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This paper investigates a new probabilistic strategy for Bayesian model updating using
incomplete modal data. Direct mode matching between the measured and the predicted
modal quantities is not required in the updating process, which is realized through model
reduction. A Markov chain Monte Carlo technique with adaptive random-walk steps is
proposed to draw the samples for model parameter uncertainty quantification. The iter-
ated improved reduced system technique is employed to update the prediction error as
well as to calculate the likelihood function in the sampling process. Since modal quantities
are used in the model updating, modal identification is first carried out to extract the
natural frequencies and mode shapes through the acceleration measurements of the
structural system. The proposed algorithm is finally validated by both numerical and
experimental examples: a 10-storey building with synthetic data and a 8-storey building
with shaking table test data. Results illustrate that the proposed algorithm is effective and
robust for parameter uncertainty quantification in probabilistic model updating of
buildings.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Identifying and updating the system parameters of a structural model, conditional on observed data, is a key component
in structural health monitoring (SHM), since it is related to assessing the health condition, evaluating the integrity, and
estimating the capacity to carry loads and risk of a structure. This topic has gained much attention recently (refer to, e.g., [1–
14], among others).

In general, model updating seeks to determine a set of the most plausible parameters that best describe the structure
given the measured system responses and, possibly, the external excitation. In the process of model updating, the para-
meters can be expressed as either specific values (deterministic) or probability distributions (probabilistic) [12]. Existing
deterministic model updating strategies, such as the least squares-based methods [15,16], the heuristic algorithms [17–22],
the filtering techniques [23–25], and sensitivity-based updating approaches [26–28], have been well studied and applied in
SHM. Nevertheless, those strategies only find a single plausible model and have limitations in resolving issues related to
model uncertainties.

Bayesian model updating techniques make possible to identify a set of plausible models with probabilistic distributions
and to characterize the modeling uncertainties of a structural system. Recently, a number of Bayesian model updating
yuk@mit.edu (O. Büyüköztürk).
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approaches have been proposed for a reliable assessment of structural condition and a robust prediction of future structural
responses. For example, Beck and Katafygiotis [29] first presented a comprehensive statistical framework for Bayesian model
updating, which was then extended by their colleagues and applied to update various types of structural models using
sampling techniques such as the Markov chain Monte Carlo (MCMC) simulations [30–32]. Mares et al. [33] studied sto-
chastic model updating using a Monte-Carlo inverse procedure. Nichols et al. [34] applied the MCMC to sample the posterior
parameter distributions of nonlinear structural systems and extended this approach to damage detection of composites.
Beck [35] presented a rigorous framework to quantify modeling uncertainty and perform system identification using
probability logic with Bayesian updating. Boulkaibet et al. [36] proposed a shadow hybrid MCMC approach for uncertainty
quantification in finite element model updating. Green [37] presented a Data Annealing-based MCMC algorithm for
Bayesian identification of a nonlinear dynamical system. Yan et al. [38] investigated a reverse jump MCMC method for
Bayesian updating of flaw parameters.

It is quite popular to use the identified modal characteristics to update a model within the framework of Bayesian
inference [39,40]. However, direct mode matching is typically required for the majority of existing Bayesian updating
approaches using modal data. In practice, when incomplete measurements of mode shapes are only available, direct mode
matching is not an easy task. In addition, when some of the measured modes are missing or the mode orders are unclear,
direct mode matching becomes more difficult. Mode switching due to structural damage even makes the case worse [41].
Recently, Bayesian methods without requiring direct mode matching have been proposed for model updating [41–45]. This
is realized through introducing the concept of system mode shapes. In the updating process, the system mode shapes
become extra parameters to be updated as well. Since this method introduces additional unknown parameters into the
updating process, the computational cost will increase, especially when Monte Carlo techniques are used to draw samples
for the updating parameters. To alleviate this issue and to avoid direct mode matching, we propose a new strategy for
Bayesian model updating using incomplete modal data. This is accomplished by employing a model reduction technique
considering the available sensor locations. A MCMC simulation with adaptive random-walk steps is used to sample the
posterior distributions of the model parameters.

The organization of this paper is given as follows. Section 2 presents the probabilistic model updating framework based
on Bayesian inference using incomplete modal data, in which direct mode matching is not required. Modal identification as
well as model reduction is also introduced. Section 3 describes the sampling technique using MCMC with adaptive random-
walk steps. Sections 4 and 5 discuss numerical and experimental examples to validate the proposed model updating
technique. Finally, Section 6 provides the concluding remarks of this work.
2. Probabilistic model updating without direct mode matching

The essential promise of structural model updating conditional on modal data is to modify a set of model parameters
(e.g., denoted with θARNθ�1, where Nθ is the number of parameters), that minimize the discrepancy between the predicted
and the measured modal quantities. The objective is to obtain an updated model which has the most probable consistency
with the real structural system. Most of existing model updating strategies minimize the objective function defined as [41]

JðθÞ ¼
XNs

i

XNm

j

αj ω2
i;jðθÞ� ~ω2

i;j

h i2
þβj ϕi;jðθÞ� ~ϕ i;j

��� ���2
2

� �
ð1Þ

where ~ωi;j and ~ϕi;j are the jth measured frequency and mode shapes of the ith data set, while ωi;j and ϕi;j are the corre-
sponding predicted frequency and mode shapes from the model; αj and βj are the weighting coefficients; Nm is the total
number of observed modes; Ns is the number of measured data sets used for model updating; and J � J2 denotes the L2
norm of a vector. Noteworthy, there exist two major issues associated with the model updating techniques based on Eq. (1):
(i) it can be seen from Eq. (1) that direct mode matching is required so as to compute JðθÞ; and (ii) the weighting coefficients
αj and βj are typically empirically defined by the user, which may significantly affect the model updating result a lot. To
alleviate those two issues, we propose a probabilistic strategy based on Bayesian inference for model updating using
incomplete modal data, in which direct mode matching is not required.

2.1. Bayesian inference for model updating without direct mode matching

We herein consider a linear structure model with n degrees-of-freedoms (DOFs). The mass matrixMARn�n is assumed to
be known and the stiffness matrix KARn�n is parameterized by θ, namely, K¼KðθÞ. In Bayesian model updating, the
posterior probability density function (PDF) of the model parameters (θ), given a specified model class, can be obtained
based on the Bayes' theorem [8,30]:

pðθjDÞ ¼ c�1pðDjθÞpðθÞ ð2Þ
with c being the normalizing factor (the evidence given by data D) which can be written as:

c¼ pðDÞ ¼
Z
Θ
pðDjθÞpðθÞ dθ ð3Þ
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where Θ denotes the domain of integration; pðθjDÞ denotes the posterior PDF of θ conditional on the measured data D
consisting of the extracted modal data from measured system responses, namely,

D¼D1 [ D2 [ …Di [ …DNs

Di ¼ ~ω i;1; ~ω i;2;…; ~ωi;Nm ;
~ϕi;1;

~ϕi;2;…; ~ϕi;Nm

n o
ð4Þ

Here, pðθÞ is the prior PDF of θ; and pðDjθÞ is the likelihood function which gives a measure of the agreement between the
measured and the predicted data. Therefore, the problem of Bayesian model updating can be stated as follows: given the
specified model class, the measured data D, and the parameter prior PDF pðθÞ, one's objective is to determine the posterior
PDF pðθjDÞ.

2.1.1. Likelihood function
The likelihood function can be formulated by considering the prediction error ϵi;jARNo�1 representing the discrepancy

between the measured and the predicted modal data, where the subscripts i and j denote the ithe data set and the jth mode,
respectively. Note that No denotes the number of observed DOFs (Nor the total number of DOFs), i¼ 1;2;…;Ns and
j¼ 1;2;…;Nm. In this work, ϵi;j is expressed as the eigenvalue equation error only taking into account the sensing DOFs (e.g.,
the sensor locations), given by [46]

ϵi;j ¼ KRðθÞ� ~ω2
i;jMR

h i
~ϕi;j ð5Þ

whereMR and KR are the reduced mass and stiffness matrices defined according to the sensing DOFs, which can be obtained
using an iterated improved reduced system (IIRS) technique presented in Section 2.2. To describe the uncertainty of the
prediction error, the characterization of ϵ can be realized by a probability model that produces the maximum uncertainty
based on the Principle of Maximum (Information) Entropy [47]. To wit, ϵi;j can be modeled as a discrete zero-mean Gaussian
process [44], namely, ϵi;j �Nð0;ΣεÞ ¼Nð0;σ2

j IÞ where IARNo�No is an identity matrix; σ2j denotes the variance of the pre-
diction error of the jth mode, which is an additional unknown variable and needs to be identified in the updating process. To
this end, the likelihood function can be expressed below, following the multivariate Gaussian distribution:

pðD θ
�� �¼ 1

ð2πÞNm∏Nm
j ¼ 1σ

2
j

h iNoNs=2
exp �

XNs

i ¼ 1

XNm

j ¼ 1

1
2σ2

j

KRðθÞ� ~ω2
i;jMR

h i
~ϕi;j

��� ���2
2

2
4

3
5 ð6Þ

To evaluate the model updating process, we define as goodness-of-fit function as the sum of least squares in the likelihood
function, given by

Q ðθ;DÞ ¼
XNs

i ¼ 1

XNm

j ¼ 1

KRðθÞ� ~ω2
i;jMR

h i
~ϕi;j

��� ���2
2

ð7Þ

It is noteworthy that since σ2j is an unknown parameter in Eq. (6), we slightly revise the likelihood function by adding σ2j ,
namely, pðDjθ;σ2Þ ¼ pðDjθÞ, where σ2 ¼ fσ2

1;…;σ2
Nm

gT . Therefore, we obtain the augmented posterior PDF through hier-
archical Bayesian inference [8], viz.,

pðθ;σ2jDÞppðDjθ;σ2ÞpðθÞpðσ2Þ ð8Þ
where pðθ;σ2jDÞ is the augmented posterior PDF and pðσ2Þ is the prior PDF of σ2.

2.1.2. Prior distributions
In Bayesian inference, we need to define the prior PDF of the structural parameters characterizing the model as shown in

Eq. (8). Let us assume that the prior system parameter vector θ follows a multivariate Gaussian distribution with mean
θARNθ�1 and covariance matrix ΣθARNθ�Nθ [8], expressed as

p θ
� �¼ 1

ð2πÞNθ=2jΣθj1=2
exp �1

2
θ�θ
� 	

Σ�1
θ ðθ�θÞT


 �
ð9Þ

where θ and Σθ needs to be determined by the user before implementing the Bayesian model updating. It is noteworthy
that if the prior parameters are assumed to be independent from each other, pðθÞ ¼∏Nθ

k ¼ 1pðθkÞ holds. In this case, Σθ is a
diagonal matrix with its diagonal elements being the parameters' standard deviations [12].

In addition, since σ2 is always positive, its prior distribution can be modeled by an inverse Gamma distribution, namely,
pðσ2

j Þ � IGðα;βÞ, where α (α40) and β (β40) are the constant “hyperparameters”. We assume that, in a generic case, σ2j is
statistically independent with each other. Thus pðσ2Þ can be written as

p σ2� �¼ ∏
Nm

j ¼ 1
p σ2

j

� 	
¼ ∏

Nm

j ¼ 1

βα

ΓðαÞσ
�2ðαþ1Þ
j e�β=σ2

j ð10Þ

where Γð�Þ is the Gamma function. Note that, when the a priori information of the hyperparameters is missing, the
hyperparameters can be chosen as α¼ 1 and β¼ 1� 10�16, leading to a non-informative process.
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2.1.3. Final form of the posterior distribution
The substitution of Eqs. (6), (9) and (10) into Eq. (8) leads to the final form of the posterior PDF of the unknown para-

meters:

pðθ;σ2 Dj Þp 1

∏Nm
j ¼ 1σ

2
j

h iNoNs=2þαþ1exp
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XNm
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The total number of unknown parameters in Eq. (11) is NθþNm. If one assumes σ2 ¼ σ2
j , the number of unknown parameters

reduces to be Nθþ1. The conditional posterior PDFs of pðθ;σ2jDÞ in Eq. (11) can be sampled using the MCMC with adaptive
random-walk steps described in Section 3. Noteworthy, the analytical solution of the conditional distribution for σ2j is
written as

pðσ2
j θ;D
�� �¼ IG αþNoNs

2
;βþ1

2

XNs

i

KRðθÞ� ~ω2
i;jMR

h i
~ϕ i;j

��� ���2
2

 !
ð12Þ

It can be seen from Eq. (12) that pðσ2
j jθ;DÞ can be analytically determined given the estimate of θ.

2.2. Model reduction

Let us write the generalized eigenvalue problem of a n-DOF linear system containing the first m modes, with the par-
titioned mass and stiffness matrices and mode shapes governed by the master and slave DOFs, as follows [48]

Kmm Kms

KT
ms Kss

" #
Φmm

Φsm

( )
¼

Mmm Mms

MT
ms Mss

" #
Φmm

Φsm

( )
Λmm ð13Þ

where M and K�KðθÞ are the mass and stiffness matrices, respectively; ΦARn�m is the mass-normalized mode shape
matrix; ΛARm�m is the diagonal eigenvalue matrix consisting of the eigenvalues λi (i¼ 1;2;…;m); m and s denote the
number of master and slave DOFs, respectively, satisfying mþs¼ n. Let us denote Φsm ¼ tΦmm, where tARs�m is a trans-
formation matrix, and substitute it into the second set of Eq. (13) to obtain

t¼ �K�1
ss KT

msþK�1
ss MT

msþMsst
h i

ΦmmΛmmΦ�1
mm ð14Þ

The substitution of Φ¼ ½Φmm Φsm�T ¼ TΦmm into Eq. (13) pre-multiplied by TT yields

M�1
R KR ¼ΦmmΛmmΦ�1

mm ð15Þ
where T¼ ½I t�T and IARm�m; MR and KR are the mass and stiffness matrices of the reduced order model, namely,

MR ¼ TTMT and KR ¼ TTKT ð16Þ
The substitution of Eq. (15) into (14) yields

t¼ �K�1
ss KT

msþK�1
ss MT

msþMsst
h i

M�1
R KR ð17Þ

It is noted that Eq. (17) forms an implicit function with t as the unknown parameter which can be solved through an
iterative process. Friswell et al. [49] proposed an IIRS technique to solve for Eqs. (16) and (17) iteratively to obtain the
reduced mass and stiffness matrices (e.g., in terms of the model parameters θ), namely, KRðθÞ.

2.3. Modal identification

Since we employ the modal data for structural model updating, the modal quantities have to be first identified from the
measured time histories. The choice of modal identification depends on the availability of the measurements, e.g., input–
output or output-only.

In this study, we employ the Eigensystem Realization Algorithm (ERA) together with an Observer Kalman Filter Iden-
tification (OKID) algorithm, viz., ERA-OKID [50,51], for input–output modal identification. The fundamental principle of ERA-
OKID is that system's Markov parameters are first identified using a refined OKID and then used in ERA for the identification
of the modal characteristics such as frequencies and mode shapes. Note that a refinement of the identified state space
models by OKID can be conducted using the procedure proposed by Luş et al. [50]. The input–output scenario could be
earthquake-induced vibration, in which the time history of the ground motion is measured along with the structural
responses.

For the case of output-only measurements, we apply a blind source separation (BSS) [52–54] to extract the modal
parameters. BSS attempts to find latent components contained in measured data which is a linear mixture. Herein, a second-
order blind identification (SOBI) [55] approach is used to identify the modal responses and mode shapes. Frequencies can be
obtained through analyzing the modal responses in the frequency domain. The output-only modal identification can be
carried out when, for example, the measurements are recorded for structural ambient vibrations.
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3. Realization of Bayesian inference by the Monte Carlo technique

In general, since the posterior distributions in Bayesian inference are usually complicated in a normalized form, it is
difficult to directly draw independent samples, based on the joint posterior PDF as shown in Eq. (2), using classic Monte
Carlo (MC) methods. Nevertheless, the Markov chain makes possible to draw a dependent sequence of samples representing
the posterior samples. The corresponding MC simulation process is called MCMC. Typically, MCMC simulation is treated as
an alternative choice for effective sampling. It is noted that the MCMC is able to produce a stationary distribution which is as
close to the target distribution as possible. Therefore, in this study, we apply MCMC to quantify the conditional probability
distributions of the system parameters of a structural model.

One of the most famous MCMC approaches is called Metropolis–Hastings (M–H) algorithm [56,57], which provides a
simple implementation procedure for sampling. The basic idea of the M–H algorithm is to draw samples with acceptance
and rejection governed by a probability. The general principle of the M–H algorithm can be described as follows. Let us
assume that random samples are generated from a target distribution denoted with πðθÞ. Herein, πðθÞ can be the posterior
PDF pðθ;σ2jDÞ as illustrated in Eq. (11). The M–H algorithm generates a sequence of samples θðpÞ from the target distribution
through a rejection sampling procedure. At a generic pth stage (iteration), a candidate solution θ� is generated based on the
current value θðp�1Þ, which can be sampled from a chosen proposal or a transition distribution function g θ�∣θðp�1Þ� 	

. A
Bernoulli trial is then performed with a success probability defined as

γ ¼min
πðθ�Þg θðp�1Þ∣θ�� 	

π θðp�1Þ� 	
g θ�∣θðp�1Þ� 	; 1

8<
:

9=
; ð18Þ

Note that if the result of the trial is successful (e.g., r0rγ, where r0 is a uniform random number sampled from [0, 1]), θðpÞ is
replaced by θ�; otherwise (e.g., r04γ), θðpÞ is kept as θðp�1Þ. The corresponding description of the successful/unsuccessful
state is called moving/staying. Noteworthy, the rejection sampling process is repeated for a sufficient number of iterations,
until the resulting Markov chain becomes stationary, which can be used to represent the target distribution [38]. Never-
theless, there is a non-stationary period of iterations before the chain gets stationarily converged, when one starts the
algorithm from an arbitrary state. The corresponding process is called the “burn-in” period. Only the rest of iterations (e.g.,
called the “retained” period) are considered in the final representation of the posterior distribution.

Remark 1. The transition distribution g θ�∣θðp�1Þ� 	
is typically a symmetric proposal function [34]. In this study, we apply a

normal distribution to describe the transition proposal, e.g.,

g θ�∣θðp�1Þ� 	
¼ ∏

Nθ

k ¼ 1

1ffiffiffiffiffiffi
2π

p
ηðp�1Þ
k θðp�1Þ

k

exp �
θ�
k�θðp�1Þ

k

� 	2
2 ηðp�1Þ

k θðp�1Þ
k

� 	2
2
64

3
75 ð19Þ

Here, θ�
k can be sampled from

θ�
k �N θðp�1Þ

k ; ηðp�1Þ
k θðp�1Þ

k

� 	2
 �
ð20Þ

where N denotes a normal distribution; θ�
k and θ

ðp�1Þ
k represent the kth (k¼ 1;2;…;Nθ) parameter in θ� and θðp�1Þ; ηðp�1Þ

k is
the random-walk coefficient of variance (c.o.v.) of the normal distribution for θk. Here, ηðp�1Þ

k changes adaptively along with
the iterations. For example, ηðpÞk ¼ κkη

ðp�1Þ
k , where κk is the adaptivity coefficient which is updated randomly in the updating

process. In the burn-in period, if the sampling trial is successful, κk is sampled uniformly from the range [1, 1.05], e.g.,
κk � Uð1;1:05Þ; otherwise (sample is rejected), κk is sampled uniformly from [0.95, 1], e.g., κk � Uð0:95;1Þ. The initial value
ηð0Þk is set to be 0.05. The use of an adaptive random-walk step leads to a more efficient sampling process, meanwhile,
keeping the tuning capability of the algorithm.

The MCMC algorithm with adaptive random-walk steps is illustrated in Algorithm 1. Note that the MCMC sampler is
implemented sequentially: the model parameters θ are first sampled, and then used for the sampling of σ2.
Table 1
Statistical results for the most probable stiffness parameters of the 10-storey building.

Normalized ki Identified value c.o.v. (%) Normalized ki Identified value c.o.v. (%)

k1 0.9186 0.56 k6 1.0397 1.58
k2 0.9757 1.43 k7 1.1058 1.04
k3 0.9838 0.68 k8 0.9786 0.85
k4 1.1415 1.56 k9 0.9649 0.57
k5 0.9693 1.43 k10 1.1017 0.81

Note that c.o.v. represents the coefficient of variance.
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Algorithm 1. MCMC sampler with adaptive random-walk steps for probabilistic model updating.

Input the prescribed chain length Nmc, the burn-in period length Nb, the initial random-walk step Lð0Þk , the initial guess for the model parameters θð0Þ ,
and the mass information of the structure M;

Initialize the chain index p’0;
while joNm do

Compute MR and KR θð0Þ� 	
using IIRS presented in Section 2.2;

Sample the prediction error variance parameter σ2ð0Þ
j using Eq. (12).

end while
while poNmc do

Update the chain index p’pþ1;
while koNθ do

set θðp�1Þ
’ θðpÞ

1 ;…;θðpÞ
k�1;θ

ðp�1Þ
k ;θðp�1Þ

kþ1 ;…;θðp�1Þ
Nθ

n o
;

Sample θ�
k using Eq. (20) and set θ�

’ θðpÞ
1 ;…;θðpÞ

k�1 ;θ
�
k ;θ

ðp�1Þ
kþ1 ;…;θðp�1Þ

Nθ

n o
;

Compute MR and KR θ�� �
using IIRS presented in Section 2.2;

Compute the rejection probability γ using Eq. (18);
Generate a uniform random number r0 �Uð0;1Þ;

if r0rγ then

Set θðpÞ
k ’θ�

k;

Sample κk using κk �Uð1;1:05Þ;
Set ηðpÞk ’κkη

ðp�1Þ
k ;

else

Set θðpÞ
k ’θðp�1Þ

k ;

Sample κk using κk �Uð0:95;1Þ;
Set ηðpÞk ’κkη

ðp�1Þ
k ;

end if
end while
while joNm do

Compute MR and KR θðpÞ� 	
using IIRS presented in Section 2.2;

Sample the prediction error variance parameter σ2ðpÞ
j using Eq. (12).

end while
end while
Fig. 1. Convergence of the goodness-of-fit function obtained by MCMC using 20% RMS noise measurement.

Fig. 2. Samples of 10 stiffness parameters of the 10-storey building obtained by MCMC using 20% RMS noise measurement.



Fig. 3. The stiffness parameter posterior PDFs of the 10-storey building identified by MCMC using 20% RMS noise measurement. Note that CI represents the
confidence interval.
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4. Numerical example: a 10-storey shear-type building

In order to test the performance of the proposed algorithm for probabilistic model updating, a 10-storey shear-type
building with synthetic measurements is studied here. The building has uniformly distributed mass and stiffness para-
meters, e.g., m ¼ 100 metric tons and k ¼ 176:729 MN=m, which was previously studied in [41]. The first five natural fre-
quencies are 1.00, 2.98, 4.89, 6.69 and 8.34 Hz.

We first generate the synthetic response time histories simulated from ambient vibrations. We assume this building is
subjected to ambient ground motions modeled by Gaussian white noise sequences. The classic modal damping is employed
to describe the damping mechanism of the structure (e.g., the damping ratio of each mode is chosen 3% in the simulation).
The ambient acceleration responses are acquired at the 1st, 3rd, 6th, 8th and 10th floors. A 100-s long signal with the
sampling frequency of 100 Hz is recorded. To test the effect of measurement noise on parameter updating, noise pollution
has been considered. The noisy output measurements are generated by adding a zero mean Gaussian white noise sequence,
whose root-mean-square (RMS) is a certain percentage of the RMS of the clean signal, to the noise free signal. Six data sets
are synthesized with 20% RMS noise and used for modal identification (e.g., Ns¼6). Note that since the ambient ground



Fig. 4. Shaking table test setup of the 8-storey building. Note that measurements were recorded along the weak direction. The building is modeled by a
8DOF linear system.

Fig. 5. A typical set of measured acceleration time histories of the 8-storey building.
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motion input is assumed to be unmeasured, it naturally forms an output-only identification problem. Therefore, BSS is
applied in this example to identify the modal characteristics of this building. Though the first five modes can be identified,
only four of them (e.g., 1st, 2nd, 3rd, and 5th) are used for model updating. Thus, we have Nm¼4. In the model updating
process, we assume that we do not have any knowledge on the missing mode (e.g., the 4th mode). The mean values of the
identified modal frequencies for the selected four modes by BSS are 0.99, 2.97, 4.88 and 8.37 Hz. The identified mode shapes
are not presented herein.



Fig. 6. Mode shapes of the 8-storey building identified by ERA-OKID using the shaking table test measurement. Note that the markers (○, ▵, and ⋄)
represent three data sets used herein.

Table 2
Statistical results for the most probable stiffness parameters of the 8-storey building.

ki Identified value (kN) c.o.v. (%) ki Identified value (kN) c.o.v. (%)

k1 221.914 1.02 k5 217.557 2.47
k2 164.809 2.34 k6 185.929 1.99
k3 159.425 1.84 k7 171.558 1.47
k4 142.759 1.62 k8 148.994 0.64

Note that c.o.v. represents the coefficient of variance.

Fig. 7. Convergence of the goodness-of-fit function obtained by MCMC using the shaking table test measurement.
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The chain length used in MCMC is Nmc ¼ 6� 103 and the burn-in period is Nb ¼ 2� 103. The lower and upper bounds for
the parameters are zero and four times the true values. Since the masses are assumed to be known, the updating parameters
become k1 � k10 and σ2

1 � σ2
4 (e.g., Nθ ¼ 14). The prior stiffness parameters follow the normal distribution with the mean

value of 200 MN/m and the c.o.v. of 30%. The numerical analyses are programmed in MATLAB (The MathWorks, Inc., MA,
USA) on a standard Intel (R) Core (TM) i7-4930K 3.40 GHz PC with 32G RAM.

Table 1 summarizes the statistical identification results for the most probable stiffness parameters of the 10-storey
building. It can be seen that the updated normalized stiffness values are in general good. The estimated c.o.v. values are
quite small, representing small uncertainties of the model parameters. Nonetheless, the largest error of the most probable
stiffness value is less than 20% (e.g., about 14%). This error is acceptable because the measurements are corrupted with a
high level of noise (e.g., 20% RMS) and a very limited number of modes (e.g., 4 incomplete modes) are used in model
updating. In fact, the most probable stiffness error is comparable to the 20% RMS noise level.

Fig. 1 shows the convergence of the goodness-of-fit function as presented in Eq. (7). It is seen that the algorithm con-
verges quite fast, e.g., the goodness-of-fit function becomes stationary after about 300 iterations. Fig. 2 depicts the samples
of 10 stiffness parameters in the MCMC updating process. Similar to the goodness-of-fit function, the samples become
stationary after 300 iterations. It is noteworthy that the burn-in period of 4000 iterations is sufficient and the retained



Fig. 8. Samples of eight stiffness parameters of the 8-storey building obtained by MCMC using the shaking table test measurement.
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samples can be used for the representation of the posterior PDFs of the stiffness parameters. Fig. 3 shows the quantified
posterior PDFs of the 10 stiffness parameters by MCMC. The 90% confidence intervals are also listed in Fig. 3. It takes about
3.9 min CPU time to complete the model updating process in this example. In general, the proposed algorithm performs
quite well for probabilistic updating of the model stiffness parameters.
5. Experimental example: an 8-storey building shaking table test

We further validate the proposed probabilistic mode updating strategy using measurements from a shaking table test.
The experimental structure utilized in this example is shown in Fig. 4, which was built by the National Center for Research
on Earthquake Engineering (NCREE) in Taiwan [58]. It is a model of a 8-storey shear-type building. The frame consists of four
steel columns and one steel plate for each floor, which are connected with each other by bolts. The plate has a dimension of
43�45 cm along the weak and strong direction, respectively, as shown in Fig. 4. The inter-storey height is 33 cm. An
additive mass (50 kg) is placed in the center of each floor plate. The structure is mounted on a hydraulic uniaxial shaking
table of NCREE. The ground excitation is applied along the weak direction only. Accelerators are installed at all the floors,
including the base floor, to measure the responses along the structural weak direction. Though we have complete mea-
surements, we only consider incomplete measurements from the ground, 1st, 3rd, 5th and 7th floors in the updating process
as illustrated in Fig. 4. The structure is modeled by a linear shear-type system consisting of eight mass parameters (m1 �m8)



Fig. 9. The stiffness parameter posterior PDFs of the 8-storey building identified by MCMC using the shaking table test measurement. Note that CI
represents the confidence interval.

Fig. 10. The posterior PDFs of σ21, σ22 and σ23 sampled by MCMC using the shaking table test measurement. Note that CI represents the confidence interval.
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and eight stiffness parameters (k1 � k8). The estimation of the mass values are m1 ¼ 80 kg and m2 �m8 ¼ 75 kg, which are
regarded as known parameters.

Three sets of scaled ground motions (El Centro earthquake) are used to excite the building (e.g., Ns¼3), with the scaled
peak ground acceleration (PGA) being 0.05g, 0.07g and 0.09g, respectively. The sampling frequency for the test is 200 Hz and
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13660 data points are recorded for each data set. Fig. 5 shows a typical set of measured acceleration time histories of the test
building (e.g., PGA¼0.09g).

We employ the ERA-OKID algorithm to identify the modal quantities of the test building.The first four modes are suc-
cessfully identified; nevertheless, only the 1st, 2nd and 4th modes used for model updating (Nm¼4). The 3rd mode is
manually missing in the updating process. The mean values of the identified modal frequencies for the selected three modes
are 1.28, 4.31, 10.05 Hz. The corresponding identified mode shapes are presented in Fig. 6. In this example, the chain length
used in MCMC is Nmc ¼ 6� 103 and the burn-in period is Nb ¼ 2� 103. The lower and upper bounds for the parameters are
zero and 1� 103 kN, respectively. In this example, the updating parameters are k1 � k8 and σ2

1 � σ2
3 (e.g., Nθ ¼ 11). The prior

PDFs for stiffness parameters are selected to be independent distributions, namely, ki (i¼ 1;…;8) follow the normal dis-
tribution with means equal to ki ¼ 200 kN=m and the corresponding c.o.v. of 30%.

Table 2 gives the statistical identification results for the most probable stiffness parameters of the test structure. In
general, the most probable values of the stiffness parameters are presented in the range of 142� 222 kN. It is observed from
Table 1 that the c.o.v. values are small, which indicates a robust parameter estimation.

Fig. 7 shows the convergence of the goodness-of-fit function in the MCMC updating process. Fig. 8 illustrates the samples
of the eight stiffness parameters. It is seen that the Markov chain converges and becomes stationary reasonably fast (e.g.,
after about 1000 iterations), indicating an efficient updating process. Stationary samples can be observed from Fig. 8 in the
retained period. Fig. 9 depicts the quantified posterior PDFs as well as the 90% confidence intervals of the stiffness para-
meters for the 8-storey test building. In consistency with the results listed in Table 2, it can be observed that the identified
stiffness parameter deviations are small, representing a robust identification. The overall performance of the proposed
algorithm for probabilistic model updating is satisfactory. Fig. 10 shows the posterior PDFs of the prediction error variance
σ1
2
, σ2

2
and σ3

2
with small deviations. Noteworthy, the CPU time for this example is only about 2.9 min.
6. Conclusions

We propose a new probabilistic strategy based on Bayesian inference for model updating in SHM. Incomplete modal data
is first identified using a modal identification approach and then used as the measurement in the updating process. A model
reduction technique (e.g., IIRS) is employed in the process of prediction error calculation such that direct mode matching is
avoided. A MCMC algorithm with adaptive random-walk steps is proposed to draw samples for the representation of model
parameter distributions and uncertainties. A sequential sampling is carried out to draw samples for the model parameters
and the prediction error variances successively. Both numerical and experimental examples are used to illustrate the
effectiveness and efficiency of the proposed method for probabilistic model updating. The proposed algorithm gives a
possible uncertainty analysis of the model parameters and shows its potential to be used as a tool for probabilistic
assessment of structural health conditions. Nevertheless, the examples for validation of the proposed algorithm are less
complex structural systems. Future studies will be verifying the applicability of the proposed algorithm to more complex
structural systems with field measurements.
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