PALM: Predicting Internet Network Distances
Using Peer-to-Peer Measurements

Li-wei Lehman and Steven Lerman
Massachusetts Institute of Technology
Cambridge, MA 02139
Email:{llehman,lermaf@mit.edu

Abstract— Landmark-based architecture has been commonly common set of landmarks still need to be used for hosts in
adopted in the networking community as a mechanism to mea- the same local coordinate system.
sure and characterize a host’s location on the Internet. In rost Unlike the existing works, such as IDMaps [6] and GNP

existing landmark based approaches, end hosts use the diste i id inf . h
measurements to a common, fixed set of landmarks to derive [7], our goal is not to provide an infrastructure servicettha

an estimated location on the Internet. This paper investigees Performs network distance prediction between any arlyitrar
whether it is possible for participating peer nodes in an ovday  points on the Internet. Instead, this paper aims to invatgig

network to collaboratively construct an accurate geometre model  whether it is possible for participating peer nodes in arrlaye

of its topology in a completely decentralized peer-to-peefashion,  network to collaboratively construct an accurate geometri
without using a fixed set of landmarks. We call such a peer- . . .

to-peer approach in topology discovery and modeling using model of_|ts topology in a co_mpletely decentralized peer-to
landmarks PALM (Peers As LandMarks). We evaluate the Pe€erfashion, without using a fixed set of landmarks. We ekten
performance characteristics of such a decentralized cooidate- the absolute coordinate framework from GNP and apply it in
based approach under several factors, including dimensiadlity of  a completely decentralized, peer-to-peer environmentteMo

the geometric space, peer distance distribution, and the muber  gaifically, instead of using a fixed set of nodes as landspark
of peer-to-peer distance measurements used. We evaluate aw

PALM-based schemes: RAND-PALM and ISLAND. In RAND-  any peer node which has already derived its coordinatesean b
PALM, a peer node randomly selects from existing peer nodessa Selected by another peer node to function as a landmark. We
its landmarks. In ISLAND (I_ntelligent Selection of Landmarks), call such a peer-to-peer based approach in topology disgove
each peer node selects its landmarks by exploiting the topmyical PALM (Peers_a Landnarks).
information derived based on existing peer nodes’ coordins. The focus of this paper is to evaluate the performance
characteristics of such a decentralized coordinate-baped
proach under several factors, including dimensionalityhef
Recently, a new class of globally distributed networdeometric space, peer distance distribution, and the numbe
services have emerged. Examples of such services incl@iepeer-to-peer distance measurements used. We evaluate
distributed content delivery services, overlay multicgy two PALM-based schemes: RAND-PALM and ISLAND. In
structured peer-to-peer lookup services [2], [3], [4],,[8Bhd RAND-PALM, a peer node randomly selects from existing
peer-to-peer file sharing. Network distance estimation c&ger nodes as its landmarks. In ISLANDiglligent &lection
benefit many of these services. To help with the performan@kLandmarks), each peer node selects its landmarks by ex-
of these services, much research has been done to allow Bl@iting the topological information derived based on &rig
hosts to discover network topology and accurately predieger nodes’ coordinates.
network distances in a scalable and timely fashion. Through extensive simulations using both real network
Most of the existing network distance prediction schemé@easurements and simulated topologies, we compare the per-
rely on distance measurements to a common set of referefRignance of RAND-PALM and ISLAND with the original
nodes to some extent. For example, in IDMaps [6], hostsetall®NP scheme (referred to as the FixedLM scheme from now
Tracers are deployed in the network to measure distan@y- Our findings are as below.
among themselves and to nearby hosts in a range of I The FixedLM and PALM approaches have rather different
addresses. The Global Network Positioning (GNP) system [7]  Performance characteristics. The FixedLM scheme tends
for example, uses a host’s distance measurements to a fixed t0 underpredict larger RTTs. The PALM approaches, in
set of infrastructure nodes to compute absolute coordirtate contrast, tend to overpredict small RTTs.
characterize the host's location on the Internet. Moremdge  « The flexibility of the RAND-PALM approach comes at
proposed coordinate-based systems [8], [9], [10] atterapt t  the price of a higher network distance prediction inaccu-
avoid the use of a common fixed set of landmarks by allowing ~racy when the number of landmarks is low. However, the
hosts to use different subsets of landmarks to construatad o~ performance gap between the RAND-PALM scheme and

coordinate system. However, for most of these schemes, a the FixedLM scheme quickly narrows as the number of
landmarks increases.

Appeared in SMA Symposium, Singapore, January 2004. « The performance of the FixedLM approach can be very

I. INTRODUCTION



sensitive to the landmark placements. The FixedLNMindmark nodes in order to compute their coordinates. While
scheme performs substantially worse when the peer nodles absolute coordinates provide a scalable mechanism to
being modeled are clustered (relative to the landmaexchange location information in a peer-to-peer enviramme
locations) in the network , or when the set of landmarkbe GNP scheme presented so far used distance measurements
chosen are not well distributed in the network topologyo a fixed set of landmarks to build the geometric model.

In particular, it tends to underpredict larger RTTs signif-

icantly. B. PALM

« In PALM, since the landmarks are dynamically chosen |, pa v, there is no specially designated landmark nodes:
from the existing peer nodes, the landmark selection aulgsy neer node can potentially be selected as a landmark by
matically adapts to the topological distribution of the Pe&other node. As part of the bootstrap process, we assume
nodes. One of the PALM approaches, ISLAND, can igya an arbitrary set of initial peer nodes function as boags
fact out perform the FixedLM scheme by selecting wellpynqmarks to provide reference coordinates to orient other
distributed peers as landmarks based on the topologicdlyas.
mformatlon.ln the PALM map. _ _ _ The PALM bootstrap nodes follow the same procedure as

In the following sections, we first briefly describe thghe Jandmarks in GNP to construct their coordinates. The

FixedLM and the PALM approach. We then evaluate thgootstrap landmark nodes measure the inter-node roymd-tri
PALM approach extensively through simulation using bOtbing times to produce anV/xM distance matrix, where
real network measurements and simulated topologies. We is the number of bootstrap nodes. A set of coordinates
compare the performance of RAND-PALM and ISLAND withare computed for the M bootstrap nodes to minimize the
that of the FixedLM scheme in terms of errors in networkyerall error between the measured distances and the cethput
distance prediction and their effectiveness in selectie@rest distances. A peer node is said to have beepped once it
peer nodes. has derived its absolute coordinates. Once the bootstrdgsno
Il. THE PALM APPROACH have been mapped, their coordmgtes along with the de@tmpt
of the geometric space and possibly the distance functied us

The landmark-based architecture has been commogly, pe made available for other peer nodes to compute their
adopted in the networking community as a mechanism {3 coordinates.

measure and characterize a host's Io_cation on the Interhet [ In order for a host H to compute its coordinates, it selects
[11], [5], [12], [8], [13]. In most existing landmark based,ny k- existing mapped peer nodes to function as its landmarks
approaches, end hosts use the distance measurements tgya | __ "5 —— As where D is the dimensionality
common, fixed set of landmarks to derive location estimatioR¢ e geometric space ’anM is the number of bootstrap

on the Internet. The Global Network Positioning (GNP) s'ystenodes). Using the coordinates of thosé peer nodes and

[7], for example, uses a host's distance measurements tg,a - peer-to-peer distances (between H and each of the
fixed set of infrastructure nodes to compute absolute ceorg} gajected peer nodes), host H can compute its coordinates
nate to characterize the host's location on the Intemet. 1, minimize the overall error between the measured and the

However, using a fixed set of landmarks presents a poten{iglnyted distances. We use the sum of squared normalized
performance bottleneck. More importantly, as we will Shaw g1 measure as our error measurement (see [7] for details)

this paper, the accuracy of the fixed landmark schemes, often, pa; any peer node, which has already derived its
depends highly on the strategic placement of the landmarkg.) te coordinates, can be selected by another peer aode t
Although GNP reported good prediction accuracy with a Carggyy e a5 one of its landmarks. Note that the initial boggstra
ful selection of landmarks when hosts are globally disBOU 5465 need not remain available in the system all the time.

in practice, it will be difficult to pre-determine the strgie As long as there are at leait mapped nodes available, the
placement of landmarks without some prior knowledge of t@%tem should continue to be operational

topological distribution of the participating hosts.

In this paper, we investigate the performance of a ||| compParRING RAND-PALM WITH THE FIXED
coordinate-based scheme, PALM, which uses peers as land- L ANDMARK SCHEME
marks. Before we describe the PALM approach, we first briefly

introduce the GNP[7] framework as background information. We evaluate the PALM approach extensively through sim-
ulation using both real network measurements and simulated

A. GNP topologies. We compare the performance of PALM with the
In GNP, the Internet is modeled as a D-dimensional g&ixedLM scheme in terms of errors in network distance

ometric space. End hosts maintain absolute coordinatespiiediction and their effectiveness in selecting nearestr pe

this geometric space to characterize their locations on thedes.

Internet. Network distances are predicted by evaluating aAs in GNP [7], we use the absolute relative error (RE) as

distance function over hosts’ coordinates. A small distigl our performance metric. F(|)1£ eg‘ch pair of nodes, their absolu

set of hosts known as landmarks provide a set of referenetative error is defined ag PR where P is the predicted

coordinates. Hosts measure their latencies to a fixed setFafclidean distance, and R is the actual measured RTT (round



trip time) between the two nodes. The directional relativere

i P-R

IS min(P,R) " .

We evaluate our scheme using both real network measure-

ments and simulated topologies:

o The Active Measurement Project (AMP) at the National
Laboratory for Applied Network Research (NLANR)
collects network measurements between over 100 active
monitors distributed over the Internet [14]. We use the i
RTT measurements between 110 of such monitorson July ~ ,|/

Cumulative Distribution

15 LM RandPalm

16, 2002 for our experiments. The RTTs are the round o it

trip ping time between each pair of hosts measured at ‘ ‘ ‘ ‘ | Ol

a frequency of once every minute over a 24 hour period %o 02 04 s o oE o1 12 14

(i.e., total of 1440 round trip times reported between each

pair of hosts)_ Fig. 1. AMP results. Cumulative distribution of relativer@r FixedLM vs.

e The GT-ITM Internet Topology Generator is used tGAND-PALM. N = 110, 5-Dimensions.

generate transit stub topologies of a 10,000 node network. ) ‘ ‘ ‘
We then randomly select 3492 out of the 10,000 nodes |
as peer nodes of our test overlay network. '

The GNP paper evaluated their scheme using distance |
measured between 19 landmark nodes and 869 hosts. However, s
since no inter-hosts distances between the 869 hosts are
available, we used other network measurements and sirdulate
topologies to test our approach.

Unless otherwise noted, the landmark nodes used by the
FixedLM scheme in this section are generated by randomly

Cumulative Distributiol

RandPalm 10LM —— 7
FixedLM 10LM -------

select K out of N nodes to serve as landmarks. In a later o |ff RandPaim 20U -
. . . . RandPalm 30LM -~
section, we examine the performance effect of biased sefect 0 ‘ ‘ ‘ FixedLM 30LM -
. . 0 0.2 0.4 0.6 0.8 1
of landmarks. Ten experiments in total were performed for Relative Ertor

each topology, each with a different random selection of the  GTITM s, Cumulative distibution of relas FixedLM
. . . . 2. - results. Cumulative aistrioution Ot relanerror, rixe

!andmarks. The defau_lt dimension of the geometric space u{ " RAND-PALM. N — 3492, 5-Dimensions.

is five, unless otherwise noted.

A. Effects of Number of Landmarks B. Compare Summary Statistics with Different Number of

In this section, we compare the distance prediction perfdrandmarks
mance of the FixedLM scheme with that of the RAND-PALM  To better understand the performance characteristicseof th
scheme when different number of landmarks are used. =~ RAND-PALM vs. the FixedLM scheme, we plot the summary
In Figures 1 and 2, we compare the cumulative distributignatistics that describe the distance prediction error ath b
of the absolute relative error of FixedLM scheme vs. thechemes as a function of the number of landmarks used.
RAND-PALM scheme when different numbers of landmarksigures 3 and 4 plot the median, 5th, 25th, 75th, and 95th
are used. Figure 1 shows the results from the AMP measupercentile relative error (RE) and directional relativeoer
ments. For visibility, we only show the results for 6, 10 altd 1(DRE) respectively of both schemes as a function of the
landmarks respectively. Figure 2 compares the relativer erhumber of landmarks.
distribition of the two schemes using the GT-ITM topology We note that a zero value in RE and DRE indicates a
when 10, 20 and 30 landmarks are used respectively. perfect prediction in the network distance. RE expresses th
The FixedLM scheme results shown here are consistent wgtediction error as an absolute value, and therefore isyalwa
the results reported in [7]. In both schemes, the performangositive. A positive DRE value indicates an over prediction
improves as the number of landmarks increases. in network distance, while a negative DRE value indicates an
We note that the performance of the two schemes araderestimation of actual network distance.
very similar. In both schemes, the performance monotoni-We note that RAND-PALM performs worse than FixedLM
cally improves as the number of landmarks increases. Tivaen the number of landmarks is low. In particular, when six
performance of the 20 landmarks case is much better thamd ten landmarks are used, RAND-PALM has a tendency
that of the 10 landmarks under both schemes. Further, tioeover predict network distances between hosts, as can be
gap between the distributed landmark selection scheme aixberved from the large positive 95th percentile DRE value
the fixed landmark selection scheme is even smaller when theFigure 3. The FixedLM scheme, on the other hand, has
number of landmarks is increased to 20. a tendency to under predict inter-hosts distances when the
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Fig. 3. Relative Error. Comparing FixedLM and RAND-PALM sches with Fig. 5. Bin size distribution by RTT groups: GT-ITMYy = 3492
summary statistics of relative error: GT-ITM, = 3492. Dimensionality is

5. Number of landmarks: 6, 10, 15, 20, 25, 30.

tends to over-predict. To understand the sources of thederun

15

RandPalm Median ——

oSO Medan and over-predictions, we further investigate the perforoea
1o R:dzi.a“”ggtggti - properties of both schemes by classifying the evaluatekispat
into groups of S0ms each.
os | - Fixed LM 96th percentle —v— | Figure 5 shows the RTT group size distribution of our GT-

ITM topology. We show the summary statistics of tR&T
prediction error, defined as (predicted RTT - actual RTT), for
each RTT group. Figures 6 and 7 show the median, mean,

Directional Relative Error

R R : 1 5th, 25th, 75th and 95th percentile prediction error of each
: RTT group using FixedLM and RAND-PALM respectively.
e ’ | Ten landmarks are used for both figures. Figures 8 and 9 show
‘ ‘ ‘ ‘ the same statisitcs when 20 landmarks are used.
s 1 1 20 2 % For the 10 landmark case, Figure 6 shows that the FixedLM

Number of Landmarks

scheme is very good at predicting the distances of less than
Figh- 4. Dif_eﬁﬂonal Relative Error. ng.mPa_finglFiﬁedLM G:EG\RD-PALM 50 ms, but tends to over-predict distances that are beyond
schemes with summary statistics of directional relativereiIGT-ITM, N = A . . .
3492. Dimensionality is 5. Number of landmarks: 6, 10, 15, 20, 2, ZSOm?%]Tms is again consistent with the results from the GNP
paper[7].

Figure 7 shows that the RAND-PALM scheme has the most

number of landmarks is low. This can be observed from tfieouble in predicting short distances when 10 landmarks are
large negative 5th percentile DRE values in Figure 4. used. The 95th and 75th percentile prediction errors are as
We note that for both schemes, the RE and DRE values ifigh as 694 and 385 ms respectively, showing a gross over-
prove monotonically with increasing the number of landrsarkestimation of distances less than 50 ms. The RAND-PALM
For RAND-PALM, the performance improvement is especialljcheme also tends to under-estimates distances over 700ms,
significant when the number of landmarks is increased froatthough the extent of the under-estimation is not nearly as
6 to 15. The performance of both schemes tends to flatte@d as the over-estimation for the 50ms group case.
beyond 25 landmarks. Increasing the number of landmarks to 20 helps both
An important observation is that the performance of RANDSChemes in narrowing down the extent of their prediction
PALM eventually catches up to that of the FixedLM schemerrors across all RTT groups. However, the performance
when increasingly large numbers of landmarks are used. \Weprovement of the RAND-PALM scheme is particularly
also observe that the 5th percentile DRE value of the FixedL##famatic when comparing the 10 LM (Figure 7) vs. the 20
scheme is consistently lower than that of the RAND-PALMM (Figure 9) statistics.
scheme across all landmark values, indicating a large undBr
prediction problem in the FixedLM scheme. This is consisten”
with the original GNP results in [7], which reported a large In this section, we examine the effect of dimensionality on
under-prediction error using their data set when predictithe prediction accuracy of the RAND-PALM scheme. Figures

Dimensionality

large RTT measurements. 10 and 11 plot the relative error distribution for the Fix&tL
o and RAND-PALM schemes respectively using varying number
C. Compare Summary Statistics by RTT Groups of dimensionalities. The number of landmarks is fixed at ten

From the previous section, we observe that the FixedLM both schemes. Due to space constraints, we only show the
scheme tends to under-predict while the RAND-PALM schenf&MP results.
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Fig. 10. FixedLM. Effect of dimensionality on performanéeviP, N = 110,
10 Landmarks.

From both figures, significant performance improvement
can be observed as the dimensionality increase from onegto fiv
in both schemes. The incremental performance improvement
beyond five dimension, however, is very small.

E. Does the Error Term Accumulate over Time in RAND-
PALM?

Next we examine whether nodes that joined later have
larger absolute relative errors. We split the GT-ITM 3492
nodes into 3 batches based on their join order. Figure 12
plots the relative error distribution for the three batgheith
batch 1 being the first 1164 nodes that join. The performance
of the three batches does not appear to differ significantly.
Further research is needed to investigate the possibfligyror
term accumulation as the number of peer nodes and network
condition dynamically change over time.

F. Nearest Peer Node Selection

The ability to select the nearest node from a set of peer
nodes is important to many applications, including nearest
server/proxy selection, proximity routing in peer-to-peet-
works and neighbor selection in overlay network constaurcti
We use distance ratio as our performance metric. The distanc
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ratio R; of a nodei is defined asR; = 27, where RTT;  the earlier section, the RAND-PALM scheme can grossly over-
is the RTT measured between nodend its closest node estimate RTT distances that are between 0 and 50ms, which
in the coordinate system, anBT'T, is the RTT measured negatively affects the nearest node selection performahce
between nodeé and its closest neighbor based on actual RTthe RAND-PALM scheme.

measurements.

Figure 13 and 14 show the cumulative distribution of the
distance ratio using various landmarks for both schemes forThe results we have presented so far randomly select from
AMP and GT-ITM distance measurements respectively. dt global pool of peer nodes to function as landmarks. In the
is interesting to note that the performance of the FixedLMixedLM scheme, this randomly selected set of peer nodes are
scheme does not change significantly as the number of landed by all other peer nodes to construct their solution-coor
marks increases. This, however, should not come as a sirpriinates. In the RAND-PALM scheme, this randomly selected
since the ability to locate nearest neighbor depends kel set of peer nodes function as the bootstrap nodes that jgrovid
the prediction accuracy of the short distances. A comparisa set of reference coordinates to other peer nodes.
of our previous results in Figures 6 and 9 indicates that theln this section, we compare the performance of RAND-
prediction accuracy of the FixedLM scheme did not change fBALM with the FixedLM scheme when the landmark place-
the smallest RTT group (less than 50 ms) when the numbaent is not well distributed. We use the following procedure
of landmarks increased from 10 to 20. to generate ten different sets of badly placed landmarks,

We note that even though the nearest neighbor selection pghich tend to be clustered in network topology. We plot
formance of the RAND-PALM scheme significantly improveshe hosts-to-landmark RTT distribution for both randomly
as the number of landmarks increases, it consistently pasfo selected landmarks and clustered landmarks in Figure 1&. Th
worse than the FixedLM scheme even when we increase thistribution corresponding to the randomly selected laad®
number of landmarks to 30 for the GT-ITM topology. Thids generated from the same random landmark selection that
result again should not come as a surprise. As discussedyénerate results in previous sections (10 landmark case).

IV. ROBUSTNESS INLANDMARK PLACEMENT
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Let K be the number of landmarks to be picked for eadhie prediction error by the minimum of the measured and
configuration. We pick the clustered landmarks as followie computed RTT values. Similar levels of mis-predictions
First, a hierarchical clustering algorithm is used to @ugteer at higher RTT groups do not have as low of a DRE value,
nodes intaC clusters based on their actual RTT measuremenkscause of the larger denominators.

Let C’ be the number of clusters with no less thiEmodes in Figures 20 and 21 show the effect of clustered landmark
them. We then randomly pick a cluster from thé clusters. placement on nearest neighbor selection performance tor bo
Finally, randomly pickX nodes from the above cluster. TerFixedLM and RAND-PALM. Although the overall prediction
different sets of clustered landmark selections are géeraaccuracy of the FixedLM scheme suffers from bad landmark
for each topology, and the cumulative results are presen@écement, we note interestingly that its nearest neighbor
here. selection performance does not seem to be affected as much.

Figure 16 and 17 plot the cumulative relative error distrEven with bad landmark placement, the FixedLM scheme still

bution with bad (i.e., clustered) landmark placement in AMPutperforms the RAND-PALM scheme in nearest neighbor
and GT-ITM respectively. prediction.

Figures 18 and 19 show the summary statistics of the
FixedLM scheme when a clustered landmark set is usedy‘ INTELLIGENT LANDMARK SELECTION USING PALM
Comparing the summary statistics in Figure 6 using randomly MaPs
selected landmarks, we note that the FixedLM scheme hadn the previous section, we presented some interesting
the tendency to grossly underestimate RTT groups larger thzerformance properties of RAND-PALM. As the number of
50ms when clustered landmarks are used. A sharp dip of taedmarks increases, the overall distance predictionoperf
5th percentile DRE value around the 200 ms RTT group mance of RAND-PALM converges to that of the FixedLM
Figure 18 is caused by under-predicting some 200 ms pathsdage. However, unlike the FixedLM scheme, it is very robust
almost 100%. This causes the DRE value to dip dramaticaltigainst suboptimal landmark placement.
around the 200ms RTT group, because the DRE metric dividedn this section, we describe an approach called ISLAND
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(Intelligent Selection of Landmarks using PALM Maps) to
improve on the performance of the RAND-PALM scheme. Our
goal is to achieve network distance prediction accurachef t
FixedLM scheme with fewer landmark nodes while preserving
the robustness of the RAND-PALM scheme. The idea of
ISLAND is to have each peer node intelligently select its
landmarks by exploiting the topological information caned

in the PALM map.

We assume that each existing peer node in the system
has access to a copy of the current PALM map. The PALM
map contains the IP addresses of existing peer nodes, and
their coordinates values in the geometric space. Note that
ISLAND does not require each peer node to have a global
PALM map that contains all of the peer nodes in the system.
A partial PALM map is sufficient, provided that it contains
a reasonably well-represented set of peer nodes in terms of
network topology. The dissemination of the PALM map is
beyond the scope of this paper, and will be left as future work

In ISLAND, each peer node uses the following heuristic to
select landmarks.

« Upon joining, a peer nodé contacts any existing peer
node j in the system to obtain a copy of the existing
PALM map. The map contains the IP addresses of ex-
isting peer nodes known to node j, and their coordinate
vlaues.

« The existing peer nodes are classified into clusters based
on their coordinates in the geometric space. The results
presented in this section use the Euclidean distance
between nodes’ position in the geometric space to cluster
the existing peer nodes. We will experiment with other
distance functions in the future work.

o Nodei then randomly pickd< clusters from the clusters
formed above, and then randomly picks a node in each
cluster as its landmarks. By picking each landmark node
from a different cluster, we attempt to achieve a well-
dispersed landmark set, and avoid the degenerate case
where all landmarks are from the same network region.
Further, to avoid picking only outliers (i.e., peer nodes
that are distant from all other peer nodes) as landmarks,
only clusters with “sufficiently” large number of peer
nodes will be considered. In our simulation, we pick
the cutoff cluster size between 5 - 10, depending on the
cluster distribution. Future work is need to dynamically
decide the optimal set of clusters to pick.

The clustering can be done offline by existing peer nodes
in the system, so that a newly joined peer node can quickly
select a set of landmark nodes based on the clustered PALM
map.

We have examined the performance of the ISLAND scheme
with simulation using both the GT-ITM and AMP topology.
Due to space constraints, we present only the GT-ITM results
here. . Let N be the total number of peer nodes in the
system,B be the number of bootstrap landmarks, akddoe
the number of landmarks used by each node to compute its
coordinates. In the FixedLM schem® equalsK; and the
bootstrap landmarks are used by all peer nodes to generate
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Fig. 23. ISLAND nearest neighbor selection performancegisandomly
selected bootstrap landmarks. GT-ITIW, = 3492, 10 landmarks.

their coordinates. The difference between the RAND-PALM

scheme and ISLAND is that, in RAND-PALM, peer nodes ran-

domly selectX” nodes from the PALM map; whereas ISLAND

selects the/K nodes by exploiting the cluster information in s e ——
the PALM map. npocone 5
We compare the performance of ISLAND, RAND-PALM N o5t percetle -5 |

and the FixedLM schemes under the following scenarios.

« Random bootstrap landmarks. TBebootstrap nodes are
randomly selected from th& nodes.

o Clustered bootstrap landmarks. The bootstrap landmarks
are all from the same cluster.

« Dispersed bootstrap landmarks. The boostrap landmarks
are from different clusters. The performance of this
scenario is not shown as it does not differ significantly
from the random bootstrap landmarks case. 0 20 w00 500 200 oo 100 a0

Figures 22 - 21 compare ISLAND with RAND-PALM and e e o o
FixedLM schemes using the GT-ITM topology. In Figure 225ig. 24. Summary statistics of directional relative error the ISLAND
the performance of ISLAND is better than the RAND-PALI\/FCheme under random bootstrap landmark placement. GT-IVMs 3492,
. 1(1 Landmarks.
and FixedLM schemes when ten landmarks are used by all
schemes. Further, we note that the performance of ISLAND
using 10 landmarks is comparable to the performance of
the FixedLM scheme when 15 landmarks are used. Finally,

Directional Relative Error
=
15}
T
L

)
T

when the bootstrap landmarks are clustered (Figure 26) both ean ——
ISLAND and RAND-PALM greatly outperforms the FixedLM awof npocene 5 1
scheme. ol Y 95th Percentile --o--- |

Figures 24 and 25 show the summary statistics of the
ISLAND scheme under random bootstrap node placement.
Note that the performance of the ISLAND scheme is much
better than the RAND-PALM summary statistics presented in
Figure 7.

Figures 28 and 29 show the summary statistics of the 100
ISLAND scheme when a clustered landmark set is used (
compare with Figures 18 and 19).

RTT Prediction Error

V | R W 0 2(;0 4(;0 6(‘)0 B(;D 10‘00 12‘00 1400
. ELATED ORK Path Distances (50ms per group)

The IDMaps [6] and GNP [7] are both architectures fogig. 25,  Summary statistics of RTT prediction error for tH&LAND
a global distance estimation service. IDMaps is intended $cheme under random bootstrap landmark placement. GT-IVMs 3492,
be a public infrastructure that provides distance infoiamat 10 L-andmarks.

between any two arbitrary points on the Internet. Hostsedall
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Fig. 29. Summary statistics of RTT prediction error for t8& AND scheme
under clustered bootstrap landmark placement. GT-ITWl,= 3492, 10
Landmarks.

Tracers are deployed in the network to measure distances
among themselves and to nearby hosts in a range of IP
addresses. HOPS servers compute distance prediction eompu
tation based on measurements from Tracers. Both IDMaps [6]
and GNP [7] rely on the deploymennt of infrastructure nodes.
Our scheme, in contrast, can be implmented in a peer-to-peer
environment without special infrastructure node support.

To avoid the fixed landmark problem in GNP, several
schemes [8], [9], [10] have been proposed that allow hosts
to use different subsets of landmarks to construct a local
coordinate system, which are then transformed to a global
coordinate system. However, a common set of landmarks still
need to be used for hosts in the same local coordinate system.
For example, the Lighthouse scheme [8] uses multiple local
bases and a transition matrix in vector spaces to allow a host
to determine its coorinates relative to any set of landmark
nodes. Virtual Landmarks (VLM) and Internet Coordinate
System (ICS) both use principal component analysis (PCA)
to extract topological information. Our approach, in casty
maintains a global absolute coordinates system by pepeé¢o-
measurements. Vivaldi [15] is a recently proposed cootdma
based system that allows hosts to construct their cooebnat
without any landmark support. It is based on a simulation of
a network of physical springs.

King [16] uses direct online measurements using the DNS
infrastructure to predict network latencies between eahbjt
Internet end hosts. The goal of our work, in contrast, is & pr
dict network distances using purely peer-to-peer measemesn
without relying on the infrastructure services. The M-c¢bp)
architecture utilizes a peer-to-peer system to provideigse
to network performance information. Each node is assigned
an “area of responsibility”, which defines a set of addresses
for which it can answer queries.

Several works provide network proximity or location es-
timates using the distance measurements to a set of well-
known landmarks. For example, the GeoPing algorithm [11]
uses latency measurements to a set of well-known landmarks
to determine end hosts’ geographic locations. The trisatgd|



heuristic [13] gives a bound on the network distance between
any pair of hosts by using their distances to a common set
of base nodes. Internet Iso-bar [18] performs clustering on
hosts based on the similarity in their distance to a small
set of sites. The distances between hosts are estimategl usin
inter- or intra-cluster distances. In CAN [5] and [12], diste .
measurements to landmarks are used to support proximity
routing in a structured peer-to-peer network. The locatibn

an end host in their scheme is characterized by the ordering
of landmarks in terms of their distancesoThese scheme,

in contrast to ours, does not attempt to model Internet hosts
using absolute coordinates.

are not well distributed in the network topology, the
performance of the FixedLM scheme can drop by more
than half in some cases. In contrast, the performance
of the PALM approaches are robust even in the face of
suboptimal placement of the bootstrap landmark nodes.
Although the ISLAND scheme outperforms the FixedLM
scheme in overall distance prediction, the PALM-based
approaches (both RAND-PALM and ISLAND) tend to
over predict short inter-host distances. As part of our
future work, we will explore algorithms to improve on
PALM's performance in predicting short network dis-
tances.

Besides the above observations, some interesting insights
about the FixedLM scheme have also been presented in this
In this paper, we examined the performance characteristiggper. Our results showed that although the overall distanc
of a peer-to-peer approach in network topology modeling apglediction performance of the FixedLM scheme can suffer
distance prediction, named PALM. Similar to GNP[7], PALMsypstantially when landmarks are misplaced, it is, however

models the Internet as a geometric space. End hosts COmpdigs robust in predicting short network distances across al
their absolute coordinates to characterize their netwock |andmark configurations that we have tried.

tions based on distance measurements to a set of landmarkas part of our future work, we will continue to inves-

In contrast to the GNP approach, which used a fixed set @fate intelligent landmark selection schemes by expigiti
landmarks, the goal of PALM is to allow peer nodes to conhe topological information in the PALM map. Another topic
struct their coordinates by using distance measuremetsyto that we did not deal with in this paper is the security issue
other participating peer nodes. We present two PALM-bas@@m untrusted peer nodes which report incorrect cooremat
schemes: RAND-PALM and ISLAND. In RAND-PALM, a to other peer nodes. We plan to investigate mechanisms to
peer node randomly selects from existing peer nodes as dt&ect and cope with corrupted and inconsistent measutemen

landmarks. In ISLAND, each peer node intelligently selétsts including those introduced by network routes anomalies and
landmarks by exploiting the topological information can&  malicious peer nodes.

in the PALM map (which contains coordinates of the existing
peer nodes). -

Through extensive simulations using both real network! chﬂh;*gﬁﬁﬁig'ﬁ?i H. Zhang. " case for end system misifoan
measurements and simulated topologies, we compare the pgf-|. stoica, R. Morris, D. Karger, F. Kaashoek, and H. Baislnan,
formance of RAND-PALM and ISLAND with the original “Chord: A scalable peer-to-peer lookup service for inteaygplications,”

i : ; in SGCOMM’ 01, 2001.
g'l\llosvisnzhggferl\'gt?gngxed landmarks. We conclude with thﬁ] B. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestryn ifras-

tructure for fault-resilient wide-area location and ragt’ UCB/CSD,
o The PALM approach is much more flexible, scalable
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