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Oil Futures Prices in a Production Economy with
Investment Constraints

LEONID KOGAN, DMITRY LIVDAN, and AMIR YARON∗

ABSTRACT

We document a new stylized fact, that the relationship between the volatility of oil
futures prices and the slope of the forward curve is nonmonotone and has a V-shape.
This pattern cannot be generated by standard models that emphasize storage. We
develop an equilibrium model of oil production in which investment is irreversible
and capacity constrained. Investment constraints affect firms’ investment decisions
and imply that the supply elasticity changes over time. Since demand shocks must
be absorbed by changes in prices or changes in supply, time-varying supply elasticity
results in time-varying volatility of futures prices. Estimating this model, we show
it is quantitatively consistent with the V-shape relationship between the volatility of
futures prices and the slope of the forward curve.

IN RECENT YEARS COMMODITY MARKETS have experienced dramatic growth in trad-
ing volume, the variety of contracts, and the range of underlying commodities.
There also has been a great demand for derivative instruments utilizing opera-
tional contingencies embedded in delivery contracts. For all these reasons there
is widespread interest in models for pricing and hedging commodity-linked con-
tingent claims. Commodities offer a rich variety of empirical properties that
make them strikingly different from stocks, bonds, and other conventional fi-
nancial assets. Notable properties of commodity futures include: (i) commod-
ity futures prices are often “backwardated” in that they decline with time-to-
delivery (Litzenberger and Rabinowitz (1995)); (ii) spot and futures prices are
mean-reverting for many commodities; (iii) commodity prices are strongly het-
eroscedastic (Duffie and Gray (1995)) and price volatility is correlated with
the degree of backwardation (Ng and Pirrong (1994) and Litzenberger and
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Rabinowitz (1995)); and (iv) unlike financial assets, many commodities have
pronounced seasonalities in both price levels and volatilities.

The theory of storage of Kaldor (1939), Working (1948, 1949), and Telser
(1958) has been the foundation of the theoretical explorations of futures/forward
prices and convenience yields (value of the immediate ownership of the physi-
cal commodity). Based on this theory researchers have adopted two approaches
to modelling commodity prices. The first approach is mainly statistical in na-
ture and requires an exogenous specification of the “convenience yield” pro-
cess for a commodity (e.g., Brennan and Schwartz (1985), Brennan (1991), and
Schwartz (1997)). The second strand of the literature derives the price processes
endogenously in an equilibrium valuation framework with competitive storage
(e.g., Williams and Wright (1991), Deaton and Laroque (1992, 1996), Routledge,
Seppi, and Spatt (2000)). The appealing aspect of this approach is its ability
to link futures prices to the level of inventories and hence derive additional
testable restrictions on the price processes.

From a theoretical perspective the models based on competitive storage ig-
nore the production side of the economy, and consequently they suffer from an
important limitation. Inventory dynamics have little if any impact on the long-
run properties of commodity prices, which in such models are driven mostly by
the exogenously specified demand process. In particular, prices in such models
tend to mean revert too fast relative to what is observed in the data (see Rout-
ledge et al. (2000)), and more importantly these models cannot address the rich
dynamics of the term structure of return volatility.

In this paper we document an important new stylized fact regarding the prop-
erty of the term structure of volatility of futures prices. We demonstrate that
the relation between the volatility of futures prices and the slope of the forward
curve (the basis) is nonmonotone and convex, that is, it has a V-shape. Specif-
ically, conditional on a negatively sloped term structure, the relation between
the volatility of futures prices and the slope of the forward curve is negative. On
the other hand, conditional on a positively sloped term structure, the relation
between the volatility and the basis is positive. This aspect of the data cannot be
generated by basic models that emphasize storage, since such models imply a
monotone relation between futures price volatility and the slope of the forward
curve (see Routledge et al. (2000)).

In light of the aforementioned stylized fact, we explore an alternative model
characterizing the mechanism of futures price formation. Futures prices are
determined endogenously in an equilibrium production economy featuring con-
straints on investment, namely, irreversibility and a maximum investment
rate. These investment constraints lead to investment triggers that affect firms’
investment decisions, which in turn determine the dynamic properties of their
output. More specifically, if the capital stock is much higher than its optimal
level, given the current level of demand, firms find it optimal to postpone in-
vestment and the irreversibility constraint binds. On the other hand, when the
capital stock is much lower than the optimal level, firms invest at the maxi-
mum possible rate and the investment rate constraint binds. In either case, the
supply of the commodity is relatively inelastic and futures prices are relatively
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volatile. Since futures prices of longer-maturity contracts are less sensitive to
the current value of the capital stock than the spot price, the slope of the for-
ward curve tends to be large in absolute value when the capital stock is far
away from its long-run average value. Thus, the absolute value of the slope
of the term structure of futures prices is large exactly when the investment
constraints are binding. Hence, the model predicts that the volatility of futures
prices should exhibit a V-shape as a function of the slope of the term structure
of futures prices. Stated differently, because of the binding constraints on in-
vestment, supply-elasticity of the commodity changes over time. Since demand
shocks must be absorbed either by changes in prices or by changes in sup-
ply, time-varying supply elasticity results in time-varying volatility of futures
prices. In our calibration below we show that the model can also generate these
patterns in a manner that is quantitatively similar to the data.

There exists very little theoretical work investigating the pricing of com-
modities futures using a production economy framework. Grenadier (2002) and
Novy-Marx (2007) also consider futures prices in a production economy, and dis-
cuss how the proximity of the state variable to the investment threshold governs
the slope of the forward price curve. Both these papers, which include invest-
ment irreversibility, do not include an investment rate bound and thus cannot
generate the price volatility predictions in backwardation. Casassus, Collin-
Dufresne, and Routledge (2004) also analyze spot and futures oil prices in a
general equilibrium production economy but with fixed investment costs and
two goods. While also a production economy, the structure and implications of
their model are quite different. A recent paper by Carlson, Khoker, and Titman
(2006) also considers an equilibrium model with production. While we assume
that oil reserves are infinite, their model emphasizes exhaustibility of oil re-
serves. Their model also gives rise to the nonmonotone relation between the
futures price volatility and the slope of the forward curve. This implication is
driven, as in our model, by adjustment costs in the production technology. This
provides further evidence of the theoretical robustness of our finding—the ex-
act structure of the model is not particularly important, as long as adjustments
of production levels are limited in both directions.

The rest of the paper is organized as follows. In Section I, we describe our
data set and document empirical properties of futures prices. Section II develops
the theoretical model. In Section III, we study quantitative implications of the
model. Section IV provides conclusions.

I. Empirical Analysis

We concentrate our empirical study on crude oil. Kogan, Livdan, and Yaron
(2005) report qualitatively similar findings for heating oil and unleaded gaso-
line. We choose however to focus on the crude oil contract because: (i) it rep-
resents the most basic form of oil, for which the investment constraints we
highlight seem to be the most relevant and (ii) the other contracts clearly use
crude oil as an input and thus their analysis may require a more specific “down-
stream” industry specification. Our data consist of daily futures prices for the
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NYMEX light sweet crude oil contract (CL) for the period from 1982 to 2000.
Following previous work by Routledge et al. (2000), the data are sorted by con-
tract horizon with the “1-month” contract being the contract with the earliest
delivery date, the “2-month” contract having next-earliest delivery date, etc.1

We consider contracts up to 12 months to delivery since liquidity and data avail-
ability are good for these horizons.2 Given we are using daily data, our data set
is sufficiently large, ranging from 2,500 to 3,500 data points across different
maturities.

Instead of directly using futures prices, P(t, T), we use daily percent changes,
R(t, T ) = P (t,T )

P (t−1,T ) . Percent price changes are not as susceptible as price lev-
els to seasonalities and trends, and therefore their volatility is more suitable
for empirical analysis. We then proceed by constructing the term structure of
the unconditional and conditional volatilities of daily percent changes on fu-
tures prices. In calculating conditional moments, we condition observations on
whether the forward curve was in backwardation or in contango at the end of
the previous trading day (based on the third-shortest and sixth-shortest matu-
rity prices at that time). Figure 1 shows the conditional and unconditional daily
volatilities for futures price percent changes. Unconditionally, the volatility of
futures price changes declines with maturity, consistent with the Samuelson
(1965) hypothesis. The behavior of crude oil (CL) contracts was previously stud-
ied by Routledge et al. (2000). We find, as they do, that the volatility of futures
prices is higher when the forward curve is in backwardation. This has been
interpreted as evidence in favor of the standard storage theories, emphasizing
the effect of inventory stock-outs on price volatility.

Next, we study the patterns in volatility of futures prices in more detail.
Specifically, we estimate a functional relation between the futures price volatil-
ity and the 1-day lagged slope of the forward curve. Following the definition of
conditional sample moments, the time series of the slope of the forward curve,
SL(t), is constructed as a logarithm of the ratio of the futures price of the sixth-
shortest maturity in months available on any day t, P(t, 6), to the future price
of the third-shortest maturity, P(t, 3), available on the same day

SL(t) ≡ ln
[

P (t − 1, 6)
P (t − 1, 3)

]
. (1)

We use the demeaned slope,

S̃L(t) ≡ SL(t) − E
[
SL(t)

]
, (2)

1 In our data set on any given calendar day there are several contracts available with different
time to delivery measured in days. The difference in delivery times between these contracts is
at least 32 days or more. We utilize the following procedure for converting delivery times to the
monthly scale. For each contract we divide the number of days it has left to maturity by 30 (the
average number of days in a month), and then round off the result. For days when a contract with
time to delivery of less than 15 days is traded, we add 1 month to the contract horizon obtained
using the above procedure for all contracts traded on such days. The data are then sorted into bins
based on the contract horizon measured in months.

2 We refer to this time to delivery as time to maturity throughout the paper.



Oil Futures Prices in a Production Economy 1349

1 2 3 4 5 6 7 8 9 10 11 12
0

0.005

0.01

0.015

0.02

0.025

0.03

Months to maturity

σ
unconditional
contango
backwardation

Figure 1. Term structure of volatility, crude oil futures. The data are daily percentage price
changes on NYMEX crude oil (CL) futures from 1983 to 2000. σ denotes the standard deviation of
daily percentage price changes. The time to maturity is defined as the number of months left until
the delivery month. The unconditional standard deviation is constructed using the sample’s first
and second moments, while standard deviations conditional on backwardation and contango are
conditioned on the shape of the forward curve one day prior.

in our analysis. We start by using the demeaned lagged slope as the only ex-
planatory variable for realized volatility:

|R(t, T )| = αT + βT S̃L(t − 1) + εT (t). (3)

Since we are now estimating a different functional form, note that the relation
(3) can potentially yield different information from that contained in Figure 1,
which was obtained by simply splitting the sample based on the slope of the
forward curve. The term structure of βT as well as the corresponding t-statistics
are shown in Figure 2. We also report these results in Table I for T equal to 1,
5, and 10 months. The negative sign of βT for all times to maturity is a notable
feature of these regressions. This result seems to be at odds with the relations
shown in Figure 1, where volatility conditional on backwardation is for the most
part higher than the unconditional volatility.

The apparent inconsistency becomes less puzzling in light of the intuition of
the model we present below. In particular, our theoretical results motivate one
to look for a nonmonotone relation between the volatility of future prices and
the slope of their term structure. To do so we decompose the lagged demeaned
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Figure 2. Conditional volatility, crude oil futures. The data are daily percentage price
changes on NYMEX crude oil (CL) futures from 1983 to 2000, denoted by R(t, T). Two differ-
ent specifications are used to relate the instantaneous volatility of daily percentage price changes
to the beginning-of-period slope of the forward curve defined as

SL(t) = ln
[

P (t − 1, 6)
P (t − 1, 3)

]
.

The first specification is

|R(t, T )| = αT + βT S̃L(t − 1) + εT (t),

where S̃L(t) is the demeaned slope. The second specification decomposes the slope into positive
and negative parts,

|R(t, T )| = αT + β1,T (S̃L(t − 1))+ + β2,T (S̃L(t − 1))− + εT (t),

where (X)± denotes the positive (negative) part of X. The figure shows the estimates of all three
coefficients (Panel A) and their respective t-statistics (Panel B) for different times to maturity. All
t-statistics are White-adjusted.

slope into positive and negative parts and use them as separate explanatory
variables (i.e., use a piecewise linear regression on the demeaned slope of the
term structure),

|R(t, T )| = αT + β1,T (S̃L(t − 1))+ + β2,T (S̃L(t − 1))− + εT (t), (4)

where (X)± denotes the positive (negative) part of X. Figure 2 as well as
Table I illustrate our results. Both β1,T and β2,T are statistically and
economically significant for most maturities. More importantly, β1,T and β2,T
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Table I
Conditional Volatility, Crude Oil Futures

This table reports results for two different regressions. The data are daily percentage price changes
on NYMEX crude oil (CL) futures from 1983 to 2000. The specifications in both panels are the same
as in Figure 2. All results are reported for times to maturity equal to 1, 5 and 10 months. All t-
statistics are White-adjusted for conditional heteroscedasticity.

1 Month 5 Months 10 Months

|R(t, T )| = αT + βT S̃L(t − 1) + εT (t)
βT −0.0743 −0.0462 −0.0419
(t-stat) (−1.37) (−1.77) (−1.89)
R2 0.0122 0.0111 0.0117

|R(t, T )| = αT + β1,T (S̃L(t − 1))+ + β2,T (S̃L(t − 1))− + εT (t)
β1,T 0.3191 0.1791 0.1308
(t-stat) (5.25) (4.42) (3.68)
β2,T −0.3505 −0.2039 −0.1632
(t-stat) (−5.29) (−7.26) (−6.17)
R2 0.1320 0.1058 0.0790

differ in sign: β1,T is positive and β2,T is negative. Therefore, the relation be-
tween the volatility of futures prices and the slope of the term structure of
prices is nonmonotone and has a V-shape: Conditional volatility declines as a
function of the slope when the latter is negative, and increases when the latter
is positive.3

One potential concern is that the piecewise linear regression may artificially
lead our estimates to highlight the “V-shape” pattern we report. To allow for a
more flexible form for the relationship between volatility and the slope we use
a nonparametric regression (our specific implementation is based on Atkeson,
Moore, and Schaal (1997)). Figure 3 shows the results of the nonparametric
regression for horizon T equal to 2, 4, 6, and 8 months. For all maturities
it reveals a clear nonmonotone V-shap relationship between the volatility of
futures prices and the slope of the term structure of prices.

We perform several additional robustness checks. First, we estimate condi-
tional variances instead of conditional volatility by using the square of daily
price changes instead of their absolute value. We find that the conditional vari-
ance leads to very similar conclusions. In most cases, both β1,T and β2,T re-
main statistically significant. Next, we fit a GARCH(1,1) model to the daily
percentage price changes of maturity T to obtain the fitted volatility time se-
ries σGARCH(t, T) and use it as an independent variable in (4). The results are
reported in Panel 1 of Table II and show that both β1,T and β2,T remain sta-
tistically significant. To avoid concerns about look-ahead bias, we also predict
volatility based on a rolling GARCH(1,1), which we denote σ̂G ARCH (t, T ). It is
the fitted value of a GARCH(1,1) model to percentage price changes based on

3 An alternative parametric form would be quadratic. While the quadratic specification does not
allow us to test for the conditional sign of the relationship between the slope of the forward curve and
conditional volatility of futures returns, it provides a test for the convexity of that relationship. The
estimated relationship (not reported here) shows that the second-order term is highly statistically
significant.
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Figure 3. V-shape of volatility of futures prices, data and model output. Futures volatility
is plotted as a function of the slope of the forward curve for different values of time to maturity
T. Time to maturity is measured in months. In Panel A, T = 2; in Panel B, T = 4; in Panel C,
T = 6; in Panel D, T = 8. We use Receptive Field Weighted Regression (RFWR), based on Atkeson,
Moore, and Schaal (1997) to construct the functional form of volatility implied by the data. In both
cases, data and model, volatility exhibits a V-shape pattern as a function of the slope. The slope is
demeaned. Volatility is expressed in annual terms. Model parameters are given in Table III.
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Figure 3. Continued

a sample that ends at t − 1 with a window of 300 observations. We then use it
in the regression

σ̂G ARCH (t, T ) = αT + βG,T σ̂G ARCH (t − 1, T ) + β1,T (S̃L(t − 1))+

+ β2,T (S̃L(t − 1))− + εT (t). (5)

The results are reported in Panel 2 of Table II and show that both β1,T and β2,T
still remain statistically significant.
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Table II
GARCH Regressions, Crude Oil Futures

This table reports results for two different regressions. The data are daily returns percentage price
changes on NYMEX crude oil (CL) futures from 1985 to 2000. The volatility time series σGARCH(t, T)
is obtained by fitting a GARCH(1,1) model to the daily percentage price changes of maturity T.
The volatility time series σ̂G ARCH is obtained by fitting a GARCH(1,1) model to the time series of
daily returns percentage price changes of maturity T up to day t − 1 and then using it to predict
the volatility on day t, σ̂G ARCH (t, T ). The initial window is set to 300 days. All other variables are
defined in the caption to Figure 2.

1 Month 5 Months 10 Months

|R(t, T )| = αT + βG,T σG ARCH (t, T ) + β1,T (S̃L(t − 1))+ + β2,T (S̃L(t − 1))− + εT (t)
βG,T 0.5323 0.6145 0.6612
(t-stat) (8.85) (9.48) (12.47)
β1,T 0.1610 0.0823 0.0595
(t-stat) (4.32) (4.01) (3.81)
β2,T −0.1605 −0.0796 −0.0599
(t-stat) (−2.84) (−2.92) (−2.91)
R2 0.2601 0.2605 0.2495

σ̂G ARCH (t, T ) = αT + βG,T σ̂G ARCH (t − 1, T ) + β1,T (S̃L(t − 1))+ + β2,T (S̃L(t − 1))− + εT (t)
βG,T 0.9403 0.9748 0.9739
(t-stat) (68.82) (155.06) (161.50)
β1,T 0.0269 0.0079 0.0064
(t-stat) (3.06) (3.34) (2.90)
β2,T −0.0228 −0.0060 −0.0053
(t-stat) (−3.04) (−2.23) (−1.83)
R2 0.9108 0.9627 0.9586

As a final robustness check we split our sample into pre– and post–Gulf
War subsamples. We perform the same analysis as in the case of the full sample
on the post–Gulf War subsample. We find the same V-shape in the relationship
between the volatility of futures prices and the slope of the term structure of
prices.

II. Model

In this section, we present our model for spot prices and derive futures prices.

A. Setup

We consider a continuous-time infinite-horizon economy. We focus on a com-
petitive industry populated by a large number of identical firms using an iden-
tical production technology. Firms produce a nonstorable consumption good by
means of a production function that exhibits constant returns to scale

Qt = X Kt , (6)

where Kt is capital and X is the productivity of capital, which is assumed to be
constant. Without loss of generality, we assume below that X = 1. Our results
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can be easily adjusted to accommodate the case in which X is a stochastic
process. We also abstract away from production costs.

Firms can adjust their capital stock according to

d Kt = (It − δKt) dt, (7)

where It is the investment rate and δ is the capital depreciation assumed to be
a nonnegative constant. We assume the unit cost of capital is equal to one.

We next assume that investment is irreversible, that is, It ≥ 0, and the rate
of investment is bounded. Specifically,

It ∈ [
0, iK A

t

]
, (8)

where KA
t is the aggregate capital stock in the industry. This constraint implies

that the higher the aggregate capital stock in the industry (or the higher the
aggregate output rate), the better the investment opportunities faced by an in-
dividual firm. One can think of this as a learning-by-doing technology. These
investment frictions give rise to nontrivial dynamic properties of futures prices.
It is worth noting that one could derive the same functional form of price dy-
namics by assuming that investment opportunities depend on the firms’ own
capital stock. However, the above assumption significantly simplifies formal
analysis of the model and leads to fewer restrictions on model parameters.

We do not explicitly model entry and exit in equilibrium. Our assumption of
nonnegative investment rates effectively implies that there is no exit. We are
assuming that all investment is done by existing firms, so there is no entry
either. One could equivalently allow for entry into the industry, as long as the
total amount of investment by old and new firms satisfies the constraint (8).4

Firms sell their output in the spot market at price St. We assume that finan-
cial markets are complete and the firms’ objective is to maximize their market
value, which in turn is given by

V0 = E0

[∫ ∞

0
e−rt(St Qt − It) dt

]
. (9)

We assume that the expected value is computed under the risk-neutral measure
and the risk-free rate r is constant.

The consumers in the economy are represented by the demand curve

Qt = Yt S
− 1

γ

t , Qt ∈ (0, ∞), (10)

where unexpected changes in Yt represent demand shocks. We assume that
under the risk-neutral measure Yt follows a geometric Brownian motion process

dYt

Yt
= µY dt + σY dWt . (11)

We also assume that γ > 1. Results for the case γ ≤ 1 are analogous.

4 For example, other recent applications in finance using competitive industry equilibrium in-
clude Fries, Miller, and Perraudin (1997) and Miao (2005).
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B. Equilibrium Investment and Prices

We adopt a standard definition of competitive equilibrium. Firms must choose
an investment policy that maximizes their market value (9), taking the spot
price of output and the dynamics of the aggregate capital stock in the industry
as exogenous. The spot market must clear, that is, the aggregate output and
the spot price must be related by (10). Finally, the dynamics of the aggregate
capital stock in the industry are given by

d K A
t = (

I A
t − δK A

t

)
dt, (12)

where IA
t is the aggregate investment rate.

We guess what the equilibrium investment policy and associated price
processes should be, and verify formally that firms’ optimality conditions
are satisfied and markets clear. The details of the solution are provided in
Appendix A.

Intuitively, firms invest only when the net present value of profits generated
by an additional unit of capital is positive. As it turns out, the spot price fol-
lows a univariate Markov process in equilibrium, and thus firms invest at the
maximum possible rate when the spot price is above a certain threshold, and
do not invest otherwise. Formally, we prove the following:

PROPOSITION 1: A competitive equilibrium exists and the equilibrium investment
policy is given by

I∗
t =

{
iK A

t , St ≥ S∗,
0, St < S∗.

(13)

The investment threshold S∗ is defined in Appendix A.

See Appendix A for the proof.
To make sure that the equilibrium exists and firm value is finite, we need to

impose an additional nontrivial restriction on parameter values:

σ 2
Y γ 2

2
− γµ+ − (r + δ) < 0, (14)

where we define µ− = δ + µY − 1
2σ 2

Y and µ+ = i − µ−. When calibrating the
model, we impose the above restriction as a weak inequality and verify that it
does not bind at the calibrated parameter values.

The risk-neutral dynamics of the spot price are of the very simple form

d St

St
=

(
−γ (i1[St≥S∗] − µ−) + γ 2σ 2

Y

2

)
dt + γ σY dWt , (15)

where 1[·] is an indicator function. When the spot price is above the critical
value S∗, it follows a geometric Brownian motion with drift γµ− + γ 2σ 2

Y
2 . When

it is below S∗, the drift changes to −γ (i − µ−) + γ 2σ 2
Y

2 . As long as 0 < µ− < i,
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Figure 4. Volatility and supply capacity constraints. The figure gives actual WTI crude
oil futures volatility versus expected end-of-March Atlantic Basin inventories. Source: Strongin,
Currie, and Fleischmann (1999).

the spot price process has a stationary long-run distribution with density
function

p(S) = 2µ−(i − µ−)
γ iσ 2

Y S

(
S
S∗

)− 2
γ σ2

Y
(i1[S≥S∗ ]−µ−)

. (16)

The details of the derivation are provided in Appendix B.
Before continuing with estimation of the model, it is worth mapping our gen-

eral investment constraint model into the features of the oil industry. Oil (Q) is
the output produced using physical capital K (e.g., oil rigs, pipes, and tankers).
Implicitly we are assuming there is an infinite supply of underground oil, and
production is constrained by the existing capital stock K. This supply of cap-
ital and consequently of oil output leads to price fluctuations in response to
demand shocks. Futures prices (volatility) depend on anticipated future pro-
duction, which depends on the degree to which investment is constrained.

While our model is admittedly stark, it does capture many of the essen-
tial features of the investment and supply constraints in the oil industry.
Figure 4 displays the relation between oil supply capacity and volatility as
given in Strongin, Currie, and Fleischmann (1999). The essence of this figure
is the V-shape relation between the volatility of the spot price and the level
of inventories. This pattern is distinct from the one analyzed in our paper:
While inventory levels are clearly important for short-run fluctuations in the
spot market, their effect on futures prices of longer maturities is much weaker.
Thus, a different mechanism must be responsible for the behavior of volatility
of longer-maturity futures. However, the logic of time-varying supply elastic-
ity applies to the pattern in Figure 4 as well, wherein instead of production
constraints one must recognize natural physical constraints on storage levels.



1358 The Journal of Finance R©

Furthermore, market analysts seem to concentrate on two key features of the
market, namely, the long-term and seasonal demand patterns and the supply
features of this industry. Our model clearly focuses on the second of these two
issues. In particular, investments in this industry are concentrated in several
key facets of production: (i) basic extraction in the form of finding new fields
and constructing, installing, and maintaining rigs, and (ii) expansion and im-
provements in the delivery process. Both of these types of investment take time,
face capacity constraints, and constrain supply flexibility in this market—the
exact channels that our model focuses on.5

C. Futures Prices

The futures contract is a claim on the good that is sold on the spot market
at prevailing spot price St. The futures price is computed as the conditional
expectation of the spot price under the risk-neutral measure:

P (t, T ) = Et[St+T ], ∀T ≥ 0, (17)

where P(t, T) denotes the price of a futures contract at time t with maturity date
τ = t + T. Since no analytical expression exists for the above expectation, we
evaluate it numerically using a Markov chain approximation scheme. Figure 5
illustrates futures prices generated by the model.

III. Estimation and Numerical Simulation

In this section we study how well our model can replicate quantitatively the
key features of the behavior of futures prices reported in Section I. Since our
model is formulated under the risk-neutral probability measure, while the em-
pirical observations are made under the “physical” probability measure, one
has to make an explicit assumption about the relation between these two mea-
sures, that is, about the risk premium associated with the shock process dWt.
To keep our specification as simple as possible, we assume that the risk pre-
mium is constant, that is, the drift of the demand shock Yt under the “physical”
probability measure is equal to µY + λ, where λ is an additional parameter of
the model. Clearly, one could achieve greater flexibility and better fit of the
data by allowing for a time-varying risk premium process. This, however, is

5 Analysts often describe the “cushion” in this market as spare productive capacity. For example,
according to estimates in Strongin, Currie, and Fleischmann (1999) the spare capacity was about
7% to 12% around the fourth quarter of 2000. The report continues to say on page 4 that “These
fields will require significant investment and drilling to not only increase production but offset the
decline rates. This will take time, . . . . , even if rig counts rebound substantially, during the fourth
quarter, new supplies would not be available until late second quarter at the earliest.” While
undoubtedly inventories and stock-outs affect capacity constraints, they seem to be measured in
days (around 20 days for full coverage, of which only a few days are full working inventory as
the rest represents minimum operating requirements). This is consistent with our view that the
final inventories affect the short end of the forward curve but are not likely to affect it along the
several-month horizon we investigate.
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Figure 5. Futures prices, model output. Futures prices are generated by the model using
parameter values reported in Table III. The investment threshold, S∗, is normalized to one.

entirely beyond the scope of our paper as our model has implications for the
spot price dynamics, but not for the price of risk in the aggregate economy. To
have a meaningful discussion of the price of risk process, one would need a full
general equilibrium model. We first estimate the model’s parameters using a
simulated method of moments and then proceed to analyze and discuss some
additional implications of the model.

A. Simulated Moments Parameter Estimation

A.1. Estimation Procedure

Our goal is to estimate a vector of structural parameters, θ ≡
{γ , µY , σY , i, r, δ, λ}. We do this using a procedure that is similar to those pro-
posed in Lee and Ingram (1991), Duffie and Singleton (1993), Gourieroux and
Monfort (1996), and Gourieroux, Monfort, and Renault (1993). Let xt be the
vector-valued process of historical futures prices and output and consider a
function of the observed sample FT(xt), where T is the sample length. The
statistic FT(xt) could represent a collection of sample moments or even a more
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complicated estimator, such as the slope coefficients in a regression of volatility
on the term structure as in (3). Assume that as the sample size T increases,
FT(xt) converges in probability to a limit M(θ ), which is a function of the struc-
tural parameters. Since many of the useful population moments cannot be com-
puted analytically, we estimate them using Monte Carlo simulation. In partic-
ular, let mN (θ ) = 1

N

∑N
n=1 FT (xn; θ ) represent the estimate of M(θ ) based on N

independent model-based statistics, where xn represents a vector-valued pro-
cess of simulated futures prices and output of length T based on simulating
the model at parameter values, θ .6 Let GN(x, θ ) = mN(θ ) − FT(xt) denote the
difference between the estimated theoretical mean of the statistic F and its
observed (empirical) value. Under appropriate regularity conditions, it can be
shown that as the sample size T and the number of simulations N increase to
infinity, the GMM estimate of θ ,

θN = arg min
θ

JT = arg min
θ

GN (x, θ )′WT GN (x, θ ), (18)

will be a consistent estimator of θ . The matrix WT in the above expression is
positive definite and assumed to converge in probability to a deterministic pos-
itive definite matrix W. The Simulated Method of Moments approaches in Lee
and Ingram (1991) and Duffie and Singleton (1993) focus on one long simula-
tion while Gourieroux and Monfort (1996), and Gourieroux et al. (1993) also
discuss an estimator based on multiple simulations. Our approach simulates
samples of equal length to that in the data, T, and then averages across N such
simulations. Given our nonbalanced panel data this approach allows for easier
mapping from the model to the data and easier computation of standard errors,
which are based on the distribution emanating from the cross-section of the
simulations.

Assume that V is the asymptotic variance-covariance matrix of FT(x; θ ). Then,
if we use the efficient choice of the weighting matrix, W = V−1, the estimator
θN is asymptotically normal with mean θ and covariance matrix (D ′V−1D)−1,
where D = ∇θM(θ ).

We perform estimation in two stages. During the first stage, we use an iden-
tity matrix for the weighting matrix W. During the second stage, the weighting
matrix is set equal to the inverse of the estimated covariance matrix: W = V−1

N ,
where VN is the sample-based covariance matrix of FT(xn; θ ). To compute stan-
dard errors, we use as an estimate for D, DN = ∇θmN(θ ).

We estimate the vector of seven model parameters, θ , by matching both
the unconditional and conditional properties of futures prices. The uncondi-
tional properties include mean and volatility of daily percent price changes
for futures with maturities equal to 3, 6, and 9 months, as well as the mean,
volatility, and 30-day autoregressive coefficient of the slope of the forward curve

6 Specifically, for any given value of θ , we draw N realizations of the spot price St from its long-run
steady-state distribution (which itself depends on model parameters and is given by (16)). Then,
for each set of initial conditions, we simulate a path of the state variable of the same length as the
historical sample and evaluate the function F(x, θ) for each simulated path of the economy.
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of crude oil futures prices. In order to see how far we can push our simple single-
factor model, we also fit the relation between the volatility of futures prices and
the slope of the term structure. Specifically, the conditional moments include
regression coefficients β1,T and β2,T from equation (4) for T equal to 3, 6, and
9 months.

A.2. Identification

Not all of the model parameters can be independently identified from the
data we are considering. In this subsection, we discuss the relations between
structural parameters and observable properties of our model economy. These
should suggest which of the structural parameters can be identified and what
dimensions of the empirical data are likely to be most useful for estimation.

First, we calibrate the risk-free rate. The risk-free rate is determined by many
factors outside of the oil industry and consequently it would not be prudent to
estimate it solely based on oil price data. Also, it is clear by inspection that
the risk-free rate is not identified by our model. It does not affect any of the
moments we consider in our estimation and only appears in the constraint on
model parameters in equation (14). Therefore, at best, futures price data can
only impose a lower bound on the level of the risk-free rate, as implied by (14).
Given all of the above considerations, we set the risk-free rate at 2%.7 Next,
consider a simple re-normalization of the structural parameters. Futures prices
in our model depend solely on the risk-neutral dynamics of the log of the spot
price, which evolves according to

d log St = − [
γ i1[S≥S∗] − γµ−]

dt + γ σY dWt . (19)

Since we normalize the productivity parameter in (6) to one, only relative
prices are informative and therefore we can ignore the dependence of S∗ on
structural parameters. Thus, the risk-neutral dynamics of futures prices are
determined by only three combinations of five structural parameters: γµ−, γ i,
and γ σY . Therefore, we cannot identify all the model parameters separately
from futures data alone.

We obtain an additional identifying condition from the oil consumption data.
Cooper (2003) reports that individual growth rates vary for the 23 countries
in his sample, typically falling between −3 to 3%. For the United States, the
reported growth rate averages −0.7%. As documented in Cooper (2003), world
crude oil consumption increased by 46% per capita from 1971 to 2000, implying
an average growth rate of approximately 1.25%, which we attempt to equate
with the expected growth rate of oil consumption, gC, implied by the model

gC = i Pr(S ≥ S∗) − δ = λ + µY − 1
2

σ 2
Y , (20)

where Pr(S ≥ S∗) = ∫ S∗

−∞ p+(S)d S = (i)−1µ− is the unconditional probability
that S is below the investment trigger.

7 Our results regarding the V-shape response in prices are not affected by this choice.
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Table III
Parameter Estimates, Crude Oil Futures

This table reports our parameter values. We use a two-step SMM procedure to estimate a vector
of seven structural parameters θ ≡ {γ , µY , σY , i, r, δ, λ}. Since only five model parameters can be
independently identified from the data (see Section III.A.2), we fix δ and r and estimate the remain-
ing five parameters. We match the unconditional properties of crude oil futures prices, specifically,
the historic daily return on fully collateralized 3-month futures position; the unconditional volatil-
ity of daily percent price changes for futures of various maturities; as well as the mean, volatility,
and 30-day autoregressive coefficient of the slope of the forward curve. In addition, we match the
expected growth rate of crude oil consumption. The standard errors are reported where applicable.

Parameter Value Std. Error

γ 3.1484 0.2396
i 0.2362 0.0531
r 0.0200 NA
µY 0.01438 0.0048
σY 0.1043 0.0216
δ 0.1200 NA
λ 2.47 × 10−4 1.4 × 10−4

Finally, to estimate the risk premium λ, we use average historical daily re-
turns on fully collateralized futures positions (we use three-month contracts).
We are thus left with five independent identifying restrictions on six structural
parameters. Following Gomes (2001), we fix the depreciation rate of capital at
δ = 0.12 per year and do not infer it from futures prices and thus estimate the
remaining five parameters.

A.3. Parameter Estimates

Our estimated parameter values and the corresponding standard errors are
summarized in Table III. The first parameter value in the table, γ = 3.15, im-
plies that the price elasticity of demand in our model is −0.32. Cooper (2003)
reports estimates of short-run and long-run demand elasticity for a partial ad-
justment demand equation based on U.S. data of −0.06 and −0.45, respectively.
In our model, there is no distinction between short-run and long-run demand,
as demand adjustments are assumed to be instantaneous. Our estimate falls
half-way between the two numbers reported in Cooper (2003) for the U.S. and
is close to the average of the long-run elasticity estimates reported for all 23
countries considered in that study, which is −0.2.

Our second parameter is i, the maximum investment rate in the model. This
variable parameterizes the investment technology used by the firms. In order
to make relative empirical comparison we compare it to the growth rate of
the number of operating oil wells between 1999 and 2000 for several leading
crude producers worldwide.8 During this period the number of operating wells

8 These data are publicly available from www.WorldOil.com.
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increased by 4.7% in the whole Middle East region, by 9.3% in Russia, by 22.3%
in Venezuela, and by 10.3% in Norway.9 The corresponding growth rate implied
by our model is i − δ = 0.12. These numbers show that the upper bound of
i = 24% would allow for a plausible range of realized annual investment rates.

The average growth rate of demand is close to zero. For comparison, the
average annualized change in futures prices is approximately 2.8% in the data,
which falls within the 95% confidence interval of the model’s prediction. The
volatility of demand shocks is not directly observable. The estimated value of σY
together with the demand elasticity parameter γ −1 imply annualized volatility
of the spot price of approximately 33%, which is close to the observed price
volatility of short-maturity futures contracts.

Finally, the market price of risk in our model is equal to 2.47 × 10−4. This
would imply that excess expected returns on a fully collateralized futures strat-
egy should be close to zero. This is consistent with empirical data. While an
assumption of constant risk premium is clearly restrictive, it is made for sim-
plicity: Nothing in our model prevents one from assuming a time-varying price
of oil price risk. However, such an assumption would be exogenous to the model,
and hence would not add to our understanding of the underlying economics of
the problem.

B. Results and Discussion

B.1. Quantitative Results

We first illustrate the fit of the model by plotting the term structure of uncon-
ditional futures price volatility (to facilitate comparison with empirical data,
we express our results as daily values, defined as annual values scaled down by√

252). We choose model parameters, as summarized in Table III, to match the
behavior of crude oil futures. Figure 6 compares the volatility of prices implied
by our choice of parameters to the empirical estimates. Our model seems ca-
pable of reproducing the slow-decaying pattern of futures price volatility. This
feature of the data presents a challenge to simple storage models, as discussed
in Routledge et al. (2000). To see why it may not be easy to reproduce the slow-
decaying pattern of unconditional volatilities in a simple single-factor model,
consider a reduced-form model in which the logarithm of the spot price process
follows a continuous-time AR(1) process (Ornstein-Uhlenbeck process). Specif-
ically, assume that the spot price is given by

St = e yt (21)

and under the risk-neutral probability measure yt follows

9 The total worldwide growth in the number of operating oil wells has been around 0.6% for the
same period. This number is largely driven by the negative 2% growth in the United States, where
most of these wells produce relatively small volumes of oil, often on an intermittent and marginally
economic basis (commonly called “stripper” wells). The number of producing stripper wells changes
depending on how many wells enter the ranks (by declining in production) and leave the ranks
(by increasing production or being plugged and abandoned) of stripper wells each year. The United
States’ stripper oil well population has been gradually declining over the past decade.
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Figure 6. Unconditional volatility of futures prices, model output. The unconditional stan-
dard deviation of daily percentage changes in futures prices is constructed based on the output from
the model (model 1). The model is fitted to the data on crude oil futures (CL) using a two-step sim-
ulated method of moments described in Section III.A.1. Parameter values are reported in Table
III. Model 2 corresponds to the unconditional standard deviation of percentage changes in futures
prices implied by equation (23). We report averages across 2,000 simulations.

dyt = θ y ( ȳ − yt) dt + σ ydWt , (22)

where θy is the mean-reversion coefficient and ȳ is the long-run mean of the
state variable. According to this simple model, the unconditional volatility of
futures price changes is an exponential function of maturity τ :

σ 2(τ ) = σ 2
ye−2θτ . (23)

To compare the term structure of unconditional volatility implied by this model
to the one generated by our model, we calibrate parameters θy and σy so that
the simple model exhibits the same volatility of the spot price and the same
30-day autocorrelation of the basis as our model. Figure 6 shows that, as ex-
pected, unconditional volatility implied by the simple model above decays too
fast relative to our model and data.

The main qualitative distinction between the properties of our model and
those of basic storage models is in the conditional behavior of futures volatility.
As we demonstrate in Section I, the empirical relation between the volatility of
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Table IV
Conditional Volatility, Model Output

Conditional variance of crude oil futures prices is compared with the output of the model under
two different econometric specifications. See the caption to Figure 2 for a detailed description of
the underlying variables.

1 Month 5 Months 10 Months

Data Model Data Model Data Model

|R(t, T )| = αT + βT S̃L(t − 1) + εT (t)
βT −0.0743 −0.0030 −0.0462 −0.0100 −0.0419 −0.012

|R(t, T )| = αT + β1,T (S̃L(t − 1))+ + β2,T (S̃L(t − 1))− + εT (t)
β1,T 0.3191 0.0854 0.1791 0.1482 0.1308 0.1246
β2,T −0.3505 −0.0964 −0.2039 −0.1822 −0.1632 −0.1651

futures prices and the slope of the term structure of prices is nonmonotone and
has a pronounced V-shape. Intuitively, we would expect our model to exhibit this
pattern. When the spot price St is far away from the investment trigger S∗, one of
the investment constraints is binding and can be expected to remain binding for
some time. If the capital stock Kt is much higher than its optimal level, given the
current level of demand, firms find it optimal to postpone investment and the
irreversibility constraint binds. On the other hand, when Kt is much lower than
the optimal level, firms invest at the maximum possible rate and the investment
rate constraint binds. In either case, the supply of the commodity is relatively
inelastic and futures prices are relatively volatile. The further St travels away
from the investment trigger, the larger the effect on volatility of long-maturity
futures. At the same time, precisely when St is relatively far away from the
investment trigger S∗, the absolute value of the slope of the term structure of
futures prices is large, as illustrated in Figure 5. This is to be expected. All
prices in our model are driven by a single mean-reverting stationary spot price,
and since futures prices of longer-maturity contracts are less sensitive to the
current value of the spot price, the slope of the forward curve tends to be large
when the spot price is far away from its long-run average value. The latter, in
turn, is not far from S∗, given that St reverts to S∗. Thus, our model predicts
that the volatility of futures prices should exhibit a V-shape as a function of the
slope of the term structure of futures prices.

It should be clear from the above discussion that the critical feature of the
model is not the precise definition of the production function, but rather the
variable elasticity property of the supply side of the economy. The V-shape
pattern in volatilities is due to the fact that supply can adjust relatively easily
in response to demand shocks when output is close to the optimal level, but
supply is relatively inelastic when the output level is far from the optimum.

We now report the quantitative properties of the model. All data moments
used to estimate the model are reported in the first column of Table IV. The
expected growth rate of oil consumption implied by the model is equal to 0.9%
and is close to an average worldwide growth rate of 1.25%. The long-run average
of the slope of the forward curve, ln[ P (t−1,6)

P (t−1,3) ], is 0.0065 in the model, compared to
the empirical value of −0.0125. Both values are statistically indistinguishable
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from zero. The long-run standard deviation of the slope in the model, which
equals 0.0285, is almost identical to the empirical value of 0.0287. The 30-day
autocorrelation coefficient of the slope implied by the model is equal to 0.83, as
compared to the value of 0.77 in the data. Overall, our model fits the basic be-
havior of the slope of the forward curve quite well. Table IV shows the estimates
of linear and piecewise linear specifications of conditional variance of futures
price changes (4) implied by the model for 1-, 5-, and 10-month futures. The co-
efficients of the linear regressions are negative and close in magnitude to their
empirical counterparts. Such a negative relation between conditional volatil-
ity of futures prices and the basis would typically be interpreted as supportive
of simple storage models. Note, however, that our model without storage can
reproduce the same kind of relation. Our model, however, has a further impor-
tant implication: The linear model is badly misspecified, since the theoretically
predicted relation is nonmonotone. Our piece-wise linear specification produces
coefficients β1,T and β2,T that agree well with their empirical counterparts for
longer maturities (3 to 12 months), but the fit worsens for shorter maturities
(1 and 2 months). Given the extremely streamlined nature of our model (e.g.,
the slope of the forward curve is a sufficient statistic for conditional volatility),
this should not be surprising. In order to capture the properties of the short
end of the term structure, one must take into account storage, which we do
not allow in our model. The entire distribution of regression coefficients across
maturities of the futures contracts is shown in Figure 7. Finally, Figure 3 helps
visualize the V-shape pattern.

B.2. Sensitivity Analysis

In order to understand the sensitivity of our results to the baseline parame-
ters summarized in Table III, we compute elasticities of basic statistics of the
model output with respect to these parameters. Each elasticity is calculated by
simulating the model twice with a value of the parameter of interest 10% of
one standard deviation below (above) its baseline value. Next, the change in
the moment is calculated as the difference between the results from the two
simulations. This difference is then divided by the change in the underlying
structural parameter between the two simulations. Finally, the result is then
multiplied by the ratio of the baseline structural parameter to the baseline
moment. The elasticities are reported in Table V.

An increase in the demand volatility, σY , or in the elasticity of the inverse
demand curve, γ , leads to an increase in the volatility of the spot price, which
equals γ 2σ 2

Y . As one would expect, the volatility of futures prices of various
maturities increases as well. Qualitatively, both of the parameters σY and γ

affect the level of the unconditional volatility curve plotted in Figure 6. However,
the demand volatility has a strong positive effect on the expected growth rate
of oil consumption since it increases the long-run growth rate of the level of the
demand curve, Yt. The parameter γ has no such effect.

The constraint on the investment rate i has no effect on the volatility of the
spot price. However, it affects the volatility of futures prices. A higher value
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Figure 7. Conditional volatility of futures prices, model output. For each time to maturity,
T, we simulate a time series of daily futures prices using parameter values reported in Table III.
We then compute daily percentage changes in futures prices, denoted by R(t, T). The instantaneous
volatility of futures prices is related to the beginning-of-period slope of the forward curve, defined
as

SL(t) = ln
[

P (t − 1, 6)
P (t − 1, 3)

]
,

according to the specification

|R(t, T )| = αT + β1,T (S̃L(t − 1))+ + β2,T (S̃L(t − 1))− + εT (t),

where S̃L(t) is the demeaned slope and (X)± denotes the positive (negative) part of X. This proce-
dure is repeated 2,000 times and we report the average across simulations. The figure shows β1,T
and β2,T for different times to maturity.

of i allows capital stock to adjust more rapidly in response to positive demand
shocks, thus reducing the impact of demand shocks on the future value of the
spot price and therefore lowering the volatility of futures prices. We thus see
that i effectively controls the slope of the term structure of volatility, with higher
values of i implying a steeper term structure. Further, i has no effect on the
expected growth rate of oil consumption, in agreement with equation (20).

An increase in the unconditional mean of the demand shock, µY , has little
effect on the level of futures price volatility. This is not surprising given the role
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µY plays in the evolution of the spot price St. An increase in µY raises the drift of
St uniformly. The impact of this on the volatility of futures prices is ambiguous
and depends on the relative magnitude of the drift of St above, µ−, and below,
µ+ ≡ i − µ−, the investment threshold S∗. By symmetry considerations, if µ+ =
µ−, an infinitesimal change in µY has no impact on the volatility of futures
prices. Under the calibrated parameter values, µ− = 0.1289 and µ+ = 0.1083
and futures volatility is not very sensitive to µY . The same is true for the risk
premium, λ. Both µY and λ have a strong positive effect on gC, in agreement
with equation (20).

In general, the effect of model parameters on the slope of the forward curve
is difficult to interpret intuitively and depends on the chosen parameter val-
ues. However, the fact that the moments of the slope have different sensi-
tivities to various model parameters makes them useful in estimating these
parameters.

IV. Conclusions

This paper contributes along two dimensions. First, we show that volatility
of futures prices has a V-shape relationship with respect to the slope of the term
structure of futures prices. Second, we show that such volatility patterns arise
naturally in models that emphasize investment constraints and, consequently,
time-varying supply elasticity as a key mechanism for price dynamics. Our
empirical findings seem beyond the scope of simple storage models, which are
currently the main focus of the literature, and point towards investigating al-
ternative economic mechanisms, such as the one analyzed in this paper. Adding
finite storage capacity to this economy would likely affect the very short end
of the forward curve. It is likely, then, that the volatility of spot prices would
be related to the level of inventories. However, adding storage is not likely to
have a material effect on the long end of the forward curve, since in practice the
total storage capacity is rather small relative to annual consumption. What is
difficult to predict, however, is how storage would interact with production con-
straints at intermediate maturities. This requires formal modeling and future
work will entail a model that nests both storage and investment in an attempt
to isolate their quantitative effects.

Appendix A: Proof of Proposition 1

We conjecture that the equilibrium investment policy I∗
t is given by (13).

Market clearing in the spot market then implies that the spot price process St
satisfies (15).

A competitive firm chooses an investment policy It to maximize the firm
value, that is, the present value of future output net of investment costs:

max
It

E0

[∫ ∞

0
e−rt (Kt St − It) dt

]
, (A1)
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subject to the capital accumulation rule

dKt = (It − δKt) dt, (A2)

It ≥ 0, (A3)

It ≤ iK A
t . (A4)

From (A2), we obtain

Kt =
∫ t

0
e−δ(t−s) Isds + K0e−δt . (A5)

Using this expression for the capital stock, and relaxing the constraint (A4), we
re-write the above optimization problems as

max E0

[∫ ∞

0
e−rt(Vt − 1)Itdt

]
+ K0V0, (A6)

subject to (A3, A4), where

Vt = Et

[∫ ∞

t
e−(r+δ)(u−t)Sudu

]
. (A7)

Assuming that the process Vt is well defined (we prove that next), the optimal
solution of the firm’s problem is

I∗
t =


iK A

t , Vt − 1 > 0,[
0, iK A

t

]
, Vt − 1 = 0,

0, Vt − 1 < 0.

(A8)

The above policy will coincide with (13) as long as Vt = 1 whenever St = S∗.
Let V(S, S∗) denote the value of Vt when St = S and the optimal investment
threshold is S∗. Note that the conjectured form of the equilibrium spot price
process implies that

Vt = V (St , S∗) = S∗V
(

St

S∗ , 1
)

. (A9)

Thus, the equilibrium value of S∗ can be found as S∗ = V(1, 1)−1.

We now characterize V(S; 1), and show that Vt is finite. Let S∗ = 1 and define
ωt = −(1/γ )ln St. Then

dωt = (
i1[ωt≤0] − µ−)

dt − σY dWt . (A10)

Let B be an arbitrary positive number and define a stopping time τB = inf{t :
ωt ≤ −B}. Let

F B
t = Et

[∫ ∞

t
1[s≤τB]e−(r+δ)(s−t)−γωsds

]
. (A11)
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We look for FB
t = FB(ωt). We start by heuristically characterizing FB(ω) as a

unique solution of the Feynman-Kac equation

σ 2
Y

2
d2 F B(ω)

dω2
+

[
i1[ω≤0] − µ−

] d F B(ω)
dω

− (r + δ)F B(ω) + e−γω = 0 (A12)

with the boundary condition

F B(−B) = 0. (A13)

We look for a solution of (A12) of the form

F B(ω) =



Aeκ−ω + e−γω

r − γµ− − γ 2

2
σ 2

Y

, ω ≥ 0,

C1eκ+ω + C2eκ−ω + e−γω

r + γµ+ − γ 2

2
σ 2

Y

, ω < 0.

(A14)

Substituting these solutions into ODE (A12) yields quadratic equations on κ±
and κ±

σ 2
Y

2
κ

2
± − µ−

κ± − (r + δ) = 0, (A15)

σ 2
Y

2
κ

2
± + µ+

κ± − (r + δ) = 0. (A16)

The terms κ± and κ± denote, respectively, positive and negative roots of the
above equations. Define

M = γ i(
r + δ − γµ− − γ 2

2
σ 2

Y

) (
r + δ + γµ+ − γ 2

2
σ 2

Y

) . (A17)

Using the boundary condition (A13) and imposing continuity of the function FB

and its first derivative across zero (to verify that the solution of the differential
equation (A12) characterizes the expected value FB

t , we only need the first
derivative to be continuous at zero), we obtain the following system of equations
on coefficients C1, C2, and A:

C1 + C2 = A + M ,

κ+C1 + κ−C2 =
(

2i
σ 2

Y

+ κ−

)
A + 2

r + δ + γµ+ − γ 2σ 2
Y

γ σ 2
Y

M ,

C1e−κ+ B + C2e−κ− B =
r + δ − γµ− − γ 2

2
σ 2

Y

γ i
Meγ B.

(A18)
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Solving this system yields the following expression for C2:

C2 = M

r + δ − γµ− − γ 2

2
σ 2

Y

γ i

(
κ+ − 2i

σ 2
Y

− κ−

)
e(κ−+γ )B −

(
2

r + δ + γµ+ − γ 2σ 2
Y

γ σ 2
Y

− κ−

)
e(κ−−κ+)B

κ+ − 2i
σ 2

Y

− κ− −
(

κ− − 2i
σ 2

Y

− κ−

)
e(κ−−κ+)B

.

(A19)

Next, we show that, indeed, FB
t = FB(ωt). To see this, note that the process

X t = e−(r+δ)t F B(ωt) + ∫ t
0 e−(r+δ)s−γωs ds is a local martingale. This follows from

the fact that, by Ito’s lemma, the drift of the process is equal to zero (due to
(A12)). Next, since the diffusion coefficient of Xt, σ dFB(ω)/dω is bounded on
the domain ω ≥ −B, the stopped process X t∧τB is a martingale. Thus,

X 0 = F B(ω0) = E0 [X T ] = E0

[
1[T≤τB]e−(r+δ)T F B(ωT ) +

∫ T

0
1[s≤τB]e−(r+δ)s−γωs ds

]
.

Since the function FB(ω) is bounded on the domain {ωt ≥ −B}, we know that
limT→∞ E0[1[T≤τB]e−(r+δ)T F B(ωT )] = 0. Thus, as we take T → ∞, by monotone
convergence theorem, FB(ω0) = FB

0 .
Having found FB

t , we now take the limit of B → ∞. The limB→∞FB
t is well de-

fined. Because σ 2
Y γ 2

2 − γµ+ − (r + δ) < 0, it follows that κ− + γ < 0 and therefore
limB→∞C2 = 0. Also, constants C1 and A converge to finite limits as B → ∞.

To show that limB→∞FB
t = Vt, we use the monotone convergence theorem,

combined with the observation that limB→∞τB = ∞. The latter follows from the
fact that ωt ≤ ω0 + µ−t + σ (Wt − W0), which is an arithmetic Brownian motion
and for which the corresponding stopping time converges to infinity as B → ∞.

Thus, V(S, 1) is well defined, it is a function of the state variable ω, F(ω) =
V(e−γω, 1), which satisfies the equation

σ 2
Y

2
d2 F (ω)

dω2
+ [

i1[ω≤ω∗] − µ−] d F (ω)
dω

− (r + δ)F (ω) + e−γω = 0 (A20)

and is given explicitly by

F (ω) =



Aeκ−ω + e−γω

r − γµ− − γ 2

2
σ 2

Y

, ω ≥ 0,

Ceκ+ω + e−γω

r + γµ+ − γ 2

2
σ 2

Y

, ω < 0,
(A21)
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where

A =
2

r + δ + γµ+ − γ 2σ 2
Y

γ σ 2
Y

− κ+

κ+ − 2i
σ 2

Y

− κ−

M ,

C =

1 +
2

r + δ + γµ+ − γ 2σ 2
Y

γ σ 2
Y

− κ+

κ+ − 2i
σ 2

Y

− κ−

 M .

This completes our proof.

Appendix B: Stationary Long-Run Distribution of St

Define ωt = −(1/γ )ln St. Then

dωt = (
i1[ωt≤ω∗] − µ−)

dt − σY dWt , ω∗ ≡ − 1
γ

ln S∗. (B1)

It is enough to calculate the stationary long-run distribution of ω,

p(ω) =
{

p+(ω) ω ≤ ω∗

p−(ω) ω > ω∗ . (B2)

This distribution exists if 0 < µ− < i and it satisfies the forward Kolmogorov
ODE

d2 p(ω)
dω2

− 2
[
µ+1[ω≤ω∗] − µ−1[ω>ω∗]

]
σ 2

Y

dp(ω)
dω

= 0. (B3)

The distribution p(ω) also satisfies the normalization condition∫ ω∗

−∞
p+(ω)dω +

∫ ∞

ω∗
p−(ω) dω = 1. (B4)

Condition (B4) eliminates a constant as a trivial solution of the ODE (B3). We
solve the ODE (B3) separately for p+(ω) and p−(ω):

p+(ω) = A+e
2µ+
σ2
Y

ω

,

p−(ω) = A−e
− 2µ−

σ2
Y

ω

,
(B5)

and paste the solutions together so that p(ω) is continuous at ω∗. Thus, A± can
be found from the boundary condition at ω∗ and the normalization condition:

A+e
2µ+
σ2
Y

ω∗
= A−e

− 2µ−
σ2
Y

ω∗
, (B6)
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σ 2
Y

2µ+ A+e
2µ+
σ2
Y

ω∗
+ σ 2

Y

2µ− A−e
− 2µ−

σ2
Y

ω∗
= 1. (B7)

Solving equations (B6) and (B7) for A+ and A−, and changing variables accord-
ing to ω = − 1

γ
ln S, we obtain (16).
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