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Continuous monitoring of engineering structures provides a crucial alternative to assess
its health condition as well as evaluate its safety throughout the whole service life. To link
the field measurements to the characteristics of a building, one option is to characterize
and update a model, against the measured data, so that it can best describe the behavior
and performance of the structure. In this paper, we present a novel computational
strategy for Bayesian probabilistic updating of building models with response functions
extracted from ambient noise measurements using seismic interferometry. The intrinsic
building impulse response functions (IRFs) can be extracted from ambient excitation by
deconvolving the motion recorded at different floors with respect to the measured am-
bient ground motion. The IRF represents the representative building response to an input
delta function at the ground floor. The measurements are firstly divided into multiple
windows for deconvolution and the IRFs for each window are then averaged to represent
the overall building IRFs. A hierarchical Bayesian framework with Laplace priors is pro-
posed for updating the finite element model. A Markov chain Monte Carlo technique with
adaptive random-walk steps is employed to sample the model parameters for uncertainty
quantification. An illustrative example is studied to validate the effectiveness of the
proposed algorithm for temporal monitoring and probabilistic model updating of build-
ings. The structure considered in this paper is a 21-storey concrete building instrumented
with 36 accelerometers at the MIT campus. The methodology described here allows for
continuous temporal health monitoring, robust model updating as well as post-earth-
quake damage detection of buildings.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration-based structural health monitoring (SHM) provides a primary tool for evaluating structural condition, integrity
and reliability as well as for assessing potential risks throughout the lifecycle of structures. In recent years, topics on health
monitoring of buildings have drawn great attention (to name a few, [1–10], among others). The vibrational measurements of
the building can be responses induced by earthquake, ambient, or man-controlled excitations. Modal analysis of the vi-
brational records is commonly carried out to extract building characteristics such as damping ratios, resonant frequencies
yuk@mit.edu (O. Büyüköztürk).

www.sciencedirect.com/science/journal/08883270
www.elsevier.com/locate/ymssp
http://dx.doi.org/10.1016/j.ymssp.2016.08.038
http://dx.doi.org/10.1016/j.ymssp.2016.08.038
http://dx.doi.org/10.1016/j.ymssp.2016.08.038
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2016.08.038&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2016.08.038&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2016.08.038&domain=pdf
mailto:haosun@mit.edu
mailto:obuyuk@mit.edu
http://dx.doi.org/10.1016/j.ymssp.2016.08.038


H. Sun et al. / Mechanical Systems and Signal Processing 85 (2017) 468–486 469
and mode shapes, using system identification techniques such as stochastic subspace identification [11], frequency domain
decomposition [12], blind source separation [13], Bayesian operational modal analysis (OMA) [14–20], etc. It is worthwhile
to mention that recent advances in Bayesian OMA showed that robust posterior probabilistic distributions of the modal
parameters can be determined for given data and modeling assumptions without involving any stochastic averaging concept
(see the work by Yuen et al. [14], Au et al. [15–18] and others [19,20] for example). The identified modal properties are then
used for structural condition evaluation, model updating, and post-earthquake damage detection, etc.

Different from OMAwidely used in building monitoring, Snieder and Şafak [21] proposed a deconvolution-based seismic
interferometry approach to separate the impulse response functions (IRFs) of the building from the source of excitation and
from the soil-structure interaction. The IRFs illustrate the propagation of shear waves (e.g., attenuation and scattering)
inside the building, which are substantially composed of the building intrinsic characteristics such as the wave velocity,
attenuation factor, resonant frequencies, mode shapes, etc. This approach has proven to be a successful and powerful
technique for building monitoring under earthquake excitation, especially in one dimension (e.g., the translational direc-
tion) [22,3,23–25,9]. The IRFs as well as the associated characteristics are useful for building condition assessment.
Nevertheless, the deconvolution interferometry mentioned above relies on natural source excitations such as earthquakes,
which limits its applicability to continuous temporal health monitoring of buildings.

Recently, Prieto et al. [26] extended the deconvolution-based seismic interferometry approach to process a long duration
of ambient noise measurements using a temporal averaging technique. The ambient vibration records were divided into
overlapping windows and deconvolved with respect to a reference record window-by-window. Temporal averaging of the
extracted waveforms for each window yields the overall IRFs of the building. This approach was successfully tested on the
instrumented Factor building located at the campus of the University of California, Los Angeles. In another study, Nakata and
Snieder [23] applied the deconvolution interferometry to the ambient vibration data of a building in Japan and obtained
both causal and acausal waves propagating in the building for both positive and negative times. A string model was de-
veloped to quantitatively interpret the deconvolved IRFs. However, this model maybe too simple to describe the building's
mechanical characteristics, and to be used for damage detection purposes. Similar to the OMA techniques (see [17] for
example), the deconvolution interferometry method does not require knowledge of the input sources but assuming that
they are statistically random when ambient noise data is used. Compared to the OMA methods, a distinctive feature of the
interferometry approach is that the phase information can be well extracted for shear wave velocity estimation. Never-
theless, to remove the source effect using temporal averaging, the deconvolution interferometry approach requires a suf-
ficiently long data set (see Section 2.1), which limits this approach to be applied to short period ambient measurements.

In this paper, we employ the extracted IRFs to update the finite element model of a building. The objective is to establish
a baseline model, calibrated against field records, for building response prediction subjected to potential extreme events and
for damage detection/quantification in future operations of the building. The majority of existing work in literature on
model updating with output-only measurements such as ambient vibration records are based on structural modal para-
meters, e.g., frequencies, mode shapes, and frequency response functions (see [27–37] for example). In these approaches,
the modal properties are commonly identified from the output-only measurements using OMA techniques mentioned
previously and mode matching is performed in most cases. In general, the model updating strategies can be categorized into
two groups, namely, deterministic vs. probabilistic. The deterministic approaches (e.g., constrained optimization [38,31,32],
sensitivity method [39–41], heuristic optimization [28,42]) aim to tune parameters so that the updated model can best
predict the measured data, while the probabilistic methods use Bayesian inference and make possible to identify a set of
plausible models with probabilistic distributions and to characterize the modeling uncertainties [29,30,43,34,44–46,35–
37,47]. For example, Au and Zhang [48,49] proposed a two-stage formulation successfully applied to Bayesian modal
identification and updating of structural model parameters using ambient vibration data.

Instead of using the modal quantities, we herein apply the hierarchical Bayesian inference to update the finite element
model of a building against the IRFs extracted from ambient vibration records using deconvolution interferometry. The
model parameters are quantified using a Markov chain Monte Carlo (MCMC) technique with adaptive random-walk steps
for sampling. Straightforward response (IRFs) matching at observation locations is recursively performed in the Bayesian
updating process for given modeling assumptions.

This paper is organized as follows. Section 2 presents the deconvolution interferometry approach for building response
extraction using ambient vibration records. Section 3 describes the probabilistic model updating framework based on
hierarchical Bayesian inference and the MCMC sampling technique with adaptive random-walk steps for parameter un-
certainty quantification. In Section 4, a 21-storey concrete building instrumented with 36 accelerometers at the MIT campus
is studied to validate the performance of the proposed approach for continuous monitoring and model updating of
buildings. Finally, Section 5 gives the discussions and conclusions.
2. Extracting building response using seismic interferometry

The vibration of a building is related to the excitation, the soil-structure interaction, and the building mechanical
properties [21]. Separating the building response from the excitation and the soil-structure interaction using vibrational
data yields information of the intrinsic characteristics of the building. We herein apply a seismic interferometric method to
extract the shear waves propagating in the building, identical to the IRFs, based on deconvolution [21,22,3,26,50,23,24]. The
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Fig. 1. Schematic representation of extracting building's impulse responses using convolution-based seismic interferometry on ambient vibrational
measurements. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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IRF represents the representative building response to an input delta function at the reference level. Treating the ground (or
basement) record as the reference measurement, the IRFs of the building can be computed as follows [23]
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where ( )S z t, is the IRF at z (the floor level, ≤z H , with H being the building height); ω( )y z,n is the nth wavefield at z in the

frequency domain; 〈| | 〉yn
2 is the average power spectrum of yn; ω is the angular frequency; t is the time; z0 is the reference

level of the building (e.g., the ground or the basement);* denotes the complex conjugate; N is the total number of time
intervals of the measurements; δ is a stabilizing parameter (water level), e.g., δ = 0.005 in this study; − 1 denotes the
inverse Fourier transform.
2.1. Extracting IRFs using ambient noise measurement

When earthquake records are used, the IRFs can be directly extracted using Eq. (1) by treating the ground motion
measurement as the source. In temporal monitoring of buildings, ambient noise measurements are typically recorded and
used for building response estimation. For ambient vibrations, it has been shown that, if the vibration sources are homo-
geneously distributed around and inside the building, the deconvolution between signals recorded at different floors will be
the IRF of the portion located between the two sensors [26]. In this case, temporal averaging can be applied [23,26]. We first
assume that the ambient noise measurements have a sufficient duration (e.g., Prieto et al. [26] suggested the data length is
greater than two weeks with a typical sampling rate of 50∼200 Hz for building monitoring). The ambient records excluding
large amplitude data are then divided into multiple overlapping windows (e.g., 10–20 min windows, overlapping 50%) and
the IRFs of each window are extracted with respect to the reference source location by deconvolution using Eq. (1). Finally,
the building IRFs are estimated by averaging the deconvolved traces for each window, which is equivalent to temporal
averaging. Temporal averaging over an enough long duration for numerous random sources ensures a sufficient uniform
source distribution [26,51]. Fig. 1 shows a schematic representation of extracting building's impulse responses using con-
volution-based seismic interferometry on ambient vibrational measurements.
2.2. Estimating wave speed, damping parameter and mode shapes

Based on the extracted IRFs, we can estimate the travel time (tv) of the seismic shear wave from the reference source
location to the top of the building. The shear wave velocity V can be calculated by the height of the building (H) divided by
the travel time (tv), namely, =V H t/ v. In addition, for each resonant frequency, the damping ratio can be calculated from the
amplitude delay with time. The IRFs are first filtered around the resonant frequency within the half-power bandwidth. The
envelopes of the filtered IRFs are then calculated and fitted by linear lines whose slopes are used to determine the damping
ratio corresponding to the resonant frequency. To wit, the damping ratio ξr can be calculated as follows
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where ωr is the rth resonant frequency, No is the number of observations, μi is the slope of the envelop for the ith ob-
servation location. The filtered IRFs within the half-power bandwidth of a dominant frequency can be also used to calculate
the mode shape of the corresponding mode. For a certain mode, the mode shape values are obtained through peaking the
values of the filtered storey IRFs at zero time (t¼0).
3. Probabilistic model updating

The successful identification of the building IRFs makes possible to characterize the physical properties such as stiffness
parameters of a model against the extracted time histories of IRFs. The essential promise of structural model updating
conditional on the IRFs is to quantify a set of model parameters (e.g., denoted with θ ∈ ×θN 1, where Nθ is the number of
parameters) that minimize the discrepancy between the predicted and the extracted IRFs. For example, we consider a linear
building model with Nθ degrees-of-freedoms (DOFs). The mass matrix ∈ ×θ θM N N is assumed to be known and the stiffness
matrix ∈ ×θ θK N N is parameterized by θ, namely,

∑ θ= +
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θ
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where K0 denotes an initial stiffness matrix which can be derived from a full scale finite element model for a building; Kl is a
nominal substructure contribution to the global stiffness matrix ( = … )θl N1, 2, , . We herein propose a hierarchical Bayesian
framework for estimating the unknown model parameters.

3.1. Hierarchical bayesian modeling

In the framework of Bayesian model updating, the posterior probability density function (PDF) of θ can be obtained based
on the Bayes' theorem:
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Here, Θ represents the domain of integration; θ( | )p denotes the posterior PDF of θ conditional on the measured data 
consisting of the IRFs extracted from ambient noise measurements, e.g.,
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where Nt is the number of data points for a single observation; θ( )p is the prior PDF of θ; θ( | )p is the likelihood function
which gives a measure of the agreement between the extract and the predicted IRFs.

3.1.1. Likelihood function

Let us model the prediction error ϵ( ) ∈ ×t N 1o as the discrepancy between the measured IRFs ( ( ) ∈ )×tS N 1o and the

predicted IRFs ( )θ^( ) ∈ ×tS , N 1o , namely, ϵ θ( ) = ^( ) − ( )t t tS S, , where
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Since the IRFs considered in the model updating are in the time domain, we heuristically assume that ϵ is modeled as a
discrete zero-mean Gaussian process based on the Maximum Entropy Principle (MEP) [52,53]. Under the assumption of
equal variances and stochastic independence for the prediction errors of different channels [54], the prediction error follows
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ϵ Σ∼ ( ) 0, with σΣ = I2 . Hence, the likelihood function can be written as
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where s2 is an additional unknown parameter which denotes the variance of the prediction error; (· ·) , represents the
normal distribution function; ∈ ×I N No o is an identity matrix; θ( )J is the goodness-of-fit function, expressed as
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where ∥·∥2 denotes the ℓ2 (Euclidean) norm.
Noteworthy, recent Bayesian OMA studies have shown that model prediction error in the frequency domain based on the

asymptotics of Fourier transform of stochastic processes has a stronger foundation compared to the time domain modeling
under MEP assumption [18]. Hence, the likelihood function could be alternatively modeled as complex Wishart distribution
in terms of spectral density matrix estimators [18,55] for model updating (e.g, the observed spectral density matrix can be
easily obtained from the extracted IRFs in this study). Nevertheless, an inevitable loss in the frequency domain error
modeling is that the phase information (e.g., wave propagation) is completely missing. Therefore, to establish a rigorous
formulation for Eq. (8) without heuristic assumption, a comprehensive study is needed for the error propagation analysis of
the likelihood modeling with IRFs in the time domain, which is beyond the scope of this paper.

3.1.2. Priors
Given an admissible initial stiffness matrix ( )K0 , the eateries of the unknown model parameters θ( )l in Eq. (3) have

sparsity characteristics (e.g., with zero, positive and/or negative values). To promote the sparsity of the model parameters,
we adopt a Laplace prior for each θl ( = … )θl N1, 2, , [56], given by

( )θ λ λ λ θ( | ) = − | | ( )p
2

exp 10l l

where λ is the parameter of the Laplace distribution λ( > )0 called the regularization parameter. Note that λ becomes another
unknown parameter in the Bayesian updating process. Assuming the parameter priors are independent from each other, the
prior distribution of θ can be written as
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where∥·∥1 denotes the ℓ1 (Taxicab) norm. Since s2 and λ are always positive, their prior distributions can be modeled by an
inverse Gamma and a Gamma distribution, respectively: σ α β( ) ∼ ( )p ,inv2 and λ( ) ∼ ( )p a b, , where α β a b, , , are positive
constant hyperparameters, defined as [29]
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where (· ·) , and (· ·) ,inv denote the Gamma and the inverse Gamma distribution function, respectively, and Γ(·) is the
Gamma function. In addition, the hyperparameters are fixed to be small so that approximate noninformative priors hold
(e.g., in our experiments, we choose α = = × −a 1 10 3 and β = = × −b 1 10 6).

3.1.3. Hierarchical bayesian inference
Following the hierarchical Bayesian modeling framework [37,53], we obtain the augmented posterior PDF for unknown

parameters θ σ λ{ }, ,2 as follows
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The substitution of Eqs. (8), (11)–(13) into Eq. (14) leads to the final form of the posterior PDF:
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where α= + +n N N /2 1o t1 and = + −θn N a 12 .
Note that the total number of unknown parameters to be updated is + +θN N 1o . Since Eq. (15) cannot be analytically

solved, we herein proposed to use the Gibbs algorithm to sequentially sample the unknown parameters [29] for the
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representation of the posterior distributions. The model parameters θ can be sampled using the Metropolis–Hastings al-
gorithm proposed in Section 3.2, while s2 and λ can be sampled from their conditional posterior PDFs analytically derived
from Eq. (15), given by

θ θσ α β α β{ | } ∼ + ( ) +
( )

⎛
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⎠⎟  N N J
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Following Eqs. (16) and (17), s2 and λ can be easily sampled as θ is given.

3.2. Parameter sampling using Markov chain Monte Carlo simulation

Since the posterior distributions are usually complicated in a normalized form as shown in Eq. (4), it is difficult to directly
draw independent samples using classic Monte Carlo (MC) methods. However, the Markov chain MC (e.g., MCMC) makes
possible to draw dependent sequences of samples representing the posterior samples. The MCMC simulation is typically
regarded as a convenient choice for parameter sampling, which is able to produce a stationary distribution as close to the
target distribution as possible.

The Metropolis–Hastings (M–H) algorithm, as an alternative MCMC approach, provides a simple sampling procedure for
numerical implementation. The salient feature of this algorithm is to draw samples with an acceptance and rejection rate
governed by a probability. Let us assume that random samples are generated from a target distribution θπ( ). For example,

θπ( ) can be the posterior PDF of the model parameters, e.g., θ σ λ( | )p , ,2 . Following a rejection sampling procedure, the M–H
algorithm generates a sequence of samples θ( )p from the target distribution. At a generic pth iteration, a candidate solution θ*
is generated based on the current value θ( − )p 1 , sampled from a transition proposal ( )θ θ*| ( − )g p 1 [37]. A Bernoulli trial is then
performed with a success probability written as
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If the trial is successful (e.g., γ≤r0 with r0 being a uniform random number sampled from [0,1]), θ( )p is replaced by θ*;
otherwise (e.g., γ>r0 ), θ( )p is set to be θ( − )p 1 . The successful/unsuccessful state is called moving/staying. The rejection
sampling process is repeated for a sufficient number of iterations, until the resulting Markov chain becomes stationary. The
stationary samples are then used to represent the target (posterior) distribution. The corresponding non-stationary and
stationary processes are called the “burn-in” and the “retained” period.

We apply a Cauchy distribution-based transition proposal to generate samples since its PDF has a longer tail which helps
alleviate local minima stagnation in sampling [57]. Each candidate can be generated following θ θ κ* ∼ ( )( − ) ,l
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where (· ·) , denotes the Cauchy distribution function, κl ( = … )θl N1, 2, , is the random walk step (tuning parameter) which
controls the width of the distribution. Note that, instead of using a fixed value, κl can be determined “on the fly” along with
the chain generation [58,59]. For example, starting with an initial value of κl, we multiply κl by 1.01 if a candidate sample is
accepted in the “burn-in” period, and divide it by 1.007 when a candidate is rejected [58]. In the “retained” period, we apply
a fixed value of κl obtained from the end of the “burn-in” period. In this paper, we sample the model parameters θ, the
perdition error variance s2 and the prior regularization parameter λ sequentially based on the framework of Gibbs sampling
[29] together with the M–H algorithm. The proposed MCMC sampler for Bayesian model updating is summarized in Al-
gorithm 1.

Algorithm 1. MCMC sampler using the M–H algorithm and Gibbs sampling for model updating.

input: the prescribed chain length Nmc, the burn-in period length Nb, the initial guess for the model parameters θ( )0 , the initial random walk step

κ ( = … )θ
( ) l N1, 2, ,l
0 , the mass information of the structure M, the substructure stiffness matrix Kl , the extract IRFs ( )tS from measurements, and the

hyperparameters α, β, a, b.
Output: the chains of samples for parameters θ, s2 and λ.

1: Sample the prediction error variance ( ){ } ( )θ θσ α β α β| ∼ + +( ) ( ) ( )  N N J, , , /2 , /2inv
o t

2 0 0 0 ;

2 Sample the regularization parameter{ }θ θλ | ∼ + +θ
( ) ( ) ( )⎜ ⎟

⎛
⎝

⎞
⎠a b N a b, , ,0 0 0

1
;

3 Initialize the chain index ←p 0;
4 while <p Nmc do
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4. Experimental example: a 21-storey building at the MIT campus

We test the performance of the proposed algorithm for continuous monitoring and probabilistic model updating of a tall
building using field measurements. The instrumented building considered herein is called the Green Building located at the
campus of Massachusetts Institute of Technology (MIT) in Cambridge, MA, USA. In this section, we focus on processing the
ambient noise measurements and updating a finite element model of this building.

4.1. Description of the Green Building and its instrumentation

The Green Building (see Fig. 2(a)) is an academic building numbered 54 at MIT, which is home to the lab, office, and
classroom space of the Department of Earth and Planetary Sciences. The Green Building, currently the tallest building in
Cambridge, was designed by I.M. Pei and constructed during the period of 1962–1964. The Green Building is 83.7 m tall (see
Fig. 2(b)) with a footprint of 16.5 m by 34 m (see Fig. 2(c)). The short edges of the building are aligned at about 25° north-
west [60,61]. The short and long directions of the Green Building are accordingly referred to as North-South (NS) and East-
West (EW). As shown in Fig. 2, the ground floor of the Green Building has an open area. The first floor is about 7.1 m above
the grade (grade level¼6.1 m above sea level) and houses a large lecture hall with mezzanines (the total storey height of
about 8.2 m). Mechanical rooms are located on the top two floors (e.g., 19th and 20th floors). Heavy meteorological and
radio equipments are asymmetrically mounted on the roof (see Fig. 2(a)), e.g., a radome is mounted on the south-west
corner [60]. Three elevator shafts are located on the eastern side of the building (see Fig. 2(c)) and two stairwells are placed
symmetrically at the NE and NW corners of the building. The building is constructed of cast-in-place reinforced concrete.
The eastern and western façades are composed of 0.25 m thick shear walls running the height of the building. The thickness
of floor slabs is typically 0.1016 m. The Green Building has a basement with an elevation of 3.8 m below the grade.

As illustrated in Fig. 3, the Green Building is instrumented by the United States Geological Survey (USGS) with 36 uniaxial
EpiSensor ES-US force balance accelerometers designed by Kinemetrics Inc., CA, USA, for structural monitoring. The sensor
sampling rate is 200 Hz on a 24 bit digitizer with a recording range of 74 g. The data recorder is the Granite model as
shown in Fig. 3. The accelerometers are connected by cables to a central data recording station and synchronized using the
global positioning system (GPS) with a discrepancy of less than 1 μs. The system is connected by internet and set to trigger if
acceleration magnitudes over 0.001 g (about 0.01 m/s2) are detected. Acceleration data can also be collected through on-
demand recordings and real-time monitoring [60]. The sensor array was designed for monitoring the NS and EW transla-
tional vibration, the torsion, and the base rocking motion. The sensor locations and orientations are shown in Fig. 3. Note
that the accelerometers are installed below the floor slabs.

Fig. 4 illustrates the sensor locations at a typical floor. For each floor, the storey accelerations (uo for EW direction, vo for



Fig. 2. Green Building at the MIT campus. Note that the east and west sides are concrete shear walls. (a) Green Building (b)South façade elevation view
(c) A typical floor plan.
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Fig. 3. Instrumentation of the Green Building. The accelerometers are installed below the floor slabs. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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NS direction and θo for torsional direction as shown in Fig. 4) can be computed using the following equations
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Fig. 4. Sensor locations at a typical floor. Here, u1, v1 and v2 denote the measured accelerations, while uo, vo and θo denote the derived accelerations at the
reference pint = ( )O 0, 0 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Sensor coordinates with respect to selected reference point O.

Floor level x1 (m) x2 (m) y1 (m) Floor level x1 (m) x2 (m) y1 (m)

Ground 14.08 �13.98 5.99 12 FL 13.93 �15.11 2.29
1 FL 16.50 �16.50 3.49 13 FL 16.50 �15.11 3.19
2 FL 16.50 �16.50 3.49 18 FL 13.93 �15.21 2.32
6 FL 13.93 �15.21 2.29 19 FL 13.93 �15.17 2.32
7 FL 13.93 �15.21 2.29 21 FL 16.75 �16.75 3.32
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where u1 is the measured acceleration along the EW direction, v1 and v2 are the measured accelerations along the NS
direction close to the eastern and western shear walls respectively, x1, x2 and y1 are the sensor coordinates in the x-O-y
coordinate system with = ( )O 0, 0 shown in Fig. 4. Table 1 shows the sensor coordinates with respect to selected reference
point O of the Green Building.

4.2. Deconvolution analysis of the ambient noise measurements

The monitoring system of the Green Building operated continuously and collected acceleration data for 15 days (e.g.,
between 12 and 27 May 2015) under ambient noise conditions. Hence, we have 15 days of continuous ambient noise records
at each sensor. We herein only consider the NS horizontal measurements to validate the proposed approach. The mea-
surements of the EW and the torsional directions can be analyzed similarly. To wit, we take the storey accelerations vo
calculated from Eq. (20) for analysis.

4.2.1. Observed records and data pre-processing
Fig. 5 illustrates the root mean square (RMS) amplitude computed over a 30 s moving window of the raw data along the

NS direction for 15 days. It can be seen that the RMS amplitudes change over time (e.g., higher RMS amplitudes are observed
on May 12th, 13th, 20th, 22nd, etc.). The temporal variations of the RMS amplitudes might be induced by human activities,
elevators, computers, lab equipments inside the building, air conditioners, environmental effects such as wind, and other
sources. Fig. 6 shows the power spectrum density (PSD) functions for a typical set of one hour ambient measurement along
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Fig. 5. Root mean square (RMS) amplitude plot of the 15-day continuous ambient noise measurements of the Green Building along the NS direction. Note
that the RMS time series are calculated based on 30-s moving windows of the raw records.



Fig. 6. Power spectrum density (PSD) functions for a typical set of one hour ambient measurement along the NS direction. Note that the curves in different
colors represent different floor levels. To compute the PSD, the time domain signals are divided into 10.24 s windows with 25% overlap and averaging is
applied to the PSD windows. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the NS direction.
After down-sampling the data to 100 Hz, we divide the 15-d records into 20 min windows (overlapping 50%) to obtain

reliable IRFs and de-trend the data in each window. Since we focus on ambient vibrations of the building, signals with large
amplitudes are excluded from the continuous records in the process of deconvolution analysis [23]. For instance, some
sensors placed under stairs and close to the elevator shafts of the Green Building record large amplitude local vibrations due
to human interference and/or mechanical equipments functioning. To obtain much more reasonable ambient noise mea-
surements for IRFs extraction, we apply a data-weighting technique to clip large amplitude data based on the threshold
value which is identical to 1.5 times the standard deviation of the window records for each station [23,62]. Records with
amplitude larger than the threshold value are replaced by the threshold value.

4.2.2. Extraction of IRFs
We apply Eq. (1) to extract the IRFs for each 20-min window and “stack” (average) them over the 15-d period. Each

window is deconvolved with respect to the ground floor. The averaged IRFs represent the shear waveforms subjected to a
unit impulse ground motion. When the stack of the IRFs become stable, adding more time would not significantly change
the features of the waveforms [26]. We employ a low-pass filter with a cutoff frequency of 8 Hz to the averaged IRFs and
obtain the travel waves as shown in Fig. 7. It can be seen that the waves clearly prorogate upward and downward in both
positive and negative times which correspond to causal and acausal waves, respectively, excited by multiple sources inside
and outside the building [23]. Mathematically, the waveforms of IRFs shown in Fig. 7 can be explained as follows: given an
impulse excitation at the source location (ground level) of the building at t¼0, the responses (e.g., IRFs) at upper floors are
obtained. As illustrated by the arrows in Fig. 7, the pulse travels up in the building, is totally reflected at the roof, then travels
down where it is reflected on the ground, and goes up again.

From the IRFs, we can measure several characteristics of the building, such as the wave velocity, the resonant frequencies
and the attenuation parameters like damping ratios. By measuring the travel time of the pulse inside the building, we can
assess its traveling speed. For example, the travel time of the wave from the ground to the roof is about tv ¼ 0.23 s within a
distance of H ¼ 83.7 m. Therefore, the wave speed is estimated to be V ¼ 364 m/s (e.g., H t/ v). The uncertainty of the wave
speed estimation can be also quantified using least squares fitting through estimating the travel times at different floors
[23,26]. By tracking the change of the shear wave velocity, we can detect possible damage and disturbance of the building as
well as interpret the environmental effect on structural monitoring [63].

In addition, the resonant frequencies can be well obtained through peak picking of the power spectrum of the IRFs. For
example, the first two resonant frequencies of the Green Building are =f 0.745 Hz1 and =f 2.843 Hz2 which match the
results reported in [61]. We also estimate damping ratios corresponding to the first two resonant frequencies. Fig. 8 shows
the Frequency response functions (FRFs) of the extracted IRFs and the least squares linear curve fitting for the envelopes of
the filtered IRFs for the first two modes. The average half-power bandwidth around a certain dominant frequency is firstly
computed and the “�3 dB” frequencies are obtained for bandpass filtering (see Fig. 8(a)). The filtered IRFs are then used for
damping determination. It can be seen from Fig. 8(b) and (c) as well as the covμ values that the curve fitting for the first
mode is better than that for the second mode. The damping ratios for the first two modes can be calculated using Eq. (2), v.i.
z., ξ = 2.66%1 and ξ = 2.82%2 . The frequencies and damping ratios for the first two modes are then used to model the damping
matrix in the model updating process as illustrated in Section 4.3. In addition, mode shapes of the first two modes can be
obtained through peaking the values of the filtered storey IRFs at t ¼ 0 as given in Fig. 9.

It is noteworthy that the great advantage of using ambient noise measurements for the deconvolution interferometry
analysis is that ambient vibrations can be recorded continuously, everywhere and at any time so that we do not need to rely
on controlled (artificial) or natural (earthquakes) sources. They, thus, allow non-invasive and non-destructive testing and
monitoring of structures such as buildings.



Fig. 7. Filtered IRFs (impulse response functions) for the frequency range of 0–8 Hz calculated from 15-day ambient noise measurements along the NS
direction. The red and green arrows represent waves traveling upward (positive slope) and downward (negative slope), respectively. The wave travel time
is about 0.23 s at the roof level and the corresponding shear wave velocity is about 364 m/s. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. Curve fitting for the envelopes of the filtered IRFs for the first two modes. The shaded area denotes the half-power bandwidth for a dominant
frequency. Note that the FRF curves in (a) and the curves from the bottom to the top in (b) and (c) represent different floor levels, μ̄ denotes the mean slope
of the fitted lines and μcov denotes the corresponding coefficient of variance. (a) Frequency response functions (FRFs) and the half-power bandwidths for
the first two modes (b) μ| ¯|¼0.1246 and μcov ¼0.82% (c) μ| ¯|¼0.5039 and μcov ¼4.75%. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 9. Extracted mode shapes of the Green Building through filtering the IRFs. The mode shape values are obtained through peaking the filtered IRFs
values at zero time (t¼0). Note that the IRFs are filtered around the corresponding dominant frequencies. (a) First mode shape (b) Second mode shape. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.3. Model updating of the Green Building

We update the finite element model of the Green Building using Bayesian framework based on the extracted IRFs dis-
cussed in Section 4.2.2. The purpose of updating the building model against field measurements is to initiate a baseline
model for structural response prediction subjected to potential extreme events and for damage detection/quantification in
future operations. Note that the predicted IRFs at different floors (e.g., θ^( )S z t, ,i , = …i 1, 2, , 9) can be simulated by solving
the dynamic equations of the model with the input setting to be the impulse ground motion (e.g., ( )S z t,0 ). The long enough
ambient noise measurements (e.g., 15 days in this study) promise to provide a great resolution for structural parameters to
be updated. In regard to temporal (continuous) monitoring of a building, the IRFs can be extracted every 15 days and the
model is updated accordingly (e.g. for possible damage quantification).

4.3.1. Finite element modeling of the Green Building
An initial finite element model of the Green Building is established using ETABS (Computers and Structures, Inc., CA, USA)

based on its architectural and structural drawings as partially shown in Fig. 2. Stone concrete with a compressive strength of
27.6 MPa and density of 2400 kg/m3 is used to construct the columns and exterior walls, while lightweight concrete with a
compressive strength of 25.9 MPa and density of 2000 kg/m3 is used for slabs, beams and stairs. Interior partitions such as
interior walls are also included in the finite element model, whose density is set to be 900 kg/m3 and stiffness is set to be 1%
of that of the stone concrete. Therefore, the interior partitions primarily contribute to the mass. Fig. 10 shows the full scale
finite element model of the Green Building with a list of several typical floor plans. We model the Green Building with a
fixed base on the ground while excluding the basement of the building. This assumption simplifies the modeling but ignores
the soil-structure interaction effect on the building motion. However, for low-amplitude vibrations such as ambient vi-
brations, such an effect can be ignorable [2].

We assume that the floor diaphragms are rigid in plane and masses can be lumped at the center of mass each floor. Then
the lumped mass matrix (M) and the initial translational stiffness matrix ( )K0 can be extracted from the full scale finite
element model for the NS direction. K0 is obtained following the standard procedure below: 1) for the lth storey of the
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Fig. 10. Green Building full scale finite element model. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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building model ( = … )l 1, 2, , 21 , apply a unit load at the center of floor mass, run the finite element analysis, and record the
jth storey displacement (note that ≤j l); 2) construct an upper triangular matrix using the storey displacement recorded in
the previous step with l and j representing the column and the row of the matrix, respectively; 3) convert the upper
triangular matrix to a full matrix (called the flexibility matrix denoted with D) based on matrix symmetry; 4) compute the
inverse of D and set it to be the initial stiffness matrix, e.g., = −K D0

1. The lumped storey masses of the Green Building
extracted from the finite element model are given as follows: =m 9651 , =m 8512 , =m 4643 , =m 4784 , ∼ =m m 4875 18 ,

=m 46119 , =m 51120 and =m 44321 ton.
The first two dominant frequencies of the initial model are 0.825 (10.74%) and 3.297 (15.96%) Hz, where the percentage

values in the parentheses represent the discrepancies between the analytical frequencies and those of the measured data.
The discrepancy illustrates that the analytical model cannot accurately represent the actual building due to idealized model
assumptions and inaccurate structural information. Therefore, we carry out updating of the Green Building model to achieve
an analytical model which yields responses as close as possible to the actual measurements. We apply a shear type model to
describe the substructure (e.g., ( = … )lK 1, 2, , 21l in Eq. (3)) of the Green Building for the NS direction and have totally 21
stiffness parameters to update, e.g., θ = { … }k k k, , , T

1 2 21 . To predict the IRFs using the finite element model, the formulation of
damping matrix is required. However, in real application it is not necessary to determine the damping matrix for modal
analysis and damping ratios can be directly identified from data. We herein apply a Rayleigh damping to model the at-
tenuation mechanism of the Green Building, namely, α β= +C M Kr r , where αr and βr are two damping coefficients which
can be determined by the modal damping ratios and the natural frequencies of two selected vibrational modes. Herein αr

and βr can be approximately predetermined before model updating using the two estimated damping ratios (ξ = 2.66%1 and
ξ = 2.82%2 ) and frequencies ( =f 0.745 Hz1 and =f 2.843 Hz2 ) in Section 4.2.2, namely, α = 0.200r and β = × −2.543 10r

3.
Though the Rayleigh damping involves modeling error in real applications, it has been frequently used in time domain
structural response prediction [64,65].

4.3.2. Model updating results
We apply the proposed Bayesian model updating approach (see Algorithm 1) to quantify the uncertainty of the 21

stiffness parameters. The IRFs in the positive time filtered by a band-pass filter (0.1–15 Hz) are used in the model updating
process. The essential parameters for the MCMC sampler used for the simulation are given as follows: = ×N 2 10mc

5,
= ×N 6 10b

4, κ =( ) 0.005l
0 , α = = × −a 1 10 3 and β = = × −b 1 10 6. The lower and upper bounds for the stiffness parameters



Fig. 11. MCMC convergence of the goodness-of-fit function. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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are − ×5 109 and ×1 10 N/m10 , respectively. The numerical analyses are programmed in ®MATLAB (The MathWorks, Inc.,
MA, USA) on a standard Intel (R) Core (TM) i7-4930 K 3.40 GHz PC with 32 G RAM.

Fig. 11 shows the convergence of the goodness-of-fit function as presented in Eq. (9). It is seen that the algorithm
converges after about ×4 104 iterations. After “burn-in”, the goodness-of-fit function becomes stationary as illustrated in
the zoomed view of the “retained” period in Fig. 11. Similar convergence can be observed in the parameter samples, for
example, Fig. 12 gives the Markov chains of several stiffness parameters sampled by the proposed MCMC model updating
algorithm. In general, stationary samples can be observed in the “retained” period as shown in Fig. 12. The “burn-in” period
of ×3 104 iterations are sufficient and the “retained” samples can be used for the representation of the posterior dis-
tributions of the stiffness parameters. Fig. 13 depicts the pairwise plots of posterior samples for some typical stiffness
parameters. It can be seen that some of the stiffness parameters approximately follow the normal distribution (e.g., the
regions of the k2-k3, k5-k6, k9-k10 and k13-k14 pairwise samples are similar to ellipses).

Fig. 14 shows the quantified posterior PDFs of the 21 stiffness parameters for the Green Building model. It is noted that
the posterior PDFs, represented by histograms, are obtained based on the statistics of the samples in the “retained” period.
We also fit the posterior histograms using the generalized extreme value (GEV) distribution. It is seen from Fig. 14 that the
fitted GEV curves can represent the posterior parameter distributions quite well, e.g., the GEV curves match the histograms
quite well. The maximum a posteriori (MAP) estimate of the stiffness parameters (e.g., k̂l, where = …l 1, 2, , 21) as well as the
90% confidence intervals are also summarized in Fig. 14. The MAP estimates of the first two dominant frequencies are 0.730
(2.0%) and 2.836 (0.2%) Hz, where the percentage values in the parentheses mean the relative errors between the updated
analytical frequencies and the measured frequencies, showing a satisfactory model updating performance of the proposed
algorithm. Noteworthy, the quantified PDFs for the stiffness parameters can be used as the baseline distributions for possible
damage (e.g., post-earthquake damage) and disturbance detection of the building in the future.

In addition, Fig. 15 illustrates the identified PDFs of the prediction error variance s2 and the regularization parameter λ. It
Fig. 12. Markov chains of several stiffness parameters sampled by the MCMC model updating algorithm. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)



Fig. 13. Pairwise plots of posterior samples (“retained” period samples of the MCMC) for some stiffness parameters. Note that the unit for the stiffness
parameters in this figure is ×1 10 N/m9 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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is seen that the PDFs have small deviations. Since both s2 and λ are positive, the log-normal distribution is used to fit their
posterior histograms. It can be observed from Fig. 15 that the fitted log-normal curves perfectly agree with the posterior
histograms. The MAP estimate of those two parameters are σ̂ = × −1.521 10

2 4 and λ̂ = 64.3. Fig. 16 shows the reconstructed
IRFs in the positive time of the Green Building in comparison with the IRFs extracted from 15 day continuous measurements
through deconvolution. The reconstructed IRFs are calculated from simulation using the initial model and the updated
model with the MAP estimate of the stiffness parameters, respectively. It can be seen from Fig. 16 that the reconstructed IRFs
obtained by the initial model have large discrepancies compared with the measured IRFs. After model updating, the re-
constructed IRFs can agree with the measured IRFs quite well. Fig. 17 shows the reconstructed FRF of a typical floor com-
pared with the measured FRF. In general, the reconstructed spectrum of the updated model matches the measured one well
excluding the region around 5 Hz. Nevertheless, the frequency of about 5 Hz can be obviously seen as the second torsional
mode of the Green Building through analyzing the torsional measurements. Since we only consider model updating of the
NS translational direction of the Green Building in this example, it appears reasonable that reconstructed spectrum does not
fit the torsional mode. Overall, the proposed algorithm performs quite well for probabilistic updating of the model stiffness
parameters.
5. Conclusions

We present a novel computational approach for continuous monitoring of buildings using seismic interferometry and
ambient noise measurements. A 21-storey concrete building, called the Green Building, located at the MIT campus is studied
to validate the proposed approach. We retrieve the travel waves inside the building through deconvolving the storey records
with respect to the ground measurement (virtual source). Unlike the deconvolution of earthquake records, the ambient
measurements are divided into overlapping windows and deconcolved window-by-window. Temporal averaging over a
long enough duration is applied to the IRFs (impulse response functions) for each window so as to obtain the representative
IRFs of the building. Note that the IRF represents the representative building response to an input delta function at the
ground floor. Since numerous inside and outside sources simultaneously excite the building, the IRFs are presented in both
positive and negative times, corresponding to causal and acausal waves, respectively. From the extracted IRFs, we can
measure the building characteristics, such as the wave velocity, resonant frequencies, mode shapes and damping ratios. In
addition, since the interferometric analyses of ambient data for different channels are independent from each other, dis-
tributed computing can be applied to obtain the IRFs. Though it is nice to show the wave propagation inside a building based
on the IRFs, this method requires a sufficiently long data set to remove the source effect using temporal averaging, which
places a limitation of applying this approach to short period ambient measurements.

To connect the IRFs to the building mechanical characteristics, we characterize and update a finite element model of the



Fig. 14. Identified stiffness parameter PDFs of the Green Building model using 15 day continuous measurements. Note that the histograms denote the PDFs
obtained from MCMC sampling and the solid blue lines denote the PDFs through curve fitting using the generalized extreme value (GEV) distribution. The
red star denotes the maximum a posteriori estimate k̂l, where = …l 1, 2, , 21. The dash-dot lines represent the 90% confidence interval. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

H. Sun et al. / Mechanical Systems and Signal Processing 85 (2017) 468–486 483
Green Building against the extracted building responses using the Bayesian model updating approach. We parameterize the
model by 21 stiffness parameters and quantify the parameter uncertainties using a Markov chain Monte Carlo sampling
technique with adaptive random-walk steps. The priors of the stiffness parameters are modeled by the Laplace distribution



Fig. 15. Identified PDFs of the prediction error variance s2 and the regularization parameter λ. Note that the histograms denote the PDFs obtained from
MCMC sampling and the solid blue lines denote the PDFs through curve fitting using the log-normal distribution. The red star denotes the maximum a
posteriori estimate σ̂2 and λ̂ . (a) PDF of s2 (b)PDF of λ. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 16. Example of reconstructed IRFs (impulse response functions) of the Green Building in comparison with the IRFs extracted from 15 day continuous
measurements by deconvolution. Note that the reconstructed IRFs are obtained from simulation using the initial model and the updated model with the
maximum a posteriori parameter estimate. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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which brings the Bayesian inference with ℓ1 sparse regularization. The updated model with quantified parameter un-
certainties can be used as a baseline for future damage (e.g., post-earthquake damage) or disturbance detection. In general,
the results show the effectiveness of the proposed approach for response extraction and probabilistic model updating of



Fig. 17. A typical reconstructed frequency response function (FRF) compared with the FRF extracted from 15 day continuous measurements. Note that the
reconstructed FRF is computed based on the initial model and the updated model with the maximum a posteriori parameter estimate. Note that the
frequency component of about 5 Hz in the measured FRF is a torsional resonant frequency of the Green Building. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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buildings. The Bayesian updating process is able to link the interferometric analysis results to the model properties of a
building, providing a possible way to quantify the building performance and health condition. In addition, the methodology
described here allows for continuous temporal health monitoring and post-earthquake damage detection of buildings.
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