticism and depression (Resnik et al., 2013).
These types of models, while interpretable, are limited in their predictive performance in
comparison to neural networks. Our proposed approach in this work can be used to improve
the performance of these methods by distilling the knowledge of a pre-trained discrimina-
tive model into the generative model. Other approaches (Blei and McAuliffe, 2010; Chen
et al., 2015) have been proposed with supervised objective that combining interpretable
latent structure discovery with predictive modeling by integrating discriminative training
into the generative framework. In (Nemati et al., 2013; Nemati and Adams, 2014, 2015), a
supervised framework was proposed for gradient-based learning of outcome-discriminative
dynamics in switching state space models. Stanculescu et al. (2014) present an AR-HMM
for early detection of neonatal sepsis by modeling physiological event dynamics from NICU
monitoring data—Ileveraging domain-informed inference.

Constrained Inference Another strategy to enhance model performance is constrained
inference, where the posterior distribution over latent states is restricted to satisfy specific
performance criteria. For instance, adding a discriminative constraint can improve predic-
tive accuracy while preserving interpretability by incorporating a supervised loss into the
objective function (Hughes et al., 2018). Saeedi et al. (2022) developed a general knowledge
distillation framework in which a high-performing discriminative ”teacher” model guides
the learning of a more interpretable latent variable ”student” model. The present work
builds on Saeedi et al. (2022), but focuses on clinical time series modeling and outcome
prediction using switching state space models as the ”student” latent variable model.
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3. Methods

We use knowledge distillation to develop models that achieve both strong predictive perfor-
mance and interpretability. Building on the knowledge distillation framework proposed by
(Saeedi et al., 2022), our approach leverages a high-capacity ”teacher” model with strong
predictive performance to guide the training of an interpretable switching state space ”stu-
dent” model for clinical time series modeling and outcome prediction. In this work, we first
train a deep learning teacher model using LSTM (Hochreiter and Schmidhuber, 1997) to
predict clinical outcomes, and then use an autoregressive hidden Markov model (AR-HMM)
as the student model to learn discrete latent states from clinical time series (Lehman et al.,
2015a). To learn this AR-HMM student model, we used a variational technique ADVI
(Kucukelbir et al., 2016) to learn the global model parameters, including the initial state
distribution, state transitions probabilities, and autoregressive emission parameters, and
the similarity-based constraint was used to distill knowledge from the LSTM teacher to the
student AR-HMM model.

3.1. AR-HMM

In an AR-HMM, each state is parameterized by a set of AR coefficients, a covariance
matrix ¥, and a bias term b, so we can define the k-th state as 0 = {Ag, X, br}. In an
AR-HMM process with order r, each observation depends on the r observations before it.
Let J:Ei) be the observation vector of the ¢-th patient at time ¢, and let zzgi) be the state
of the corresponding Markov chain for that patient at time ¢. Let 7 be the transition

probabilities for state k. Then, since this is a Markov chain, we know that zt(i) ~T ) for
t—

1
all t > 1. An order r AR-HMM process, denoted by VAR(r), is defined as follows

2~ (1)
t—1
; O i), (i
xl(f) = Z Al xijl + eg )(Z,g )) + bzii) (2)
=1
2 Azgz)ﬂégz) + egl)(z,gl)) + bzgi) (3)

where egi) (zt(z)) ~ N(0,%(z,) is the state-specific noise, Ay = [A}...A%] are the lag matrices,

and :i‘gl) = [xgi)l ...xgl) ]T are the observations.
Our AR-HMM also has jiinirr and X;p; . as parameters for approximating the distribu-
tion of an initial set of observations, where x;,;; ~ N (Hinit k> Zinit k). And so in total, the

k-th state corresponds to the parameters 0y, = { Ay, Xk, b, Linit k> Sinit ks } -

3.2. Variational Inference

The mechanism behind many models that identify patterns in a model or make predictions
is typically a computation of the posterior distribution of latent variables, given the ob-
servation, p(z,#@|z), where z is local latent variables, # is global latent variables, and x is
observations. However, it is often difficult to calculate the posterior, which leads to the
use of approximate inference techniques like variational inference. A typical framework of



CONSTRAINED SSM FOR CLINICAL OUTCOME PREDICTION

variational inference maximizes the Evidence Lower Bound (ELBO) with respect to the
variational parameter ¢y. We approximate the posterior distribution of global latent vari-
ables with a distribution parametrized by ¢y, while the local latent variables z is exactly
computed given # and the observations z. We let © = T'(f) be the transformed global la-
tent variables, and ¢y = (u1, ..., g, w1, ...,wr ) represent the variational parameters in the
unconstrained space of R2! where the global latent variables are sampled independently
such that variable 7 is sampled from the Gaussian distribution N(u;, exp(w;)?).

L(pg;x) = Eq¢9(9) logp(z, 2*,0) —log g4, (6)] (4)
Z* £ argmax p(z | z,0) (5)

For example, in an AR(1) process, consider a subset of the global latent variables, the
lag matrix Ay € RP*P. Then the entries (Ak)i; are independently sampled from the dis-
tribution N (15, exp(wij)?) where u;; and w;; are the variational parameters corresponding
to the variable (Ay);;.

The ELBO is a lower bound on the log-likelihood. To make our approach more acces-
sible to a wider range of applications, our framework, similar to Saeedi et al. (2022), uses
Automatic Differentiation Variational Inference (ADVI) to approximate our global latent
variables #. However, in contrast to Saeedi et al. (2022) which uses a recognition network
¢ to derive an approximate posterior g4, on the local latent variables z, we derive the exact
posterior p,g . for the local latent variables based on the estimated global parameters.

Global Latent Variables § While there are many techniques that can be used to per-
form variational inference, we chose automatic-differentiation variational inference (ADVI)
(Kucukelbir et al., 2016). It is a flexible black-box variational inference method that
can be used for many different probabilistic models. It achieves this by transforming
the K-dimensional latent variables 6 such that they live in the real coordinate space,
RE : T : supp(p(0)) — RE, so ADVI can choose the variational distribution independent of
the generative model. Note also the variational approximation in the original space can then
be written as q(0; ¢g) = q(T'(0); ¢p)|det(Jr(#))|. Then, one can further assume a factorized
Gaussian distribution is the variational approximation for the transformed latent variables:
a(T(0); dr()) = N(T(0); u, diag(exp(w)?)), where ¢p(g) = (1, - -, purc, wi, .. ., wic) are the
variational parameters in the unconstrained space. Note that these implicitly induce non-
Gaussian variational distributions in the original latent variable space (Kucukelbir et al.,
2016).

Local Latent Variables z Rather than using a recognition network or other proxy to
approximate the local latent posterior, we directly use the observations to compute p(z |
x;0®)) using Viterbi (Viterbi, 1967), a well-established AR-HMM training algorithm.

ELBO In AR-HMMs, the joint factorizes as
p(wi, 2,0) = p(x; | 2,0)p(z | 7)p(0) (6)

We let © = T'(0) be the transformed global latent variable. In the ADVI transformation,
this becomes

pwi, 2, T7H(0)) = p(z; | 2, T71(0))p(z | m)p(T~(O)) (7)
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Specifically, the global latent variational distribution transformation satisfies

4(©, de) = N(0; u, diag(exp(w)?)),  q(6; ¢a) = a(T(0); dr(s))| det(J7(0))]

where © = T'(0) are the transformed global latent variables, and ¢g = (11, ..., i, W1, ooy WK)
are the variational parameters in the unconstrained space of R2X.

For example, in an AR order 1 process, consider a subset of the global latent variables,
the lag matrix Ay € RP*P. Then the entries (A K)ij are independently sampled from the
distribution N (p;;, exp(wij)2) where p;; and w;; are the variational parameters correspond-
ing to the variable (Ag)i;.

We use ADVI to get posterior samplers of global latent variables to compute the ELBO,
incorporating the global latent priors into the objective:

L(¢o; wi) & By, llogp(i | T1(0),2) +logp(z | 7) + log p(T~'(8))]

lOg(p(xi 7T_1 (9) 7Z))

+ log |det(Jp-1(©))]
+ H(gg,(0))

using Monte Carlo approximation. Rather than using a recognition network to approximate
the local latent distributions, we directly compute the local latent distributions given 6 and
the observations. Using the parameterization trick in Kucukelbir et al. (2016), we can
rewrite the expectation in standard Gaussian density:

L(¢p; x:) = Enenllog p(wi | T71(O4), 2) +logp(z | 7) +log p(T~1(Ox))]
+ log |det(Jp-1(©¢))|
+H(Q¢9(@))

where O, = diag(exp(w)) ® €1.x + . We use ADVI to approximate the posterior over the
global latent variables 6, including the state transition matrix 7 and the AR parameters
for each of the K latent states. In ADVI, the variational distribution is defined over an
unconstrained latent space R?, and a differentiable bijection T~! is used to map these un-
constrained latent variables back to the constrained space of model parameters. Specifically,
the AR parameters in each state k are already unconstrained, and thus these parameters
are mapped via the identity transform. Transition matrix 7 lies on the K-dim prob simplex.
We apply softmax to unconstrained parameters associated with each row of w. Thus, the
full bijection T~1(6) combines the identity map for the AR parameters and a softmax-based
transformation for the rows of the transition matrix.

Similarity Constraint We incorporated the knowledge distillation constraint by using a
similarity-based constraint between the teacher and student models. Let C; be the feature
dimensionality of the teacher model, and Cy be the feature dimensionality of the student
model. For a dataset of size N, we denote the feature representations of the teacher and
student models as F* € RV*Ct and F$ € RV*Cs | respectively.
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For the student model, we assume that every row of the feature representation is a
function of the inferred latent variables. The knowledge distillation constraint is designed
to make sure that the differences between the two feature representations is less than some
tolerance level. More specifically, we compute the similarity of feature representations across
patients by taking the dot product, which results in N x N matrices:

F$=F. F" and F' = F'. F'T (8)

Because our similarity loss is implemented through a pairwise similarity matrix, it offers
flexibility by allowing teacher models to use feature spaces of different dimensionality than
the student model. In this work, F* denotes the hidden state representation from the teacher
LSTM at the final timestep, with dimensionality C;. The student feature representation,
F?* can in general be any function of the inferred latent variables. Motivated by prior
findings in (Lehman et al., 2012, 2015a), we set F*® to be the time-averaged probabilities
across the K inferred states for each patient, yielding a dimensionality of Cs = K.

We also apply a normalization to the matrices. After taking the dot product of the
feature matrix, we normalize by dividing each column by the ¢? norm of the row. Let us
denote the final normalized similarity matrices as F* and F* for the student and teacher
models, respectively. We calculate the similarity loss as

1 _
similarity loss = ’yﬁHF‘s — F? )

where v is a hyperparameter that specifies how much to weight the loss from this similarity
constraint in the overall loss function. The final objective function is

rgin —L(¢g; x;) + similarity loss, (10)
0

where the variational objective is regulated by the knowledge distillation constraint so that
we maximize ELBO while ensuring that the student model has similar pair-wise similarity
in latent features as the teacher model. Then a gradient descent method is used to update
global latent variables such that they simultaneously maximize ELBO. The inferred poste-
rior of local latent variables are used to perform downstream predictions, and in this case,
the marginal posterior of latent states in an AR-HMM model (Lehman et al., 2012, 2015a;
Saeedi et al., 2022).

3.3. Data

To evaluate our approach, we used two separate datasets from the Medical Information Mart
for Intensive Care IV (MIMIC-IV) database (Johnson et al., 2023). In the sepsis cohort, we
selected patients meeting the sepsis-3 criteria (Singer et al., 2016). After ensuring patients
met all inclusion and exclusion criteria (see Appendix), we were left with 7,663 patients.
Hospital mortality of the cohort is approximately 13%. We employed an 80% training, 10%
validation, and 10% testing split for our dataset. A detailed description of our cohort and
a full list of covariates are provided in Appendix E.

The second patient cohort includes individuals with respiratory failure who required
mechanical ventilation (MV) for at least 24 hours in the ICU. To predict clinical outcomes,
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we used data from the 48 hours immediately preceding the first MV weaning attempt.
Patients whose weaning attempts occurred within the first 48 hours of ICU admission were
excluded. After ensuring patients met the appropriate criteria, we were left with 4,256
patients. Hospital mortality of the cohort is approximately 26%, and 28-day mortality is
approximately 31%. Again, we employed an 80% training, 10% validation, and 10% testing
split for our dataset. See Appendix for the list of covariates included in this dataset.

3.4. Teacher Model

For our teacher model, we trained an LSTM on the patient data to predict mortality. On
the sepsis cohort, the teacher model included a total of 46 features, which is more features
than the student model. The extra features included in the LSTM but not the student
model are shown in Table 12. On the MV cohort, the LSTM model included 48 features.
Unlike the sepsis cohort, the student model also has 48 features. Note that the teacher
model and the student model need not have the same input dimension. In our experimental
setup, the teacher LSTM is fed with higher dimensional time series data as input to predict
downstream outcomes. Our premise was that the knowledge learned by the teacher model
could be transferred to the student model, without the student model needing as many
covariates. We trained the LSTM using various seeds and hyperparameter settings, and
used the model with the best validation AUROC for our teacher model.

3.5. Student Model

For our student models, we used an autoregressive hidden Markov Model (AR-HMM) of
order 1, with D-dimensional Gaussian distribution, where D is the number of covariates
used for each patient’s input to the model. In our models, D = 28 for the sepsis cohort,
and D = 48 for the mv cohort . For each patient, we have a D x T vector input, where T'
is the number of timesteps. There are K possible latent states learned by the AR-HMM.

The baseline model was a basic AR-HMM without knowledge distillation or supervision,
run for 20 iterations. The model that incorporates knowledge distillation via a similarity
constraint is denoted as KD-AR-HMM. We also implemented a model with a discriminator
constraint (DISC-AR-HMM) for performance comparison with our approach. The models
with constraints were also ran for 20 iterations.

3.6. Outcome Prediction

For the baseline AR-HMM and the KD-AR-HMM, we used a logistic regression model that
took as input the features outputted by the AR-HMM model, and outputted the probability
of an outcome such as mortality. For the models with the discriminator constraint, we
used the trained discriminator network to make predictions. In addition to predicting
mortality, we also used the same set of features to predict other patient outcomes such as
the development of pulmonary edema, or the need for dialysis, mechanical ventilation, or
diuretics. We adjusted various hyperparameters in order to tune the model. A description
of our hyperparameter search can be found in Appendix D.
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3.7. Discriminative model

We compare the KD-AR-HMM performance to a baseline AR-HMM and discriminative
model. The discriminative AR-HMM (DISC-AR-HMM) is trained in the same way as
the KD-AR-HMM except the DISC-AR-HMM objective replaces the similarity loss in the
KD-AR-HMM objective with cross-entropy loss to regularize toward better classification.

4. Results

4.1. Sepsis Outcome Prediction
4.1.1. SEPSIS MORTALITY PREDICTION

We use our models on the first patient cohort dataset to predict patient mortality in sepsis
patients. The results presented in this paper have the number of states as K = 5 and
autoregressive order 1 (AR(1)) for the student AR-HMM models. We also tried using
10 states, and higher order autoregression (order 2 and order 3), and the KD-AR-HMM
achieved similar performance as the 5 state, AR(1) version. In Table 1, the KD-AR-HMM
consistently outperformed other baselines. We ran each model with 40 different seeds and
hyperparameter settings, and chose the best hyperparameter setting based on the validation
AUC. Another 10 different seeds with a fixed hyperparameter setting was ran. The results
presented are from the 10 seed experiments. The baseline AR-HMM had a low AUROC of
0.642. The model with the discriminator constraint performed similarly with an AUROC
of 0.648. The model that incorporated knowledge distillation performed the best, with an
AUROC of 0.792.

The pairwise similarity matrices for the student and teacher models along with those for
the baselines are presented in Fig 1. Pairwise similarity matrices for the test dataset of the
disease subtyping experiment: Each row and each column corresponds to a patient in the
test dataset. Brighter colors indicate higher similarity values. The distillation constraint
encourages the pairwise similarity matrix of the student model (KD-AR-HMM) to be similar
to that of the teacher model from LSTM. Compared to the the basic AR-HMM which is
unsupervised, and the discriminative version of AR-HMM, the matrix from the knowledge
distillation via constrained inference is more similar to that of the teacher.

Table 1: MIMIC Sepsis Test Set Performance (test AUROC, AUPRC and Log Likelihood) in hos-
pital mortality prediction over 10 seeds. For KD-AR-HMM, we use the LSTM model with
the best validation AUC as the LSTM Teacher model (which has a test AUC of 0.851).

Model AUROC AUPRC Log Likelihood
LSTM (Teacher) 0.851 0.545 N/A
LSTM (10-seeds) 0.836 +0.026 0.497 £+ 0.080 N/A
AR-HMM (2-stage)  0.642 + 0.002 0.280 4+0.004 5.560 £ 1.809
DISC-AR-HMM 0.648 + 0.193 0.387 £0.124  -981.971 4+ 1115.78

KD-AR-HMM 0.792 £ 0.009 0.530 £0.006  -256.290 £ 19.465

In addition to measuring the AUROC to evaluate the predictive ability of our models, we
measured the log likelihood to evaluate the generative ability of the models. Compared to
the baseline AR-HMM, the constrained models had comparable log likelihoods, indicating
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Figure 1: Generated pair-wise similarity matrices representing the feature representations
of the teacher LSTM, student KD-AR-HMM model and baseline approaches for
sepsis hospital mortality prediction. From left to right: LSTM, AR-HMM, DISC-
AR-HMM, KD-AR-HMM.

that the constraints did not significantly decrease the model fit for the data. In particular,
the log likelihood of the KD-AR-HMM was the closest to the baseline. A summary of these
metrics can be found in Table 1.

Model Selection. We explored several variants of the KD-AR-HMM model by varying
the number of latent states and the AR order. Full model selection results are provided
in Appendix B. While all variants achieved comparable validation AUROC scores, the
KD-AR-HMM with 5 latent states and an AR order 1 yielded slightly superior validation
log-likelihood and Bayesian Information Criterion (BIC) scores. Consequently, this config-
uration was selected as the final model for reporting primary test set performance and for
clinical interpretation presented in the main text.

4.1.2. SEPSIS COHORT: OTHER CLINICAL OUTCOMES PREDICTION

In this section, we assess whether our knowledge distillation framework is applicable to
other outcomes. We train an LSTM and KD-AR-HMM for each individual outcome. The
other outcomes we tested was the onset of pulmonary edema, and the patient’s need to start
diuretics, mechanical ventilation (MV), or dialysis. The LSTM was ran with 40 different
seeds and hyperparameter settings, and chose the best hyperparameter setting based on
the validation AUC. Another 10 different seeds with a fixed hyperparameter setting was
ran. As for the KD-AR-HMM, 10 different seeds were ran with top 10 hyperparameter
settings from the model’s results from hyperparameter tuning on mortality. Then, as per
usual, another 10 different seeds with a fixed hyperparameter setting was ran. The results
presented are from the 10 seed experiments.

Similar to predicting mortality, in Table 2, we find that the KD-AR-HMM consistently
outperformed other baselines. Furthermore, when predicting other outcomes, compared to
the baseline AR-HMM, the constrained models had comparable log likelihoods, indicating
that the constraints did not significantly decrease the model fit for the data. In particular,
the log likelihood of the KD-AR-HMM was the closest to the baseline. Like mortality
prediction, we note that the baseline DISC-AR-HMM had one or two seeds with high

10
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performing models, but was highly inconsistent and unstable across multiple seeds. A
summary of the log-likelihood and AUPRC results can be found in Table 7 and Table8 in
the Appendix.

Table 2: MIMIC Sepsis cohort: Performance (AUROCS) in Outcome Predictions. Mean and stan-
dard deviation of test AUROCs averaged over 10 seeds reported. MV = Mechanical
Ventilation. Edema refers to pulmonary edema. See Appendix for AUPRC.

Edema Dialysis MV Diuretics
LSTM 0.898 £ 0.025 0.841 £ 0.013 0.974 £+ 0.006 0.940 £ 0.053
AR-HMM 0.581 £ 0.006 0.666 £ 0.000 0.827 £ 0.001 0.641 4+ 0.005

DISC-AR-HMM 0.559 +0.144 0.591 +0.189 0.626 + 0.351 0.677 £ 0.297
KD-AR-HMM 0.665 + 0.006 0.739 + 0.007 0.884 £+ 0.004 0.951 + 0.012

4.2. Respiratory Failure Cohort Outcome Prediction

We applied the knowledge distillation framework to a second cohort of patients with res-
piratory failure, focusing on predicting 28-day mortality following hospital discharge after
mechanical ventilation weaning attempts (with 31% 28-day mortality rate). As shown in
Table 3, the proposed KD-AR-HMM model outperforms the baselines in AUROC, achieving
an average test AUROC of 0.649 compared to 0.543 for the standard AR-HMM (trained
in a two-stage fashion without distillation) and 0.605 for the DISC-AR-HMM (which ap-
plies a discriminative constraint without knowledge distillation). The LSTM model with
the best validation performance (used as the teacher model) achieves a test AUROC of
0.659, with an average AUROC across all seeds of 0.630, indicating that KD-AR-HMM
performs consistently close to the teacher while substantially improving over the generative
baselines. KD-AR-HMM'’s AUPRC performance (0.475) is slightly below that of DISC-AR-
HMM (0.485), though the teacher LSTM also shows a marginally lower AUPRC (0.432),
likely due to class imbalance of the dataset.

Table 3: Respiratory failure dataset: performance in 28-day post-hospital discharge mortality pre-
diction. Table shows mean and standard deviation from test set AUROC, AUPRC and
log likelihood over 10 seeds.

Model AUC AUPRC Log Likelihood
LSTM (Teacher) 0.659 0.432 N/A
LSTM (10-seeds) 0.630 &+ 0.018 0.431 4 0.001 N/A
AR-HMM 0.543 £ 0.001  0.364 £ 0.004 -600.083 + 14.218

DISC-AR-HMM  0.605 4+ 0.113  0.485+0.082 -4525.252 4+ 2502.313
KD-AR-HMM 0.649 £+ 0.019 0.475+0.018 -4291.738 £ 403.770
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5. Analyses and Interpretation
5.1. Model Selection

The KD-AR-HMM model selected for our analyses and interpretation is the model with the
best performing validation AUC after training the model with 10 random seed initialization.
These 10 seeds all had fixed hyperparameters, which were chosen also via validation AUC
in a random 40 seed grid search for hyperparameter tuning. Full results are presented
in Appendix B. For clinical interpretation, we selected the KD-AR-HMM model with the
best validation AUC (validation AUC of 0.812 and test AUC of 0.805, with validation log-
likelihood of —272.69, and a test log-likelihood of —261.98) for outcome association analyses
and state trajectory visualization.

5.2. Outcome Association Analyses of Learned States

We performed logistic regression analyses to identify KD-AR-HMM states significantly as-
sociated with clinical outcomes (see Appendix for details). To assess associations with
hospital mortality, we examined odds ratios (ORs) and corresponding p-values for each
state. Logistic regressions were fitted on the test set, using the state probabilities generated
by KD-AR-HMM as predictors and mortality as the binary outcome. We conducted uni-
variate logistic regressions for each state—outcome pair and applied a False Discovery Rate
(FDR) adjustment to account for multiple testing across states and outcomes. For KD-AR-
HMM, state 2 was identified as a low-risk state: higher occupancy probability in state 2
was significantly associated with lower odds of mortality, edema, and dialysis. In contrast,
states 1 and 3 were identified as high-risk states, where increased state probabilities were
significantly associated with higher odds of mortality. Figure 2 shows simulated trajectories
for the three states most strongly associated with hospital mortality risk, defined by the
smallest adjusted p-values.

Table 4: Hospital Mortality: Odds ratio (OR) of individual states of the KD-AR-HMM model, using
state marginals via the latent posterior given the final learned global model parameters.

State OR (upper/lower) Adj p-value

1 1.036 (1.021, 1.051) <0.001
2 0.952 (0.943, 0.960) <0.001
3 1.044 (1.034, 1.055) <0.001
4 1.034 (1.005, 1.064) 0.024
5 0.999 (0.975, 1.025) 0.996

5.3. Clinical Relevance of Learned Latent States

In this section, we evaluate whether the learned latent states correspond to clinically mean-
ingful patterns, particularly in relation to patient outcomes. Figure 2 presents simulated
trajectories for three latent states identified as significantly associated with hospital mor-
tality in the sepsis cohort. Based on their ranked odds ratios from the outcome association
analysis (see above), we label States 3, 1, and 2 as high-, medium-, and low-risk states,
respectively.
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KD-AR-HMM simulated trajectories of selected covariates for medium-risk (State 1)

and high-risk (State 3) vs lower-risk (State 2) states learned from the sepsis dataset.
Each state was simulated 200 times by drawing samples from the learned AR model
parameters, and the multivariate trajectory with the highest log-likelihood under the
model was selected for visualization. All states were simulated and plotted with the
same time duration and amplitude scale.

State 3 (high-risk)

exhibits the highest odds ratio for hospital mortality (1.044 [1.034,

1.055]), and is characterized by declining trends in mean arterial blood pressure (MAP),
SpO2, urine output (UO), pH, base excess (BE), and bicarbonate (HCOj3), along with
increasing trends of creatinine, blood urea nitrogen (BUN), bilirubin, lactate, and pCOs.
Notably, we also observe a rising trend in vasopressor administration.

State 1 (medium-risk)

is also associated with increased hospital mortality, though with

lower odds than State 3. Its simulated trajectories show more moderate physiological de-
viations, lacking the pronounced deteriorations seen in State 3. Compared to the low-risk
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State 2, State 1 is associated with lower levels of SpO2, pH, and Glasgow Coma Scale (GCS)
scores, and higher SOFA scores, indicating a more compromised clinical profile.

State 2 (lower-risk) representing the low-risk state, generally maintains stable values
across most physiological variables. Compared to the higher-risk states, it shows less vari-
ability and fewer extreme trends, suggesting more stable patient conditions. In contrast,
States 1 and 3 exhibit greater variability and pronounced deviations in key variables, con-
sistent with clinically unstable states.

The significance of latent states are also qualitatively supported by observing the gener-
ated latent state distribution across all patients in the dataset. In Figure 4 (in Appendix),
we see that state 2 has a much less likely to be found in patients who died, than for patients
who lived. On the contrary, states 1 and 3 were more likely in patients who died than
patients who lived.
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Figure 3: Example trajectories of a patient who (a) survived and (b) died in the hospital. Time
series measurements plotted in original units before normalization. Fluid bolus (mL).
Top panel: SpO2 (light blue, %), heart rate (HR, red, beats/min), mean blood pressure
(MBP, brown, mmHg), respiratory rate (RR, purple, breath/min). Bottom panel: lactate
(red, mmol/L), creatinine (Cr, green, mg/dL).
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Individual Patient Case Studies: State Assignment over Time for Individual
Patients Figure 3 shows an example of two test set patients, one who died in the hospital
and another who survived the hospital stay, and the corresponding inferred states through-
out the first 24 hours. The patient who survived hospital stay had a few hours of being in
the medium- and high-risk states (states 1 and 3, in light purple and red) in the first half
of their stay, but transition to a lower-risk state (state 2, green). We can also see that the
patient’s return to the low-risk state seems to coincide with an increase in SpO2, stabiliza-
tion of blood pressure in response to fluids and vasopressor administration, and a decrease
in lactate. On the other hand, the patient in (b) started off with a small proportion of time
in the lower-risk state 2 (green), but transition to spent significant amount of time in the
high and medium risk state 3 and 1 (red and purple). We can also see that this patient had
an increasing trend in respiratory rate and lactate, with low blood pressure.

6. Discussions and Conclusion

In this work, we introduced a constrained inference framework that combines the predic-
tive strength of deep neural networks with the interpretability of latent variable models for
clinical outcome prediction. Specifically, we leveraged knowledge distillation to distill the
knowledge from a high-performing neural network (teacher) to an autoregressive hidden
Markov model (student), enabling the student model to learn discrete, interpretable state
representations from multivariate clinical time series while achieving high predictive perfor-
mance for downstream clinical outcomes. By incorporating a similarity constraint within
a variational inference framework, we guided the AR-HMM to learn latent state dynam-
ics that are predictive of the downstream clinical outcomes, while preserving the model’s
interpretability and generative performance.

We evaluated our method on the MIMIC-IV database across two clinically relevant
tasks: predicting hospital mortality and fluid overload in sepsis and in respiratory failure
patients undergoing mechanical ventilation. In both cohorts, the proposed KD-AR-HMM
trained via constrained inference achieved improved predictive performance in comparison
to the baselines, while providing clinically interpretable latent states that are prognostic of
downstream outcomes. These findings suggest the potential of our method for real-time risk
monitoring and decision support, where both accuracy and interpretability are important.

More broadly, this work highlights a general strategy for enhancing the interpretability
of machine learning models in healthcare by integrating black-box predictors with structured
probabilistic models. It also demonstrates the value of knowledge distillation via constrained
inference as a flexible framework for training interpretable models that achieve competitive
predictive performance.

Future work will address several limitations of the current study. First, our evaluation
was limited to a single critical care database; validating the approach across diverse patient
populations and institutions will be important for assessing generalizability. Second, we
selected LSTM as the teacher model due to its strong performance and widespread use
in clinical time series modeling, but future work will explore alternative architectures as
teacher models. Future directions also include incorporating structured clinician review
and further validating the clinical relevance of the learned latent states to assess their
utility and relevance in real-world settings. Finally, we aim to extend this framework to
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sequential decision-making tasks, where interpretable latent states could support treatment
policy evaluation and individualized treatment planning.
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Appendix A. Data and Cohort

In this work, we used data from the Medical Information Mart for Intensive Care IV
(MIMIC-1V) database, which contains medical records from hospital admissions and ICU
stays at the Beth Israel Deaconess Medical Center (BIDMC) (Johnson et al., 2023). For
our patient cohort, we selected patients meeting the sepsis-3 criteria. Under this criteria,
a patient is defined to have sepsis if they have both an episode of suspected infection and
a Sequential Organ Failure Assessment (SOFA) score of 2 or more points. An episode of
suspected infection is defined as either (a) an antibiotic was given and a culture was sampled
within 24 hours or (b) a culture was sampled and an antibiotic was administered within 72
hours.

The dataset excludes patients whose time of suspected infection was more than 24 hours
after ICU admission. It also excludes patients who were admitted after cardiac, vascular,
or trauma surgery since those surgeries pose risks that could lead to different mortality
outcomes. Additionally, if a patient had more than one ICU stay, only the first stay was
used. The dataset also excludes patients who did not have documented pre-ICU fluids.
Finally, we removed patients who died within 24 hours of entering the ICU, and patients
who did not have all 24 hours of data.

After ensuring patients met all of these criteria, we were left with 7,663 patients. We
put 80% of patients in the training set, and 10% in each of the validation and testing sets.
The mean age of patients was 65.10, the median age was 67.0, and 4135 of the patients were
male.

For each patient, we have 24 hours of hourly data, with covariates including heart
rate, blood pressure, SOFA score, and other clinical variables such as glucose, creatinine,
potassium, and more. We also have information about the actual treatment given to these
patients at each hour, such as if patients are on mechanical ventilation or dialysis and the
amount and dosage (if any) of fluids, vasopressors, and diuretics given. Finally, we have
information about outcomes such as if the patient has pulmonary edema, is on diuretics,
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dialysis, or mechanical ventilation, or if they die in the hospital. We fill in missing covariate
values by either extending the previous covariate measurement for that patient if it exists,
or filling it in with the population average value for that covariate.

For each feature, we define a valid range using the values in the dataset, as well as general
domain-knowledge based expectations. Any data point outside the range is considered an
outlier, and are then removed from the dataset. Next, missing values were filled using the
most recent non-missing value from earlier in the sequence (ie) forward fill). This helps
preserve temporal continuity in the time-series or sequential data. In cases where missing
value occurred at the very beginning of the sequence, the missing entry was instead filled
using the mean of that feature from the training set. Finally, each feature is normalized
via either standard z-score normalization, log-transformed z-score normalization, or Yeo-
Johnson power transformer based on the data distribution and histogram inspection of the
dataset.

Other Clinical Outcomes. The final datasets had the following total number of re-
maining cohort (after excluding patients who already have the target outcome during first
24-hours of their ICU stay), and percentage of patients with the adverse outcomes within
the cohort (i.e. patients who ultimately experienced that outcome within 48 hours after
their first day in the ICU): 5,034 (19.5%) for pulmonary edema, 7,462 (2.3%) for dialysis,
4,166 (5.5%) for mechanical ventilation, and 6,413 (15.9%) for diuretics.

Appendix B. KD-AR-HMM Model Selection and Additional Results

In Table 5 we show the performance of different variants of the KD-AR-HMM model. We
tested different total number of latent states (K =5 vs. K = 10), as well as different AR
order (AR(1) vs. AR(2)). The three models, KD-AR(1)-HMM with 5 states, KD-AR(2)-
HMM with 5 states, and KD-AR(1)-HMM with 10 states exhibit very similar average test
AUCs of 0.792, 0.788, and 0.787 respectively. KD-AR(1)-HMM with 5 states, however, had
better performing log likelihood and BIC scores. Thus, leading us to choose KD-AR(1)-
HMM with 5 states as our student model.

BIC, or the Bayesian information criterion, is a penalized likelihood metric that balances
model fit and complexity. The BIC is formally defined as

BIC = kln(n) —21In(L)

where L is the maximized likelihood of the model, k£ is the number of parameters, and n
is the number of observations. Lower BIC values indicate a more simple and better-fitting
model. For us, we use BIC to help select the AR-HMM variants, by penalizing more complex
models (Schwarz (1978)).

For model selection, in general the best model is chosen by taking the one with the
best performing validation AUC from 10 seeds. In Table 6 we display the full results
of the 10-seed experiment for our KD-AR-HMM student model. Seed 132 was the best
performing model via validation AUC, which is also the model that is used for analyses and
interpretation in Section 5.
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Table 5: MIMIC Sepsis Test Set Performance (AUROC and Log Likelihood) in hospital mortality
prediction over 10 seeds, using other AR order and number of states. For KD-AR-HMM,
we use the LSTM model with the best validation AUC as the LSTM Teacher model (which
has a test AUC of 0.851).

Model Val AUC Test AUC Val Log-Lik Test Log-Lik BIC
LSTM (Teacher) 0.857 0.851 N/A N/A N/A
LSTM (10-seeds) 0.822 £ 0.047 0.836 £0.026 N/A N/A N/A
KD-AR(1)-HMM, K=5 0.807 + 0.004 0.792 + 0.009 -268.805 + 20.175 -256.290 + 19.465 832.266 + 40.351
KD-AR(2)-HMM, K=5 0.808 £+ 0.012 0.788 £+ 0.007 -435.767 + 53.621 -420.646 + 54.795 1215.298 + 107.242
KD-AR(1)-HMM, K=10 0.794 £ 0.007 0.787 £+ 0.009 -532.760 + 16.277 -522.661 + 15.431  2145.924 + 32.556

Table 6: Sepsis Hospital Mortality Prediction: Validation/Test AUC and Log-Likelihoods
across different seeds of KD-AR-HMM trainings, with AR(1) and 5 states. Hy-
perparams are fixed and chosen after 40 seeds of random grid search.

Seed ‘ Val AUC Test AUC Val Log-Lik Test Log-Lik

123 0.8116 0.7842 -252.70 -240.93
124 0.8063 0.8015 -269.97 -258.07
125 0.8012 0.7916 -313.37 -297.91
126 0.8057 0.7920 -246.11 -234.23
127 0.8055 0.7821 -282.07 -270.50
128 0.8113 0.7818 -257.42 -242.34
129 0.8116 0.7871 -265.57 -253.72
130 0.8042 0.8024 -280.29 -266.99
131 0.8030 0.7908 -247.86 -236.24
132 0.8121 0.8053 -272.70 -261.98

Table 7: MIMIC Sepsis Cohort Other Clinical Outcomes: Performance (Log Likelihoods) in Clinical
Outcome Predictions. Mean and standard deviation of test Log Likelihoods averaged over
10 seeds reported. MV = Mechanical Ventilation. Edema refers to pulmonary edema.

Edema Dialysis MV Diuretics
AR-HMM —6187.512 + 1440.118 997.811 £+ 0.009 501.372 £+ 2.938 207.064 £+ 7.060
DISC-AR-HMM  —1099.987 +475.503 —1512.941 £ 793.635 —1315+906.737 —872.471 4+ 1048.093
KD-AR-HMM -700.874 + 36.047 -483.433 £+ 76.907  -404.758 + 56.308  -217.457 + 14.272

Appendix C. Additional Results Sepsis Outcome Prediction

The significance of latent states are also qualitatively supported by observing the generated
latent state distribution across all patients in the dataset. In Figure 4, we see that state 2
is much less likely to be found in patients who died, than for patients who lived. On the
contrary, states 1 and 3 were more likely in patients who died than patients who lived.
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Figure 4: Sepsis Cohort Hospital Mortality Prediction Task: Latent state distribution over
all patients in the dataset for the KD-AR-HMM model for hospital mortality
prediction, using state marginals via the latent posterior given the final learned
global model parameters.

Table 8: MIMIC Sepsis cohort Other Clinical Outcomes: AUPRCs in Outcome Predictions. Mean
and standard deviation of test AUPRCs averaged over 10 seeds reported. MV = Mechan-
ical Ventilation. Edema refers to pulmonary edema.

Edema Dialysis MV Diuretics
LSTM 0.868 £0.068 0.717+0.093 0.9724+0.021 0.794 £+ 0.010
AR-HMM 0.514 +£0.008 0.150+0.006 0.826 +0.000 0.473 £ 0.000
DISC-AR-HMM 0.568 +£0.025 0.456 +0.186 0.821 4+0.043 0.528 £ 0.025
KD-AR-HMM 0.588+£0.010 0.700+0.017 0.856 +0.015 0.564 £ 0.016

C.1. Sepsis Other Clinical Outcomes

Pair-wise Similarity Matrices for Sepsis Cohort. The effectiveness of the knowledge
distillation framework and the similarity-based constraint for the additional outcomes is
further supported by the similarity matrices shown in Figure 5.

The distillation constraint encourages the student model’s (KD-AR-HMM) pairwise sim-
ilarity matrix to match that of the teacher LSTM model. Compared with the unsupervised
baseline AR-HMM and the discriminative AR-HMM (DISC-AR-HMM), the constrained
distillation approach generally yields pairwise similarity matrices that more closely align
with those of the teacher model for predicting MV and Dialysis outcomes. We note that
the test set similarity matrices shown are from the best-performing seed for each model
(selected based on best validation performance). While the baseline DISC-AR-HMM can
sometimes produce matrices resembling the teacher’s (e.g. for MV and Dialysis outcomes),
its performance varies greatly across random seeds. We recall that all AR-HMM-based
models perform worse than the LSTM teacher in predicting Pulmonary Edema and Di-
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uretics (in AUROC), and the KD-AR-HMM similarly struggles to replicate the teacher’s
similarity structure for these outcomes. Investigating strategies to improve performance in
these challenging prediction tasks remains a direction for future work.

C.2. Respiratory Failure Dataset

Qualitatively, from the generated similarity matrices provided in Figure 6 for 28-day mor-
tality outcome, the KD-AR-HMM finds it more challenging to learn the underlying latent
structure from the teacher LSTM in comparison to the sepsis mortality prediction task.
However, the KD-AR-HMM latent structure does have a stronger resemblance to the teacher
LSTM than the baseline models, which could be evidence that the knowledge distillation
framework is still effective even for more difficult prediction tasks.

Appendix D. Hyperparameter Tuning

Table 9 lists the hyperparameter search space for the Teacher LSTM model. The best
hyperparameter setting after the grid search is bolded. Table 10 lists the hyperparameter
search space for the AR-HMM models. Exhaustively searching all parameter combinations
was computationally prohibitive; therefore, for each seed, we randomly sampled values from
the search space.

Table 9: Hyperparameter search space in LSTM Teacher model.

Hyperparameters Range
Number of Layers 2,3,4
Hidden Dim. 8, 16, 32, 64, 128

LSTM-Teacher Learning Rate 0.01, 0.001, 0.0001

Table 10: Hyperparameter Settings. This table shows the options for various hyperparam-
eters that we tried for our AR-HMM models.

Hyperparameter Settings
Discriminator coefficient  1eb, le7, 1e9, lell
Similarity coefficient 1e9, lell, 1lel3, lelb
Log-likelihood coefficient 1, 1e3, 1e6
determinants coeff 1, 1e3, 1e6, 1e9

global vars entropy coeff 1, 1e3, 1e6
local vars entropy coeff 1, 1e3, 1eb
Priors coefficient 1, 1e5, 1el0
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Figure 5: Sepsis Cohort Other Clinical Outcome Prediction: Comparing pair-wise similarity
matrices representing the feature representations of the teacher LSTM, KD-AR-
HMM and other baseline AR-HMM models. From left to right: LSTM, AR-
HMM, DISC-AR-HMM, KD-AR-HMM. These are generated from the models
trained to predict other non-mortality outcomes on the sepsis cohort: from top
to bottom Pulmonary Edema, need for Diuretics, need for MV, and need for
Dialysis.
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Figure 6: Respiratory Failure Cohort: Generated similarity matrices representing the fea-
ture representations of the teacher LSTM and student KD-AR-HMM models.
From left to right: LSTM, vanilla AR-HMM, DISC-AR-HMM, KD-AR-HMM.
These are generated from the models trained on the MV-wean cohort to predict
28-day mortality.

Appendix E. Data Covariates

Table 11 shows the variables that were used as inputs for both the teacher LSTM and
student AR-HMM models. The vasopressor amount variable measures the total amount
of vasopressors used during that time period. Vasopressors are standardized by comparing
their relative strength to norepinephrine, also known as noradrenaline or norad. The va-
sopressors included in this standardization are norepinephrine (or levophed), epinephrine,
vasopressin, phenylephrine, and dopamine. The measurement unit used is mcg/kg/minute,
except for vasopressin, which is expressed as units/minute. The standardization process
involves adjusting the dosage rate of each vasopressor by multiplying it with a scaling con-
stant based on the typical dosing of each drug. Norepinephrine is typically administered at
a dosage range of 0-1 mcg/kg/minute. If multiple vasopressors were used during the same
time period, the combined total dose for each hour is reported.

E.1. Respiratory Failure Cohort Mechanical Ventilation Dataset

Covariates in the respiratory failure MV dataset, include heart rate, systolic blood pres-
sure (SBP), mean BP (MBP), diastolic BP (DBP), respiratory rate, SpO2, pH, baseex-
cess, total CO2, temperature, lactate, GCS, aniongap, bicarbonate, creatinine, hematocrit,
hemoglobin, BUN, WBC, PEEP, tidal volume (set and observed), minutes volume, peak
inspiratory pressure, plateau pressure, mean airway pressure, inspiratory time, FiO2, va-
sopressor amount, PaO2, pCO2, AaDO2 (alveolar-arterial oxygen difference), P/F ratio,
driving pressure, SOFA scores, patient weight, patient height, elixhauser comorbidity score,
and patient age.
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Table 11: MIMIC time-varying variables that were used as inputs to both the teacher LSTM

and student AR-HMM models.

Variable Name Variable Type Units
Heart Rate Continuous beats/min
Diastolic Blood Pressure Continuous mmHg
Systolic Blood Pressure Continuous mmHg
Mean Blood Pressure Continuous mmHg
Minimum Diastolic Blood Pressure Continuous mmHg
Minimum Systolic Blood Pressure Continuous mmHg
Minimum Mean Blood Pressure Continuous mmHg
Temperature Continuous °C
SOFA Score Treated as Continuous N/A
Glasgow Coma Score Treated as Continuous N/A
Platelet Continuous counts/10°L
Hemoglobin Continuous g/dL
Calcium Continuous mg/dL
BUN Continuous mmol/L
Creatinine Continuous mg/dL
Bicarbonate Continuous mmol/L
Lactate Continuous mmol/L
Potassium Continuous mmol/L
Bilirubin Continuous mg/dL
Glucose Continuous mg/dL
pO2 Continuous mmHg
SO2 Continuous %
Sp0O2 Continuous %
pCO2 Continuous mmHg
Total CO2 Continuous mEq/L
pH Continuous Numerical[1,14]
Base excess Continuous mmol/L
Weight Continuous kgs
Respiratory Rate Continuous breaths/min
Total Fluids Continuous mL
Urine Output Continuous mL
Total Urine Output Continuous mL
Fluid Bolus Continuous mL
Vasopressor Amount Continuous mcg/kg/min
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Table 12: MIMIC time-varying variables that were only used for the teacher LSTM model,
and not for the student AR-HMM models.

Variable Name Type Units

Minimum Mean Blood Pressure from Baseline  Continuous mmHg
Glasgow Coma Score - Motor Ordinal N/A
Glasgow Coma Score - Verbal Ordinal N/A
Glasgow Coma Score - Eye Ordinal N/A
02 requirement level Ordinal [0,6] N/A
Pulmonary Edema Indicator Binary N/A
Cumulative Edema Binary N/A
Diuretics Indicator Binary N/A
Diuretics Amount Continuous mg
Dialysis Indicator Binary N/A
Mechanical Ventilation Indicator Binary N/A
Bolus Indicator Binary N/A
Vasopressor Indicator Binary N/A
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