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Abstract

In medical decision-making, clinicians must
choose between different time-varying treat-
ment strategies. Counterfactual prediction via
g-computation enables comparison of alterna-
tive outcome distributions under such treat-
ment strategies. While deep learning can bet-
ter model high-dimensional data with complex
temporal dependencies, incorporating model
uncertainty into predicted conditional counter-
factual distributions remains challenging. We
propose a principled approach to model uncer-
tainty in deep learning implementations of g-
computations using approximate Bayesian pos-
terior predictive distributions of counterfactual
outcomes via variational dropout and deep en-
sembles. We evaluate these methods by com-
paring their counterfactual predictive calibra-
tion and performance in decision-making tasks,
using two simulated datasets from mechanistic
models and a real-world sepsis dataset. Our
findings suggest that the proposed uncertainty
quantification approach improves both calibra-
tion and decision-making performance, partic-
ularly in minimizing risks of worst-case ad-
verse clinical outcomes under alternative dy-
namic treatment regimes. To our knowledge,
this is the first work to propose and compare

∗ Co-first authors.
† Corresponding author.

multiple uncertainty quantification methods in
machine learning models of g-computation in
estimating conditional treatment effects under
dynamic treatment regimes.

1. Introduction

Clinicians often have to choose among multiple treat-
ment options for their patients but do not have the
ability to test candidate strategies before making a
decision. Thus, counterfactual prediction (i.e. the es-
timation of potential future trajectories of outcomes
of interest under alternative courses of action given
observed history) is useful for decision-making. In
this work, we focus on treatment strategies that are
time-varying, in which treatments can vary over time,
and dynamic, in which treatment decisions vary over
time and depend on the patient’s preceding history.
Recent works have leveraged machine learning (ML)
for counterfactual prediction (Lim et al., 2018; Bica
et al., 2020a; Melnychuk et al., 2022; Li et al., 2021;
Xiong et al., 2024) , but most prior works (Lim et al.,
2018; Bica et al., 2020a; Melnychuk et al., 2022) focus
on time-varying but non-dynamic treatment settings,
and none of these prior works tackle the challenge of
uncertainty quantification for conditional treatment
effect estimation under dynamic treatment settings.

In choosing among multiple treatment options, it
is important to not only estimate expected or most
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likely outcomes for a patient, but also predictive dis-
tributions to properly navigate risk-reward trade-offs
inherent in many clinical treatment decisions. G-
computation (Robins, 1986) is uniquely well-suited to
provide estimates of conditional counterfactual pre-
dictive distributions under dynamic treatment strate-
gies that depend on evolving patient history. How-
ever, as with all conditional effect estimators, when
machine learning is employed for regression model-
ing, it is challenging to incorporate uncertainty about
regression parameters stemming from sampling vari-
ability into predictive distributions (Chernozhukov
et al., 2017). It is indeed proven impossible to de-
rive confidence intervals with theoretical guarantees if
machine learning were used for conditional effect esti-
mation (Chernozhukov et al., 2017). In the absence of
methods with theoretical guarantees, one open chal-
lenge remains in developing practical but principled
approaches to generating counterfactual predictive
distributions from deep learning implementations for
conditional treatment effect estimation.

In this work, we propose and empirically com-
pare multiple practical but principled approximate-
Bayesian approaches to generate counterfactual pre-
dictive distributions from deep learning-based g-
computation. G-Net (Li et al., 2021) and G-
Transformer (Xiong et al., 2024) are two deep
learning approaches that support g-computation for
counterfactual prediction under dynamic and time-
varying treatment regimes, where treatments can de-
pend on past covariate history. However, neither of
these prior efforts attempt to incorporate uncertainty
from sampling variability into the predictive distribu-
tions they generate. While they produce consistent
estimates that will approach the truth given unreal-
istically vast amounts of data, they typically under-
estimate uncertainty when making predictions from
models trained on any health data set available in
practice.

Improperly estimating uncertainty can lead to poor
decision-making. For example, fluid administration
strategies for septic patients must balance the risk of
fluid overload from too much fluid against the risk
of hypotension from too little fluid. The joint coun-
terfactual distributions of blood pressure and blood
volume trajectories (as well as other outcomes that
inform the decision maker’s utility) under alternative
fluid strategies are important to model, not just their
expected values. Further, it is important that the
tails of these distributions are well approximated.

We investigate multiple approaches of approximat-
ing the Bayesian posterior counterfactual predictive
distribution, including Deep Ensembles (DE) (Laksh-
minarayanan et al., 2017), Variational Dropout (VD)
(Gal and Ghahramani, 2016b), and a combined VD-
DE approach. We use G-Net and G-Transformer
without support for model uncertainty as the baseline
models. When comparing models with and without
uncertainty quantification, we investigate several as-
pects: the extent to which uncertainty-aware meth-
ods enhance calibration in the predictive counterfac-
tual distribution compared to baseline models; the in-
fluence of uncertainty quantification on predictive ac-
curacy; and whether improved calibration translates
into more effective downstream decision-making.

We evaluate our approach in calibration and pre-
dictive accuracy using two simulated datasets from
mechanistic models and one real-world dataset. Our
contributions are as follows:

• Incorporate uncertainty from sampling
variability into deep-learning based coun-
terfactual prediction models under dy-
namic treatment regimes. We apply vari-
ational dropout (Gal and Ghahramani, 2016b)
and deep ensemble (Lakshminarayanan et al.,
2017), two commonly-used methods for un-
certainty quantification, to the G-Net and G-
Transformer implementations of g-computation.

• Compare the performance of different
uncertainty quantification approaches in
counterfactual prediction under dynamic
treatment regimes, and demonstrate im-
proved calibration performance over the
baseline models. We evaluate our approach
for predicting conditional distributions under
counterfactual treatment regimes using two sim-
ulated datasets from mechanistic models, and
under observational regime using a real-world
ICU dataset. Our results indicate that uncer-
tainty quantification methods generally improve
the calibration, while maintaining similar levels
of predictive accuracy in comparison to the base-
line models.

• Characterize impact of approximate-
Bayesian approaches to modeling coun-
terfactual predictive distributions on de-
cision making tasks in mechanistic simu-
lation settings. We demonstrate how different
uncertainty quantification approaches can im-
pact decision making tasks involving minimizing
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risks for (worst-case) adverse clinical outcomes
under alternative dynamic treatment regimes.
We design a clinical decision-making task that
emulates the decision-making process of a doc-
tor attempting to choose a fluid administration
strategy to avoid the adverse outcomes of hy-
potension and pulmonary edema. We compare
the performance of the modified models against
that of the base G-Net and G-Transformer mod-
els, and demonstrate that uncertainty quantifi-
cation methods improve decision-making perfor-
mance, particularly in minimizing risks of worst-
case adverse clinical outcomes under alternative
dynamic treatment regimes.

2. Related Work

Implementations of g-computation using parametric
generalized linear regression models can employ boot-
strap to generate valid predictive confidence intervals
or perform a standard fully Bayesian analysis (Keil
et al., 2017) to draw from the posterior predictive
distribution under the strong assumption that mod-
els are correctly specified. In complex settings, flexi-
ble deep learning implementations of g-computation
might be more desirable. Modern machine learning
methods are particularly well suited to model high-
dimensional data with complex temporal dependen-
cies. However, it is a challenge to properly incorpo-
rate model uncertainty into machine learning gener-
ated counterfactual predictions, even if interest only
centers on the simpler problem of estimating the av-
erage population effect (Chernozhukov et al., 2017).
Conformal inference has been developed for hetero-
geneous effects of point exposures (Lei and Candès,
2021), but has not been extended to settings with
time-varying treatments. Thus, machine learning
based counterfactual prediction under time-varying
strategies requires uncertainty quantification without
theoretical guarantees.
Numerous prior works have proposed machine

learning based approaches for treatment effect esti-
mation (Atan et al., 2018; Alaa et al., 2017; Yoon
et al., 2018; Lim et al., 2018; Bica et al., 2020a,b; Mel-
nychuk et al., 2022; Li et al., 2021; Xiong et al., 2024).
However, many of the prior works either focus on
point-exposure settings (Atan et al., 2018; Alaa et al.,
2017; Yoon et al., 2018), or time-varying but non-
dynamic treatment settings (Lim et al., 2018; Bica
et al., 2020a,b; Melnychuk et al., 2022). While Gaus-
sian Processes (GPs) (Schulam and Saria, 2017), can

potentially provide a flexible non-parametric frame-
work for modeling uncertainty, their limited induc-
tive biases are often less effective for complex high-
dimensional data. None of these prior ML approaches
focus on uncertainty quantification for conditional
treatment effect estimation in a dynamic treatment
settings.

G-Net (Li et al., 2021) and G-Transformer (Xiong
et al., 2024) are neural network based implemen-
tations of g-computation, where G-Net uses RNNs
and G-Transformer uses transformer encoders. They
have been shown to predict outcomes more accu-
rately than other counterfactual prediction methods
and g-computation implementations. G-Net and G-
Transformer are used to implement g-computation by
approximating the conditional distributions of covari-
ates (including outcomes of interest) given history.
Although G-Net and G-Transformer models uncer-
tainty around a patient’s trajectories, they do not
support uncertainty around model parameters.

3. Methods

Background G-computation works by estimating
the conditional distribution of relevant covariates
given covariate and treatment history at each time
point, then producing Monte Carlo (MC) estimates
of counterfactual outcomes by simulating forward pa-
tient trajectories under treatment strategies of inter-
est (Robins, 1986). We build on deep-learning ap-
proaches to g-computation (Robins, 1986), including
G-Net (Li et al., 2021) and G-Transformer (Xiong
et al., 2024), by adding support for model uncer-
tainty, and use G-Net and G-Transformer as baselines
in analyzing results. We detail the implementation of
the base G-Net and G-Transformer models in the Ap-
pendix.

We enhance the G-Net and G-Transformer mod-
els by using two commonly used uncertainty quan-
tification methods: variational dropout and deep
ensemble. We aim to improve calibration, while
maintaining predictive accuracy. We also experi-
mented with incorporating a third uncertainty quan-
tification approach, Stochastic Weight Averaging-
Gaussian (SWAG) (see Appendix for details). We
evaluate the models’ performance on three datasets:
CVSim (Heldt et al., 2010), which simulates the hu-
man cardiovascular system; Cancer Growth (Geng
et al., 2017), which simulates cancerous tumor
growths; and MIMIC-IV (Johnson et al., 2023), a
real-world dataset of ICU sepsis patients.
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3.1. Uncertainty Quantification

While simulation with G-Net and G-Transformer ac-
counts for the uncertainty in the covariate distribu-
tion (by using empirical residuals), it does not ac-
count for the uncertainty in the model parameters.
To address this limitation, we enhance G-Net and G-
Transformer with two different methods to produce
uncertainty estimates: variational dropout (VD) (Gal
and Ghahramani, 2016b) and deep ensemble (DE)
(Lakshminarayanan et al., 2017), and their combined
approach VD-DE. This section describes these un-
certainty quantification methods, their implementa-
tions, and how we adapt them to work well with the
existing G-Net and G-Transformer models. Addition-
ally, we explore using Stochastic Weight Averaging-
Gaussian (SWAG) (Maddox et al., 2019; Izmailov
et al., 2018) as an alternative uncertainty quantifi-
cation technique.

Variational Dropout (VD). Dropout is tradi-
tionally used in training neural networks as a form
of regularization (Srivastava et al., 2014). Activa-
tions from network layers are masked during training
using a fixed dropout probability, but no masking
occurs at test time. However, Gal and Ghahramani
(2016b) show that dropout, if used during test time,
can be used to produce a variational approximation
to the posterior distribution of a Bayesian neural net-
work. Simulating multiple forward passes of a trained
model with independent and identically distributed
dropout masks gives us samples that take into ac-
count the uncertainty over model parameters. To
implement variational dropout for the G-Transformer
(or G-Net), we start with a trained model and gener-
ate sampled trajectories by applying dropout masks
during inference. This approach enables us to cap-
ture uncertainty in the model parameters in addition
to the covariate distribution.

Deep Ensemble (DE). Deep ensemble (Laksh-
minarayanan et al., 2017) is a flexible method of pro-
ducing uncertainty estimates for neural network pa-
rameters. We train an ensemble of models through
bagging, with randomization coming from parameter
initialization and the order in which data is fed into
the model during training. Each model within the
ensemble predicts a conditional Gaussian distribution
over the continuous covariates, and optimizes the neg-
ative log-likelihood. With θ representing a model’s
parameters, we have:

Loss(θ,x, y) ≜ − log pθ(y|x)

=
log σ2

θ(x)

2
+

(y − µθ(x))
2

2σ2
θ(x)

+ constant.

(1)
Variational Dropout with Deep Ensem-

bling (VD-DE) We explored combining variational
dropout and deep ensemble by independently train-
ing M = 20 variational dropout models on MSE us-
ing random initializations and random shufflings of
the training data. Details in Appendix.

SWAG. Stochastic Weight Averaging-Gaussian
(SWAG) (Maddox et al., 2019; Izmailov et al., 2018)
is an approximate Bayesian inference approach which
uses SGD iterates to construct a Gaussian neural net-
work parameter posterior. Details in the Appendix.

3.2. Evaluation Methods

Calibration We assess the calibration of a trained
model as follows. Given quantiles αlow and αhigh,
calibration is evaluated by calculating the frequency
with which the actual ground-truth covariates fall be-
tween the αlow and αhigh quantiles of the predicted
covariates for each test patient. The frequency is cal-
culated across all patients in test set, time-steps, and
covariates. We calculate the proportion of times the
actual falls within the target quantile range of the
simulated trajectories (e.g. from 100 Monte Carlo
simulations), and if it is close to αhigh − αlow, the
model is well-calibrated. In this work, we use 0.05
and 0.95 as our quantile range, and thus 0.90 indi-
cates perfect calibration.

RMSE We use root mean-squared error (RMSE)
to evaluate the accuracy in counterfactual predic-
tion. For each individual test patient, trajectories
of 100 Monte Carlo simulations are averaged to rep-
resent the expected trajectory and compared to the
ground-truth of that patient to compute individual-
level RMSE. The variables are normalized before the
RMSE computation.

3.3. Data Sets

CVSim Data Generation We use a CVSim (Heldt
et al., 2010) 6-compartment circulatory model which
takes as input 28 variables that together govern a
hemodynamic system. We use the same setting as in
(Li et al., 2021) in generating CVSim data. Briefly,
we build on CVSim by adding stochastic compo-
nents and interventions for the purposes of evaluating
our counterfactual simulators. We generate an ‘ob-
servational’ dataset (N=10,000) Do under treatment
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regime go as training and validation data, and two
‘counterfactual’ datasets Dc1 and Dc2 (N=851 each
after filtering) under treatment regimes gc1 and gc2 as
our test set. The data generating processes produc-
ing Do and Dcj were the same except for the treat-
ment assignment rules, where gc1 and gc2 represent
fluid conservative and liberal regime respectively. For
both counterfactual datasets, the first m− 1 simula-
tion time steps follow the same treatment regime go
as in the observational dataset before diverging to a
different treatment regime for time steps m (m=34)
to K (K=66).

Cancer Growth Data Generation We
generate simulated ‘observational’ data from a
pharmacokinetic-pharmacodynamic model of tumor
growth (Geng et al., 2017) under a stochastic regime
(N=10,000 in training/validation data). In this
simulation, chemotherapy and radiation therapy
comprise a two dimensional time-varying treatment
impacting tumor growth. Under the observational
regime, probability of receiving each treatment
at each time depends on volume history, so there
is time-varying confounding. We use the same
experiment settings and data generation procedure
as reported in (Li et al., 2021). We generate
four test sets (N=1,000 each) in which we follow
four counterfactual regimes for the final four time
points in the test set: (1) only radiotherapy, (2)
only chemotherapy, (3) both chemotherapy and
radiotherapy, and (4) no treatment.

MIMIC-IV we evaluate the impact of adding un-
certainty quantification to the G-Transformer model
using real-world ICU data from the MIMIC-IV
database (Johnson et al., 2023; Goldberger et al.,
2000). The dataset consists of 8,920 patients meeting
sepsis-3 criteria.

Impact on Clinical Decision Making. We in-
vestigate how uncertainty predictions can aid clin-
ical decision-making, especially in high-risk scenar-
ios. For the CVSim dataset, we focus on the problem
of administering fluid to a patient. For the Cancer
Growth dataset, we focus on the problem of mini-
mizing the occurrences of cancerous tumors growth
exceeding a target threshold.

Simulation For a given counterfactual treatment
strategy, we simulate 100 trajectories per patient. For
direct comparison, the ensemble approach produces
100 trajectories per patient across multiple ensemble
models, e.g. for ensemble of 20 models, each produces
5 per patient to yield an overall of 100 MC simula-
tions per patient.

4. CVSim Results

4.1. Evaluation of Uncertainty Predictions

For each model and on each counterfactual regime
(gc1 and gc2), we calculated the per time-step cali-
bration and the individual-level RMSE. Figure 1 il-
lustrates the calibration performance of uncertainty
quantification techniques within the G-Net and G-
Transformer frameworks. 95% confidence intervals
were calculated based on 1,000 bootstrapped test
samples. In general, methods incorporating uncer-
tainty modeling, such as VD, DE, and their com-
bination (VD-DE), consistently improved calibration
across all time steps compared to baseline models,
with reduced calibration decay over time.

As depicted in Figure 1, adding uncertainty quan-
tification significantly enhances calibration relative
to the baseline. Moreover, Figures 1(c) and 1(f)
confirm that incorporating uncertainty quantifica-
tion does not compromise RMSE performance. Ap-
proaches with uncertainty modeling achieve RMSE
values comparable to their respective base G-Net or
G-Transformer models, maintaining accuracy while
improving calibration.

4.2. Impact on Clinical Decision Making

CVSim Decision Rules We design our decision
rule to emulate a doctor’s decision making with an
aim to avoid worst-case scenarios of patient develop-
ing hypotension, i.e. in which a patient’s mean arte-
rial pressure (MAP) drops too low, and pulmonary
edema, i.e. represented as patient’s pulmonary ve-
nous pressure (PVP) rising too high, in CVSim.

Our decision-making task involves selecting the
”optimal” dynamic treatment strategy for individual
patient from two alternatives, gc1 and gc2, to mini-
mize adverse clinical outcomes over the patient’s re-
maining trajectory. After observing a patient for K
time steps (K = 34 in CVSim), we use counterfactual
simulations to predict the patient’s remaining trajec-
tory under each strategy. Based on these simulations,
we choose the strategy that minimizes the proportion
of time the patient experiences adverse outcomes, de-
fined as either low mean arterial pressure (MAP) or
high pulmonary venous pressure (PVP). Specifically,
for each patient, we simulate 100 counterfactual tra-
jectories under gc1 and gc2, compute the proportion of
time steps with adverse outcomes for each set of sim-
ulations, and select the strategy with the lower value
of this objective function. This decision-making pro-
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(a) G-Net Calibration (gc1) (b) G-Transformer Calibration (gc1) (c) RMSE (gc1)

(d) G-Net (gc2) (e) G-Transformer (gc2) (f ) RMSE (gc2)

Figure 1: CVSim: Per time-step calibration for G-Net and G-Transformer based models on CVSim under counter-
factual regimes gc1 and gc2. Dashed horizontal line represents the perfect calibration, 0.90, for the given setting. The
shaded area represents the 95% confidence intervals (CI). Subplots (c) and (f) show comparison of models in average
RMSE with 95% CI for gc1 and gc2 respectively. Methods that properly model uncertainty generally outperform their
base models (G-Net or G-Transformer) in calibration while maintaining comparable RMSE.

cess is conducted on an individualized basis for every
patient.

To evaluate model performance, we compute the
objective function, defined by target MAP and PVP
thresholds, using the ground truth trajectories. The
performance metric is the percentage of times ad-
verse events occur across the testset (with 851 test
trajectories over 32 time steps each), totaling 27,232
time steps. We assess this performance across all G-
Net and G-Transformer-based models, using multiple
pairs of MAP and PVP thresholds. Additionally, we
compare these results to baseline strategies where gc1
or gc2 is applied universally for the entire patient co-
hort without individualized decision-making.

Case Study. To demonstrate the potential added
value of uncertainty modeling in predicting adverse
events such as pulmonary edema, Figure 2 presents
a case study using the CVSim dataset. The patient’s
ground truth trajectory is shown in orange, alongside
100 simulated trajectories from the model in light

(a) G-Net (b) G-Net-VD

Figure 2: CVSim: Illustrative plots of simulated PVP
trajectories for one CVSim subject using G-Net and G-
Net-VD under counterfactual treatment strategy gc1.

blue and the average of these predicted trajectories
in dark blue. Notably, while the base G-Net model
failed to capture the PVP spike (i.e., PVP exceeding
20), simulations from G-Net with Dropout (G-Net-
VD) highlighted the likelihood of this adverse event,
providing a more informative prediction.

Results For Figure 3(a) we fixed the PVP thresh-
old at 20 and analyzed results with MAP thresh-
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(a) G-Net (b) G-Transformer

(c) G-Net-VD/G-Net (d) G-Transformer-DE/G-Transformer

Figure 3: CVSim: (a-b) Percent time steps with adverse events. Lower is better. (c-d) Percent difference in percentage of time-steps
with adverse events between (c) G-Net-VD vs the base G-Net model, and (d) G-Transformer-DE vs G-Transformer. Greener is better.

olds of 40, 45, 50, 55 mmHg, comparing performance
against baselines that always choose gc1 or gc2 for
each patient. For G-Net models, uncertainty quan-
tification methods improved decision-making per-
formance over the base G-Net model. The G-
Net-DE performed comparably to the base G-Net,
while G-Net-VD significantly outperformed it. No-
tably, G-Net failed to outperform always choosing
gc1 for low MAP threshold, but G-Net-VD and G-
Net-VD-DE surpassed gc1 and gc2 across all thresh-
olds, demonstrating that uncertainty quantification
enhances G-Net’s clinical decision-making and viabil-
ity for individual-level treatment. For G-Transformer
models (Figure 3(b)), the deep ensemble method
and the combined VD-DE approach improved per-
formance over the base G-Transformer model, and
consistently outperformed both gc1 and gc2, further
indicating that uncertainty quantification enhances
G-Transformer’s effectiveness for individual-level pre-

dictions. Here, G-Transformer-DE is trained on MSE
loss and simulated with empirical noise.

Figure 3(c) illustrates the percent difference be-
tween G-Net-VD and the baseline G-Net model in the
proportion of time steps with adverse events defined
by varying MAP and PVP thresholds. Let p repre-
sents the percentage of time steps with adverse events
from G-Net-VD, and pb represents the percentage
from the base model G-Net. The percent difference is
calculated as the relative change: (p− pb)/pb. Figure
3(d) shows a similar comparison for G-Transformer-
DE versus the baseline G-Transformer model, calcu-
lated using the same formula.

Both G-Net and G-Transformer models demon-
strated improved prediction of rare adverse events
when incorporating uncertainty quantification. For
example, with G-Net, rare events such as MAP
falling below 40 or PVP exceeding 20 occurred in
0.61% of time steps (∼166 adverse events across
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94 patients). Using G-Net-VD, these events de-
creased to 0.48% of time steps (∼131 adverse events
across 77 patients), reflecting a 21.3% reduction.
Similarly, G-Transformer-DE reduced percentages of
adverse events by 22% compared to the base G-
Transformer model. These results highlight the im-
portance of proper uncertainty modeling in clinical
decision-making for reducing critical adverse events.

5. Cancer Growth Results

For the Cancer Growth experiment, we simulate un-
der the four counterfactual treatment strategies for
four time-steps, and report the average RMSE and
calibration in the Appendix. Our results show that
the models with uncertainty quantification had sim-
ilar or better RMSEs (Table 2 in Appendix) than
the base model under every treatment strategy, and
had improved calibration performance (see Table 3
in Appendix) in all strategies except in the case of
no-treatment. Clinical Decision-Making: For the
decision making task, we analyzed results with vary-
ing cancer volume thresholds from 20 to 80. In Figure
4, across every threshold and model type, the models
with uncertainty quantification outperform the base
models in the decision making task and had less per-
centage of times in having the adverse outcomes of
tumor size exceeding a target threshold.

Figure 4: Cancer Growth with G-Transformer: percent-
age of times the tumor volume threshold is exceeded at
the final time-step. Lower is better.

6. MIMIC Results

We evaluate the impact of adding (model) uncer-
tainty quantification to the G-Transformer model
using real-world ICU data from the MIMIC-IV
database. The dataset consists of 8,920 patients
meeting sepsis-3 criteria, and we use a 80-10-10

train/validation/test splits. G-Transformer-DE and
G-Transformer-VD-DE both use 20 models.

We quantitatively evaluate G-Transformer-based
model’s performance in predicting patient trajecto-
ries under observational treatment regime learned
from the ICU data. For each test set patient, we
simulate forward patients’ trajectories for the next
6 hours conditioned on the observations from the
first hour in the ICU. We evaluate by comparing the
predicted time-varying outcomes (averaged across M
Monte-Carlo simulations) with the actual observed
trajectories from individual patients. See Appendix
for more details, including a list of variables included
for calculating calibration.

Calibration. Figure 5(a) compares calibration of
various uncertainty quantification techniques in G-
Transformer framework. Based on 1000 bootstrapped
samples from test dataset, the 95% confidence inter-
val was based on 2.5 percentile and 97.5 percentile
of 1000 calibrations for all continuous variables over
time for each time step. Both methods of uncertainty
quantification improved the calibration performance
uniformly across all time-steps over the baseline G-
Transformer. Notably, the calibration result from
G-Transformer-DE approximately meets the ideal of
0.90 across time-steps without decay.
RMSE. Figure 5(b) compares RMSEs over time

of various uncertainty quantification techniques in G-
Transformer framework. Based on 1000 bootstrapped
samples from test dataset, the 95% confidence inter-
val was based on 2.5 percentile and 97.5 percentile
of 1000 RMSEs over time for each time step. We
observe that the RMSEs of the models are at sim-
ilar levels. Adding uncertainty quantification from
deep ensemble slightly improves RMSE from base-
line G-Transformer. See the Appendix for additional
results.

7. Discussion and Conclusion

In this work, we propose approximate Bayesian meth-
ods as a practical and principled approach to ex-
plicitly account for uncertainty due to variability in
model parameters in generating counterfactual pre-
dictive distributions. Previous deep learning ap-
proaches to g-computation, including G-Net and G-
Transformer, estimate uncertainty in counterfactual
predictions (based on distributions from Monte Carlo
simulations) conditioned on model parameters. Our
results demonstrate that incorporating uncertainty
around model parameters through the proposed ap-
proach significantly enhances the calibration perfor-
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(a) Calibration (b) RMSE

Figure 5: MIMIC with G-Transformer: Per time-step calibration and RMSE on MIMIC data, conditioned on the
first time step using 100 MC simulations per patient. The shaded area represents the 95% confidence interval. G-
Transformer-DE (in purple) outperforms the base model G-Transformer (in blue) and other uncertainty quantification
approaches in calibration while maintaining RMSE performance comparable to the base model.

mance of the base models while preserving predictive
accuracy.

Deep ensembles (DE) are generally more effective
than variational dropout (VD) in capturing uncer-
tainty, particularly when the true posterior is com-
plex and multimodal. By training multiple indepen-
dent models, DEs provide a better approximation to
the Bayesian posterior (Wilson and Izmailov, 2020;
Lakshminarayanan et al., 2017). While VD is com-
putationally efficient, it is limited in capturing the
full complexity of the posterior. Empirically, our re-
sults demonstrate that DE and the combined VD-
DE generally outperformed VD alone when applied
to G-Transformer, especially for more complex set-
tings such as CVSim and MIMIC. In CVSim, VD
improved calibration of G-Net, but was less effective
with G-Transformer overall. In MIMIC experiments,
G-Transformer-DE achieved the best calibration per-
formance, significantly outperforming the base G-
Transformer and G-Transformer-VD models, while
maintaining RMSE on par with the base model.

We should note that simply incorporating un-
certainty quantification methods may not improve
calibration if the underlying model exhibits high
bias (i.e., high RMSE). For example, a model with
poor predictive accuracy may produce biased pre-
dictions, and adding uncertainty quantification tech-
niques cannot necessarily correct this underlying is-
sue. If the model is fundamentally unable to capture
the data’s underlying structure, the uncertainty esti-

mates may not be meaningful, and the model could
still fail to provide well-calibrated probabilities.

Our study highlights the importance of modeling
counterfactual predictive distributions to navigate
the inherent risk-reward trade-offs in clinical decision-
making. By incorporating practical and principled
approximate-Bayesian methods into deep learning-
based g-computation, we addressed the challenges in
estimating conditional counterfactual predictive dis-
tributions under dynamic treatment strategies. Our
results confirm that incorporating uncertainty to the
model parameters significantly improves their ability
to represent the distribution of potential outcomes,
including critical tail events, compared to prior meth-
ods such as G-Net and G-Transformer, which do not
account for sampling variability from model uncer-
tainty.

In scenarios like fluid administration for septic pa-
tients, where treatment decision making aims at re-
ducing probabilities of adverse outcomes (e.g., fluid
overload or hypotension), our approach demonstrated
improved performance in modeling the tails of joint
outcome distributions. This improvement under-
scores the necessity of uncertainty-aware models for
clinical contexts where the consequences of underes-
timating uncertainty can lead to suboptimal or even
harmful decisions. Our findings thus highlight the
utility of combining deep learning with principled un-
certainty quantification for informed sequential treat-
ment decision making in dynamic treatment settings.
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Appendix A. CVSim Experiment
Settings and Results

A.1. CVSim RMSE Over Time

Figure 6 shows the per-timestep RMSE over time for
CVSim experiments. Approaches with uncertainty

modeling achieve RMSE values comparable to their
respective base G-Net or G-Transformer models un-
der both counterfactual regimes gc1 and gc2, indicat-
ing that incorporating uncertainty quantification us-
ing the proposed methods does not negatively impact
RMSE performance. Based on 1000 bootstrapped
samples from test dataset, the 95% confidence inter-
val was based on 2.5 percentile and 97.5 percentile of
1000 RMSEs over time for each time step.

(a) G-Net (gc1) (b) G-Transformer (gc1)

(c) G-Net (gc2) (d) G-Transformer (gc2)

Figure 6: CVSim: Per time-step RMSE for G-Net
and G-Transformer under counterfactual regimes gc1
and gc2. The shaded area represents the 95% confi-
dence interval.

A.2. CVSim Decision Making Additional
Results

Figure 7 shows the percent difference in proportion
of time-steps performance between VD-DE and the
base G-Net and G-Transformer model.

A.3. Counterfactual Regimes gc1 vs gc2

Under gc1, treatment (fluids or vasopressors) is ad-
ministered if and only if mean arterial blood pressure
(MAP) < 65 mmHg; fluids are administered as treat-
ment if and only if patient does not have pulmonary
edema. Counterfactual regime gc2 follows the same
rules as gc1, except that treatments are administered
when MAP < 75 mmHg. For more details, including
the dosage administered, please see Li et al. (2021).
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(a) G-Net-VD-DE/G-Net (b) G-Transformer-VD-DE/G-Transformer

Figure 7: CVSim: (a) Percent difference in proportion of time-steps performance between G-Net-VD-DE and the base G-Net model.
Lower (greener) is better. (b)Percent difference in proportion of time-steps performance between G-Transformer-VD-DE and the base
G-Transformer model. Lower (greener) is better. G-Transformer Ensemble is trained on MSE and simulated with empirical noise.

A.4. CVSim List of Covariates

Table 1 lists output covariates from CVSim used in
our experiments. Calibration calculation included
all (continuous-valued) selected output covariates,
marked by ∗, except Pulmonary Edema which is a
binary indicator variable.

Appendix B. Effect of Ensemble Size
on Calibration

We also compared calibration results for smaller en-
semble sizes to determine how much a larger ensem-
ble may benefit model performance. For the G-Net
Ensemble and G-Transformer Ensemble models, we
plotted per time-step calibration on gc1 and gc2 while
varying ensemble sizes. We chose {1, 2, 5, 10, 20} as
the sizes to examine.

We found that increasing ensemble size improved
calibration across all models and counterfactual
regimes. For most models and counterfactual regime
pairings, calibration improved only marginally be-
tween the 10-model and 20-model ensembles. For
G-Transformer Ensemble under gc2, however, the
20-model ensemble displays significant improvement
over the 10-model ensemble during the later time-
steps.

Appendix C. Cancer Growth
Experiments

As in Li et al. (2021), we divide by the maximum
tumor volume (1150cm3) for percentage RMSEs.

Our results in Table 2 show that the models with
uncertainty quantification had better RMSEs than
the base model under every treatment strategy, with
G-Transformer-DE having the best RMSE under no
treatment and G-Transformer-VD having the best
under radiotherapy, chemotherapy, and chem-rad.
For calibration (see Table 3), G-Transformer-DE and
G-Transformer-VD are better calibrated than the
baseline G-Transformer under chemotherapy but are
worse under no treatment. The models with uncer-
tainty quantification have noisy estimates for the no
treatment regime, with calibrations close to 1. In
the simpler Cancer-Growth experiment, where only
one time-varying covariate is present, the advantage
of DE over VD is less pronounced as in the case of
CVSim and MIMIC experiments.

Appendix D. MIMIC Results and
Calibration Settings

Table 4 shows individual-level RMSEs (averaged
across 6 time steps) with 95% confidence interval for
G-Transformer-based models on MIMIC data, con-
ditioned on the first time step and using 100 Monte
Carlo trajectories per patient under the observational
regime. Based on 1000 bootstrapped samples from
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Table 1: CVSim output covariates. Covariates high-
lighted with ∗ are the selected outputs. (Note that
treatment variables are not included in this table.)

Output Covariates

Left Ventricle Pressure∗ LVP
Left Ventricle Flow∗ LVQ
Left Ventricle Volume LVV

Left Ventricle Contractility∗ LVC
Right Ventricle Pressure∗ RVP
Right Ventricle Flow∗ RVQ
Right Ventricle Volume RVV

Right Ventricle Contractility∗ RVC
Central Venous Pressure∗ CVP

Central Venous Flow CVQ
Central Venous Volume CVV
Arterial Pressure∗ AP
Arterial Flow∗ AQ

Arterial Volume∗ AV
Pulmonary Arterial Pressure PAP
Pulmonary Arterial Flow PAQ

Pulmonary Arterial Volume PAV
Pulmonary Edema∗ PE

Pulmonary Venous Pressure PVP
Pulmonary Venous Flow PVQ

Pulmonary Venous Volume∗ PVV
Heart Rate∗ HR

Arteriolar Resistance∗ AR
Venous Tone∗ VT

Total Blood Volume∗ TBV
Intra-thoracic Pressure∗ PTH
Mean Arterial Pressure∗ MAP
Systolic Blood Pressure∗ SBP
Diastolic Blood Pressure DBP

GT GT-DE GT-VD GT-VD-DE

No Treat 0.82 0.70 0.74 0.88
Radio 3.61 3.56 3.36 3.66
Chemo 1.87 1.90 1.56 1.49

RadioChemo 2.24 2.21 2.17 2.27

Table 2: Cancer Growth with G-Transformer: Percent
RMSEs (averaged over 4 simulation time steps). Best
performing models in bold. GT = G-Transformer.

test dataset, the 95% confidence interval was based
on 2.5 percentile and 97.5 percentile of 1000 timestep-
averaged RMSEs.

GT GT-DE GT-VD GT-VD-DE

No Treat 0.87 1.00 0.98 1.00
Radio 0.60 0.76 0.74 0.83
Chemo 0.72 0.88 0.92 0.96

RadioChemo 0.69 0.83 0.78 0.86

Table 3: Cancer Growth with G-Transformer: Calibra-
tion Results. Best performance (in absolute difference
from 0.90) in bold. GT = G-Transformer.

(a) Creatinine (b) Urine Output

Figure 8: MIMIC with G-Transformer: Per time-step
calibration of selected variables for G-Transformer-based
models on MIMIC data, conditioned on the first time step
and using 100 Monte Carlo trajectories per patient under
the observational regime. The shaded area represents the
95% confidence interval.

Model RMSE (95%CI)

G-Transformer 0.687 (0.663, 0.712)
G-Transformer-VD 0.712 (0.689, 0.736)

G-Transformer-VD-DE 0.681 (0.657, 0.705)
G-Transformer-DE 0.682 (0.659, 0.706)

Table 4: MIMIC with G-Transformer: Individual-level
RMSEs (averaged across 6 time steps) with 95% confi-
dence interval (CI) for G-Transformer-based models on
MIMIC data, conditioned on the first time step and us-
ing 100 Monte Carlo trajectories per patient under the
observational regime.

In Table 5, we show all the continuous variables
that went into calculating calibration for the MIMIC-
IV experiments.

Figure 8 shows per time-step calibration of se-
lected variables with 95% confidence interval for G-
Transformer-based models on MIMIC data, condi-
tioned on the first time step and using 100 Monte
Carlo trajectories per patient under the observational
regime. Based on 1000 bootstrapped samples from
test dataset, the 95% confidence interval was based
on 2.5 percentile and 97.5 percentile of 1000 calibra-
tions for the selected variables over time for each time
step. We see that G-Transformer-DE in general per-
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Table 5: MIMIC variables used in the calibration calcu-
lation.

Variable Name Units

Heart Rate beats/min
Diastolic Blood Pressure mmHg
Systolic Blood Pressure mmHg
Mean Blood Pressure mmHg

Minimum Mean Blood Pressure mmHg
Temperature degree C

Platelet counts/109L
Hemoglobin g/dL
Calcium mg/dL
BUN mmol/L

Creatinine mg/dL
Bicarbonate mmol/L

Lactate mmol/L
pO2 mmHg
sO2 %
spO2 %
pCO2 mmHg

Total CO2 mEq/L
pH Numerical[1,14]

Base excess mmol/L
Weight kgs

Respiratory Rate breaths/min
Fluid Volume mL
Urine Output mL

Vasopressor Amount N/A
Bolus Volume mL

form the best in term of calibration across selected
variables.

D.1. Example MIMIC Case Studies

Case Study. Figure 9 demonstrates the calibration
check for selected variables on an example MIMIC
test set patients. We observe that the ground truth
falls within the target percentile range from the
G-Transformer-DE and G-Transformer-VD-DE more
frequently compared to the baseline G-Transformer.
This demonstrates the improvement in calibration
achieved through adding uncertainty quantification
and highlights the benefit from the perspective of an
individual patient.

Appendix E. SWAG Methods and
Results in CVSim

Stochastic Weight Averaging-Gaussian (SWAG)
(Maddox et al., 2019; Izmailov et al., 2018) is an
approximate Bayesian inference approach which uses
SGD iterates to construct a Gaussian neural net-
work parameter posterior. SWAG has been shown
to provide improved generalization in deep learning.
Starting from a pretrained checkpoint, we denote the
weights of the network obtained after iteration i of

(a) G-Transformer (b) G-Transformer-DE

Figure 9: MIMIC with G-Transformer: Illustration of
calibration check on an example MIMIC test set patient.
Subplots (a) and (b) display simulations for Mean Blood
Pressure. The values are simulated from the baseline G-
Transformer and G-Transformer-DE models, conditioned
on the first time step and using 100 Monte Carlo trajec-
tories under the observational regime.

SWA traning θi, the SWA solution after T epochs
is given by θSWA = 1

T

∑T
i=1 θi. In the training pro-

cess, we maintain a running average of the second
uncentered moment for each weight. After train-
ing, we compute the covariance by following identity:
θ̄2 = 1

T

∑T
i=1 θ

2
i , Σdiag = diag(θ̄2 − θ̄2SWA), here θ2i

and θ2SWA are the results of element-wise squaring of
θi and θSWA respectively. The approximate posterior
distribution is N (θSWA,ΣDiag). During the simula-
tion process, we sample model parameters from this
posterior distribution and use the Bayesian model av-
erage of the results as the model output.

Figure 10 shows the calibration and RMSE perfor-
mance from SWAG relative to the base G-Net and G-
Transformer models other uncertainty quantificaiton
methods. We observe that, in general, SWAG under-
performed both in terms of calibration and RMSE rel-
ative to other uncertainty quantification techniques.

Appendix F. Background

F.1. G-Net and G-Transformer

G-Net (Li et al., 2021) and G-Transformer (Xiong
et al., 2024) are neural network based implementa-
tions of g-computation, where G-Net uses RNNs and
G-Transformer uses transformer encoders. They have
been shown to predict patient outcomes more accu-
rately than other counterfactual prediction methods
and g-computation implementations. They are also
the models that we build upon in this work, and we
will use them as baselines in analyzing results.

This section describes the theory and implementa-
tion behind the base G-Net and G-Transformer mod-
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(a) RMSE and calibration under gc1 (b) RMSE and calibration under gc2

Figure 10: CVSim with SWAG results: comparison of models in RMSE vs Calibration.

els that do not incorporate model uncertainty into
their predictive distributions.

F.1.1. G-Net and G-Transformer
Framework

G-Net and G-Transformer are used to implement g-
computation by approximating the conditional dis-
tributions of covariates (including outcomes of inter-
est) given history, i.e. p(Lt|L1:t−1, A1:t−1). How-
ever, Lt in many cases is high-dimensional and com-
plex, so we partition the covariates represented by
Lt into G groups or “boxes”, {L0

t , L
1
t , . . . , L

G−1
t },

and train multiple regressors or classifiers to learn
their distributions separately. This technique is rep-
resented mathematically by the chain rule of proba-
bility, where p(Lt|L1:t−1, A1:t−1) is rewritten as

p(L0
t |L1:t−1, A1:t−1)× p(L1

t |L0
t , L1:t−1, A1:t−1)× . . .

×p(LG−1
t |L0

t , L
1
t , . . . , L

G−2
t , L1:t−1, A1:t−1).

(2)

In this work, we use G = 2 and set the groups
to be the categorical and continuous covariates, re-
spectively. We call this a two-box architecture, with
one classifier for the categorical covariates and one
regressor for the continuous covariates.

To be concrete, we describe in detail one time-
step’s worth of prediction whenG = 2. We set L0

t and
L1
t to be the categorical and the continuous covariates

at time t, respectively. Let R0 and R1 be a classifier
and a regressor that approximate p(L0

t |L1:t−1, A1:t−1)

and p(L1
t |L0

t , L1:t−1, A1:t−1). To simulate for time-
step t + 1, R0 takes (L0

1:t, L
1
1:t, A1:t) as input and

outputs a predicted L̂0
t+1. This predicted L̂0

t+1 is

passed to R1, which takes (L0
1:t, L̂

0
t+1, L

1
1:t, A1:t) and

outputs a predicted L̂1
t+1. The predicted covariates

(L̂0
t+1 and L̂1

t+1) are concatenated to get L̂t+1. Lastly,

Ât+1 is decided by the counterfactual strategy as
a function of (L0

1:t, L̂
0
t+1, L

1
1:t, L̂

1
t+1, A1:t). This pro-

cess repeats for further time-steps, with R0 taking
(L0

1:t, L̂
0
t+1, L

1
1:t, L̂

1
t+1, A1:t, Ât+1) as input to predict

L̂0
t+2.
This framework is flexible without making assump-

tions on the model architectures of R0 and R1. Any
model that conforms to the desired input and output
format can be employed. G-computation is gener-
ally performed with R0 and R1 as generalized linear
models. G-Net uses recurrent neural networks, and
G-Transformer uses transformer encoders.

F.1.2. Training Procedure

For the two-box model, we train with the outputs
from the first box of categorical covariates fed as in-
put to the second box of continuous covariates. The
categorical box is trained with cross-entropy loss.
For the base G-Net and G-Transformer models, the
continuous box is trained with mean squared error.
When these models are implemented with deep en-
semble, we may use a different loss function (see Sec-
tion 3.1).

For model training, we also use teacher forcing. In-
stead of using the predicted L̂t+1 to make predic-
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tions on time-step t+2, we use the observed Lt+1.
This is equivalent to training the model on one time-
step ahead prediction. We also use teacher forcing
for the individual ”boxes”. Instead of passing a pre-
dicted L̂0

t+1 to R1, we pass the observed L0
t+1. Since

we evaluate performance on multiple time-step ahead
prediction, teacher-forcing notably optimizes a differ-
ent loss function than our true objective. However,
we find that teacher-forcing performs better than our
alternative, student forcing.

F.1.3. Simulation Procedure

After we’ve trained our G-Net and G-Transformer
models, we simulate. Our trained models, on their
own, only output conditional expectations — that is,
our models output estimates of E[Lt|L1:t−1, A1:t−1].
However, for continuous covariates, we want the dis-
tribution of covariates p(Lt|L1:t−1, A1:t−1). We ob-
tain an estimate of these distributions by sampling
from every box as follows:

Lg
t |L0

t , . . . , L
g−1
t , L1:t−1, A1:t−1 ∼

Ê[L0
t , . . . , L

g−1
t , Lt|L1:t−1, A1:t−1] + ϵgt

(3)

where g denotes the gth box and ϵgt is drawn ran-
domly from a set of residuals Lg

t − L̂g
t calculated

empirically from a validation dataset. This way,
we can non-parametrically simulate from an approx-
imate conditional distribution of covariates at each
time-step.
Categorical covariates are treated more sim-

ply. Again, our models output estimates of
E[Lt|L1:t−1, A1:t−1], which we enforce to be in the
range [0, 1] with a sigmoid activation. To simulate,
we draw from a Bernoulli distribution with parameter
Ê[Lt|L1:t−1, A1:t−1].
We repeat this simulation process for a number

of time-steps dependent on the specifications of the
dataset. For example, the CVSim dataset involves 32
time-steps in which the patient undergoes a counter-
factual treatment strategy.

Appendix G. Methods Details

G.1. Computing Residuals with Variational
Dropout

Implementing variational dropout for G-Net and G-
Transformer isn’t as straightforward as turning on
dropout masks for simulations. We must also make
modifications to how residuals are computed.

Recall that for G-Net and G-Transformer, the
residuals ϵgt were computed empirically from the
Lg
t − L̂g

t values on an validation dataset, where L̂g
t is

treated as an estimate of the conditional expectation
E[Lg

t |L0
t , . . . , L

g−1
t , L1:t−1, A1:t−1]. For G-Net with

Dropout and G-Transformer with Dropout, however,
forward passes during validation time no longer can
be treated as conditional expectations but rather as
samples from an approximate distribution. To cor-
rect this discrepancy, we conduct 100 forward passes
of our model to obtain 100 Lg

t − L̂g
t values per patient

in our validation dataset. These 100 forward passes
represent uncertainty about the model parameters.
The number of forward passes only dictates the gran-
ularity of our estimate of the residual distribution,
and was chosen arbitrarily. During simulation time,
we simulate Lg

t ∼ L̂g
t + ϵgt as per usual. These resid-

uals represent uncertainty about the model output.
This way, we capture both the uncertainty in model
parameters and the uncertainty in patient covariates.

G.2. G-Net with Variational Dropout
(G-Net-VD)

G-Transformer with Dropout can be implemented
simply as the base G-Transformer model along with
the modifications discussed earlier. However, G-Net
with Dropout is implemented with a slightly different
model architecture as well. The traditional LSTM
architecture involves using independently sampled
dropout masks on the inputs and outputs of every
LSTM layer. G-Net with Dropout, on the other
hand, uses an LSTM architecture recommended by
Gal and Ghahramani (2016a) for improved regular-
ization. In their model, dropout masks are placed
not only between layers but also between adjacent
time-steps. Connections between the same pair of
layers share dropout masks, and connections within
the same layer also share dropout masks.

G.3. Deep Ensemble Negative
Log-Likelihood Loss

For deep ensemble models, we use negative log-
likelihood as the loss function for training. Since
we use multiple different modeling assumptions for
the deep ensemble model, the implementation differs
slightly for each.

For the Gaussian with identity covariance matrix,
we note that optimizing the NLL of such a Gaussian
is equivalent to optimizing the MSE of the mean es-
timates. Since the G-Net and G-Transformer models
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already use MSE to optimize the continuous covari-
ates, we use their implementations. Nothing changes
except that we train 20 models for an ensemble in-
stead of just one.
For the Gaussian with diagonal covariance matrix,

we need to model variances. To do so, we add a sec-
ond linear layer alongside the first. We treat the first
linear layer as the predictor for the means and we
treat the second as the predictor for the variances.
The second layer comes with a softplus activation
function that ensures that positive variances are pre-
dicted. From there, the predicted means and vari-
ances are fed into the negative log-likelihood calcula-
tion and are summed across all covariates for the loss
on our continuous covariates.
For the Gaussian with full covariance matrix, we

need to model variances and covariances. Instead of
modeling the entire matrix Σ, we use the Cholesky
decomposition Σ = LLT and model L, a lower trian-
gular matrix with positive diagonal entries. As in the
diagonal Gaussian case, we add a second linear layer
alongside the first, which outputs all entries of L. We
use the softplus activation on the diagonal entries of
L to ensure positivity.

Deep Ensemble Alternative Parametric As-
sumptions Note that the deep ensemble method
as presented above makes the modeling assumption
that the conditional distribution of covariates at each
time-step is a diagonal Gaussian; that is, the distri-
bution’s covariance matrix is diagonal. By training
an ensemble of these models, we’re approximating the
data distribution as a mixture of diagonal Gaussians.
By modifying our modeling assumptions, we thereby
modify the way we fit the data.
In addition to modeling the conditional distribu-

tions as diagonal Gaussians, we also modeled them
as Gaussians with identity covariance matrices and
as Gaussians with all covariance terms. The loss
function changes accordingly. For example, model-
ing Gaussians with identity covariances with negative
log-likelihood loss is equivalent to training with mean
squared error as the loss function. Details about their
implementations are in G.3.

Simulation Methods After an ensemble is
trained, we can also simulate from it in different
ways. Most simply, we can ignore the variance esti-
mates and simulate by adding empirical noise terms
to the mean estimates as in the base G-Net and G-
Transformer models in 3. This is our non-parametric
approach to estimating the conditional distribution

of covariates. We can also take the parametric route
and, at each time-step, sample from the Gaussians
parametrized by the mean and (co)variance estimates
without using any empirical noise terms.

Both methods are explored and evaluated in our
experiments. For G-Net, we found that training for
a diagonal Gaussian and simulating with empirical
noise worked best. For G-Transformer, we found that
training on MSE and simulating with empirical noise
worked best. Results from other alternative methods
are in the appendix.

G.3.1. Variational Dropout with
Ensembling

We explored combining variational dropout and deep
ensemble. This was accomplished by independently
training M = 20 variational dropout models on MSE
using random initializations and random shufflings of
the training data. Each model independently simu-
lates using empirical noise, and the simulations are
aggregated for a full set of simulations from the en-
semble. When M = 20, each individual variational
dropout model produces 5 simulations for 100 simu-
lations in total.

Appendix H. Experiment Settings

H.1. Evaluation of Uncertainty Predictions

In this section, we describe our methods for eval-
uating how well our models quantify uncertainty.
We evaluate the base, variational dropout, and deep
ensemble versions of G-Net and G-Transformer on
the CVSim and Cancer Growth datasets. For the
deep ensemble models, we examine using the differ-
ent modeling assumptions as described in Section 3.1.

We explain in detail about the implementations of
the G-Net and G-Transformer based models. Train-
ing and simulation of G-Net and G-Transformer mod-
els revolve around the training and simulation of the
(two) individual boxes as described in Appendix F.1.

G-Net Based Models For both the base G-Net
and the G-Net Ensemble models, the individual boxes
are implemented with multilayer LSTM models that
output one embedding per time-step with dimension-
ality controlled by a hyperparameter. We also have a
linear layer that brings transforms the embedding to
the desired output dimension. G-Net with Dropout is
implemented nearly identically, but with the dropout
masks implemented as described in G.2.
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At each time-step, the base G-Net model takes in
the patient history (L1:t, A1:t) and conditions on it
to produce an estimate of the patient’s covariates for
the next time-step. However, with G-Net based mod-
els, the patient histories are actually not directly in-
put to the model. Instead, to predict for time-step
t + 1, the LSTM (in the first box) predicts using
(ht−1, Lt, At), where ht is the LSTM’s hidden state
from time-step t − 1 and acts as a learned represen-
tation for (L1:t−1, A1:t−1).

G-Transformer Based Models For all the G-
Transformer based models, the individual boxes are
implemented with transformer encoders. To predict
for time-step t + 1, the first box takes the patient
history (L1:t, A1:t) and feeds it through a positional
embedding layer and a transformer encoder to pro-
duce a sequence of embeddings. The last embedding
in this sequence is fed through a linear layer to pro-
duce our prediction. Note that the G-Transformer
differs from G-Net in that it conditions on the pa-
tient history in its raw form rather than in a learned
representation.

Training We use binary cross-entropy loss for the
categorical covariates and either mean squared-error
or negative log-likelihood loss for the continuous co-
variates, depending on the model. We use Adam as
our optimizer and CosineAnnealingWarmRestarts as
our learning rate scheduler. To train the ensembles,
we train 20 individual base models with different ran-
dom seeds that control parameter initializations and
the order in which training data is fed into the model.
See Appendix for details in hyperparameter settings
in grid search.

Simulation For the CVSim dataset, we simulate
under two counterfactual strategies gc1 and gc2; for
the Cancer Growth dataset, we simulate under no
treatment, radiotherapy, chemotherapy, and both.
Simulation is as described in F.1. For a given coun-
terfactual treatment strategy, we simulate 100 trajec-
tories per patient. For direct comparison, the deep
ensemble approach produces an overall of 100 trajec-
tories per patient across multiple ensemble models,
e.g. for deep ensemble with 20 models, each pro-
duces 5 trajectories per patient to yield an overall of
100 MC simulations per patient.

Evaluation We perform model evaluation with two
metrics: calibration and individual-level RMSE. For
each of the models, we use the 100 simulated trajecto-

ries per patient to compute per-time-step calibrations
and individual-level RMSEs as described in 3.2.

RMSE We use root mean-squared error (RMSE)
to evaluate the accuracy in counterfactual prediction.
For each individual patient, trajectories of 100 Monte
Carlo simulations are averaged to represent the ex-
pected trajectory and compared to the ground-truth
of that patient to compute individual-level RMSE.
With Nc as the number of patients, {m,m+1, . . . , t}
as the predicted time-steps, d as the number of co-
variates, f as our model, and L̂CF (f) as the average
of the predicted trajectories of a patient as predicted
by f , we can express the individual-level RMSE as√√√√ 1

Nc(K −m)d

Nc∑
i=1

K∑
t=m

d∑
h=1

(Lh,CF
ti − L̂h,CF

ti (f))2. (4)

Ensemble Size Comparison We also compared
calibration results for smaller ensemble sizes to de-
termine how much a larger ensemble may benefit
model performance. For the G-Net Ensemble and G-
Transformer Ensemble models, we plotted per time-
step calibration on gc1 and gc2 while varying ensemble
sizes. We chose {1, 2, 5, 10, 20} as the sizes to exam-
ine.

Impact on Clinical Decision Making While
well-calibrated models are preferable to badly-
calibrated ones, calibration doesn’t exactly reflect the
usefulness of a model in clinical settings. Doctors care
greatly about preventing worst-case outcomes in pa-
tients, and a model’s ability to predict such outcomes
aren’t perfectly reflected in the calibration metric.
This mismatch in objectives motivates this section’s
experiment, which emulates how a doctor might use
uncertainty predictions in a clinical setting. For the
CVSim dataset, we focus on the problem of admin-
istering fluid to a patient. If a patient’s blood pres-
sure (mean arterial pressure, or MAP) is low, a doc-
tor might want to administer fluids to increase blood
pressure and blood perfusion to the organs. How-
ever, too much fluid leads to a higher risk of devel-
oping pulmonary edema, which is indicated by the
pulmonary venous pressure (PVP) covariate. This
balancing act in administering just the right amount
of fluid may be difficult for a doctor and can be made
easier with uncertainty prediction. For the Cancer
Growth, we focus on the problem of minimizing the
chance of cancerous tumors growing too large. There
is no trade-off between treatment effects similar to
the one in the CVSim dataset. Rather, we seek to
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reduce occurrences in which patient tumors grow to
dangerous sizes. This goal of predicting for and pre-
venting uncommon but significant outcomes is also
made easier with uncertainty prediction.

Appendix I. Hyperparameter Settings

In this section, we detail the hyperparameter settings
for CVSim (Table 6), cancer growth (Table 7) and the
MIMIC experiments (Table 8).
The baseline G-Net and G-Transformer model are

established using the hyperparameter configuration
that achieves the best validation performance after
a grid search. For the Ensemble approach, no ad-
ditional tuning is performed; it directly adopts the
hyperparameters optimized for the baseline models.

Table 6: Hyperparameter search space in CVSim exper-
iments. HD = Hidden Dimension.

Hyperparameters Range

Number of Layers 2, 3
HD (Categorical) 64, 128
HD (Continuous) 64, 128

Batch Size 16
G-Net Learning Rate 0.0001

Batch Size 16, 32
Number of Layers 1, 2, 4

G-Net-DE HD (Continuous) 32, 64, 128
(NLL, diagonal) Learning Rate 0.01, 0.001

Batch Size 16, 32
Number of Layers 1, 2, 4
HD (Continuous) 32, 64, 128

G-Net-VD Dropout Rate 0.05, 0.1, 0.2
with Dropout Learning Rate 0.01, 0.001

Number of Layers 3
Hidden Dimension 32, 64, 128

Batch Size 16
G-Transformer Learning Rate 0.0001

Number of Layers 3
Hidden Dimension 32, 64, 128

G-Transformer Batch Size 16
with Dropout Learning Rate 0.0001

Table 7: Hyperparameter search space in Cancer Growth
experiments.

Hyperparameters Range

Number of Layers 1, 2, 3
HD (Continuous) 64, 128

Batch Size 16, 32
G-Transformer Learning Rate 0.0001, 0.001

Number of Layers 1, 2, 3
HD (Continuous) 64, 128

G-Transformer-VD Batch Size 16, 32
Learning Rate 0.0001, 0.001

Table 8: Hyperparameter settings in MIMIC experi-
ments with 7-hour data. We used the best hyperparame-
ter settings based on 24-hour data from previous experi-
ments and perform no tuning for G-Transformer Ensem-
ble because we use the same hyperparameters from the
baseline G-Transformer.

Hyperparameters Range

Number of Layers 3
HD (Continuous) 128

Batch Size 16
G-Transformer Learning Rate 0.0001

Number of Layers 3
HD (Continuous) 128

Batch Size 16
G-Transformer-VD Learning Rate 0.0001

Number of Layers 3
HD (Continuous) 128

Batch Size 16
G-Transformer-VD-DE Learning Rate 0.0001

Number of Layers 3
HD (Continuous) 128

Batch Size 16
G-Transformer-DE Learning Rate 0.0001
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