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The Equity Risk Premium and the Riskfree Rate

in an Economy with Borrowing Constraints

Abstract

Our objective is to study analytically the effect of borrowing constraints on asset returns. We
explicitly characterize the equilibrium for an exchange economy with two agents who differ in their
risk aversion and are prohibited from borrowing. In a representative-agent economy with CRRA
preferences, the Sharpe ratio of equity returns and the riskfree rate are linked by the risk aversion
parameter. We show that allowing for preference heterogeneity and imposing borrowing constraints
breaks this link. We find that an economy with borrowing constraints exhibits simultaneously a
relatively high Sharpe ratio of stock returns and a relatively low riskfree interest rate, compared to
both representative-agent and unconstrained heterogeneous-agent economies.

JEL classification: G12, G11, D52.
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1 Introduction

A feature of standard representative agent models with constant relative risk aversion (CRRA)

preferences is that the Sharpe ratio of stock returns and the risk-free rate are linked to one an-

other. This is a major limitation. For instance, attempts to resolve the finding in Mehra and

Prescott (1985) that the risk premium is too small and the risk-free rate is too high in such a model

relative to the data, run into the problem that an increase in the Sharpe ratio of stock returns is

associated with an increase in the risk-free rate, known as the “interest-rate puzzle” (Weil 1989).

Our objective in this article is to study analytically the effect of borrowing constraints on

the link between the Sharpe ratio and the risk-free rate. We do this by considering a model

that is a straightforward extension of the homogeneous-agent economy of Mehra and Prescott

(1985) where financial markets are effectively complete. The extension is to introduce a borrowing

constraint in a general equilibrium exchange economy with two agents who have CRRA preferences,

and to give the borrowing constraint a meaningful role, we assume that the two agents differ

in their risk aversion.1 We characterize exactly in closed form the equilibrium of this economy.

General-equilibrium economies with borrowing constraints are typically not amenable to explicit

analysis and are studied using numerical simulation methods.2 Our model is extremely tractable

and amenable to rigorous theoretical analysis.

Our main result is that, unlike in a representative-agent model, in an economy with borrowing

constraints the Sharpe ratio of stock returns can be relatively high, while the risk-free interest

rate remains relatively low. In particular, we show that the Sharpe ratio of stock returns in the

constrained heterogeneous-agent economy is the same as in the representative-agent economy pop-

ulated only by the more risk averse of the two agents, while the risk-free rate in the constrained

heterogeneous-agent economy may be even lower than in the representative-agent economy popu-

lated by the less risk averse of the two agents. And, comparing the constrained heterogeneous-agent
1Of course, one could model heterogeneity across agents along other dimensions. For instance, there is an extensive

literature studying asset prices when agents have heterogeneous beliefs; see, for instance, Jouini and Napp (2006) and
references therein. Jouini and Napp characterize asset pricing implications of belief heterogeneity and argue that if
the behavior of agents facing borrowing constraints can be replicated by a properly chosen adjustment of their beliefs,
then such constraints should lead to a higher market price of risk and a lower risk-free rate. We directly analyze a
model in which all agents are constrained from borrowing and explicitly solve for the moments of asset returns.

2A notable exception is a model of Detemple and Murthy (1997), in which explicit results can be obtained when
all agents have logarithmic preferences, but differ in their beliefs about the aggregate endowment process.



economy to one where agents are heterogeneous but unconstrained, we find that imposing a bor-

rowing constraint increases the Sharpe ratio of stock returns and lowers the risk-free interest rate.

Moreover, we show that the unconstrained economy with heterogeneous agents suffer from the

same limitations as the representative-agent economy with CRRA preferences, namely the tight

link between the Sharpe ratio of stock returns and the level of the risk-free rate (we establish this

new analytical result for the unconstrained economy), which is not the case in an economy with

borrowing constraints.

Borrowing constraints are an important feature of the real economy and, as argued by Con-

stantinides (2002), it is important to consider these constraints when studying the implications of

asset-pricing models. However, taking into account borrowing constraints is a challenging task be-

cause even in models without borrowing constraints but with heterogeneous risk aversion (Dumas

1989, Wang 1996, Chan and Kogan 2002) most of the asset-pricing results are obtained using nu-

merical analysis.3 In models with borrowing constraints, for instance Heaton and Lucas (1996) and

Constantinides, Donaldson and Mehra (2002), the analysis is undertaken using numerical methods.

In contrast, we characterize exactly in closed form the equilibrium in an economy with borrowing

constraints.

There is another important difference between our model and the models of Heaton and Lu-

cas (1996) and Constantinides, Donaldson and Mehra (2002), which are the two papers closest

to our work. In both these models, the source of heterogeneity across agents is idiosyncratic en-

dowment shocks and therefore the mechanism through which the borrowing constraint works is

different. In Heaton and Lucas, the constraint on borrowing and a cost for trading stocks and

bonds raises individual consumption variability, and hence, lowers the risk-free rate of return due

to the demand for precautionary savings. Constantinides, Donaldson and Mehra model do not

have trading costs; instead, they consider an overlapping generations model. In their model, the

young would like to invest in equity by collateralizing future wages but are prevented from doing so

because of the constraint on borrowing. On the other hand, for the middle-aged wage uncertainty

has largely been resolved and so most of variation in their consumption occur from variation in
3Wang can solve for only some of the quantities of the model in closed form but even this is possible only for

particular combinations of the number of agents and the degree of risk aversion for each of these agents.
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financial wealth; thus, stock returns are highly correlated with consumption. Hence, this age cohort

requires a higher rate of return for holding equity. Thus, in their model “the deus ex machina is

the stage in the life cycle of the marginal investor.”

In contrast to these two papers, in our model the source of heterogeneity is risk aversion, and

therefore, no additional source of risk is introduced relative to the standard representative-agent

framework considered in Mehra and Prescott (1985). Moreover, because we solve for the equilibrium

in closed-form, the economic forces driving the results in our paper are transparent.

Our work is also related to the paper by Basak and Cuoco (1998) who characterize the equilib-

rium in a model where agents differ with respect to their risk aversion and, instead of a constraint

on borrowing, face a constraint on participating in the stock market. In contrast to our model

where all agents face the same constraint on borrowing, in their setup the constraint is applied

asymmetrically across agents; in particular, they assume that it is the less risk averse agent who is

excluded from the stock market, which is counter to what one would expect.

The rest of the paper is arranged as follows. In Section 2, we describe an exchange economy with

heterogeneous agents who face borrowing constraints. In Section 3, we characterize analytically the

equilibrium in this economy. In Section 4, we consider the robustness of our results to more general

forms of the borrowing constraint. We conclude in Section 5. Our main results are highlighted in

propositions and the proofs for all the propositions are collected in the appendix.

2 A model of an exchange economy with heterogeneous agents

In this section, we study a general-equilibrium exchange (endowment) economy with multiple agents

who differ in their level of risk aversion. Wang (1996) analyzes this economy for the case where

there are two agents who do not face any portfolio constraints.

2.1 The aggregate endowment process

The infinite-horizon exchange economy has an aggregate endowment, Dt, that evolves according to

dDt = µDt dt + σ Dt dZt,
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where µ and σ are constant parameters. We assume that the growth rate of the endowment is

positive, µ− σ2/2 > 0. Without much loss of generality we also assume that D0 = 1.

2.2 Financial assets

We assume that there are two assets available for trading in the economy. The first asset is a

short-term risk-free bond, available in zero net supply, which pays the interest rate rt that will be

determined in equilibrium. The second asset is a stock that is a claim on the aggregate endowment.

The price of the stock is denoted by St. The cumulative stock return process is given by

dSt + Dtdt

St
= µStdt + σStdZt, (1)

with µSt and σSt to be determined in equilibrium.

2.3 Preferences

There are two competitive agents in the economy. The utility function of both agents is time-

separable and is given by

E0

[∫ ∞

0
e−ρt 1

1− γ

(
C1−γ

γ,t − 1
)

dt

]
,

where ρ is the constant subjective time discount rate, and Ct is the flow of consumption. The

agent’s relative risk aversion equals γ, and for agents with unit risk aversion (γ = 1), the utility

function is logarithmic:

E0

[∫ ∞

0
e−ρt ln C1,t dt

]
.

We assume that the first agent has risk aversion greater than one, while the second agent has unit

risk aversion. Most of our results can be easily generalized to an arbitrary combination of risk

aversion coefficients (see Appendix B).
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2.4 Individual endowments

We assume that both agents are initially endowed with shares of the stock. We will let ωα,0,

α ∈ {1, γ}, denote the initial share of the aggregate endowment owned by the agent with relative

risk aversion equal to α.

2.5 The constraint on borrowing

We consider a leverage constraint that restricts the proportion of individual wealth that can be

invested in the risky asset. The base case of our model assumes that borrowing is prohibited. We

establish our analytical results under this assumption. As an extension, we analyze numerically a

more general case, when the proportion of individual wealth invested in the risky asset is bounded

from above, π ≤ π > 1.

2.6 The competitive equilibrium

The equilibrium in this economy is defined by the stock-price process, Pt, the interest-rate process,

rt, and the portfolio and consumption policies, such that (i) given the price processes for financial

assets, the consumption and portfolio choices are optimal for the agents, (ii) the goods market and

the financial markets for the stock and the bond clear.

3 The equilibrium and asset prices

In this section, we characterize an equilibrium in the economy described above. We compare the

equilibrium in this economy with homogeneous representative-agent economies. We conclude by

comparing the equilibrium in the economy with constraints to the one that is unconstrained.

3.1 Equilibrium in the economy with borrowing constraints

We look for an equilibrium in which the policy of the less risk averse agent is affected by the

borrowing constraint, while the more risk averse agent is effectively unconstrained. Clearly, one

5



could construct other equilibria by lowering the risk-free rate relative to the values that we identify.

The equilibrium we identify has an intuitive appeal, since it can be also interpreted as approximating

an economy in which a small amount of borrowing is allowed. In such an economy, while portfolio

holdings of both agents would consist almost entirely of the risky asset, the more risk averse agent

would be unconstrained. Our numerical results in Section 4 further illustrate this point.

The following proposition characterizes equilibrium prices and allocations in the constrained

economy. To simplify notation, we let Rt =
∫ t
0 rsds denote the cumulative return on the risk-free

asset and define R̄t = Rt− (ρ+µ− γσ2)t. The short-term interest rate can then be recovered from

the process Rt by differentiation.

Proposition 1 Let ρ > max[(1 − γ)µ + γ(γ−1)
2 σ2, 0]. There exists a competitive equilibrium in

which

(i) The consumption processes of the two agents are given by

Cγ,t = (1−A) exp
(

R̄t + (1− γ)(µ− γσ2/2)t
γ

)
Dt, (2)

C1,t = A exp(R̄t)Dt, (3)

where the constant A = C1,0/D0 ∈ [0, 1] and the deterministic process R̄t are determined as

a unique solution of the following system of equations:

(1−A) exp
(

R̄t + (1− γ)(µ− γσ2/2)t
γ

)
+ A exp(R̄t) = 1, (4)

A− ρ(1− ωγ,0)
∫ ∞

0
exp(−R̄t − ρt) dt = 0. (5)

(ii) The instantaneous Sharpe ratio of stock returns equals

µSt − rt

σSt
= γσ; (6)

(iii) The instantaneous volatility of stock returns equals

σSt = σ; (7)
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(iv) The risk-free interest rate process rt is deterministic and is given by

rt =
dR̄t

dt
+ (ρ + µ− γσ2).

Proposition 1 states that in equilibrium the moments of asset returns are deterministic. More-

over, the instantaneous Sharpe ratio and volatility of stock returns are constant. The reason for

why the moments of returns are not affected by shocks to the aggregate endowment, which is the

only source of uncertainty in this economy, is very intuitive. Since the growth rate of the aggregate

endowment process is independent of its past history, the moments of asset returns may depend

only on the distribution of wealth in the economy. Because the agents cannot borrow, in equi-

librium they both invest all of their wealth in the stock, and therefore their wealth processes are

instantaneously perfectly correlated. Thus, the cross-sectional wealth distribution in the economy

evolves in a locally predictable manner. Moreover, since both agents have CRRA preferences, their

consumption policies (consumption rate as a fraction of individual wealth) depend only on the

contemporaneous investment opportunity set in the economy, that is, on the wealth distribution.

Thus, we conclude that the instantaneously riskless rate of change of the wealth distribution in

the economy must be a function of the wealth distribution itself, implying that the latter evolves

deterministically over time, and hence all moments of asset returns are also deterministic functions

of time.

The fact that the cross-sectional wealth distribution evolves deterministically has another im-

portant implication. The consumption policies of both agents (consumption as a share of individual

wealth) then must be deterministic as well, therefore the volatility of consumption growth of each

agent coincides with the volatility of the growth rate of aggregate endowment. The standard

CCAPM relation then implies that the maximum Sharpe ratio is given by the product of the

volatility of aggregate endowment growth and the relative risk aversion coefficient of the effectively

unconstrained agent, that is, of the more risk averse agent. Because there is only one source of risk

in this economy, the aggregate stock returns are instantaneously perfectly correlated with shocks

to the aggregate endowment. Therefore, the Sharpe ratio of stock returns coincides with the max-

imum achievable Sharpe ratio, and thus, the Sharpe ratio of stock returns is effectively set by the

more risk averse of the two agents.
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3.2 Comparison with representative agent economies

Having characterized the competitive equilibrium, we are now in a position to identify the impact

of heterogeneity on the properties of asset returns. We compare our heterogeneous economy to a

representative agent economy populated by identical agents with a relative risk aversion of γ?. By

the same logic as above, we look for an equilibrium which is supposed to approximate an economy

in which a small amount of borrowing is allowed, that is, we are looking for an equilibrium in

which the representative agent is unconstrained. The solution to this problem is well-known. The

moments of asset returns in this economy are given by

σS = σ,
µS − r

σS
= γ?σ, r = ρ + γ?µ− γ?(1 + γ?)

2
σ2. (8)

Both the Sharpe ratio of stock returns and the risk-free rate depend on the same preference para-

meter. This gives rise to the well-known interest rate puzzle (Weil 1989): in a representative agent

model with CRRA preferences, realistic values of the Sharpe ratio of stock returns are associated

with unrealistically high levels of the risk-free rate.

The economy with borrowing constraints has properties that are markedly different from those

in the representative-agent economy. Comparing the results in Proposition 1 with equation (8),

we see that the Sharpe ratio of stock returns in the constrained heterogeneous-agent economy is

the same as in the representative-agent economy populated by only the second, more risk averse,

of the two agents, that is, the economy with γ? = γ. At the same time, the risk-free rate in the

constrained heterogeneous economy is lower than the corresponding value suggested by (8), which

we will henceforth denote by r(γ?). The following proposition summarizes the properties of the

risk-free rate.

Proposition 2 The risk-free interest rate in the economy with the borrowing constraint is a monoton-

ically decreasing function of time. At time 0, the initial value of the interest rate is given by

r0 = z[r(1) + (1− γ)σ2] + (1− z)r(γ), (9)

where r(γ?) denotes the risk-free rate in a representative-agent economy with risk aversion equal

to γ?, as given in (8), and z = γA/[1 + (γ − 1)A] ∈ [0, 1], where A = C1,0/D0 is the time-zero
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consumption share of the log-utility agent (see Proposition 1). The initial value of the interest rate

is a convex combination of r(γ) and r(1) + (1− γ)σ2 and the weight, z, is a decreasing function of

the wealth distribution ωγ,0. In the long run, as time approaches infinity,

(i) If µ− γσ2/2 > 0, then r(γ) > r(1) and limt→∞ rt = ρ + µ− γσ2 = r(1) + (1− γ)σ2;

(ii) If µ− γσ2/2 < 0, then r(γ) < r(1) and limt→∞ rt = ρ + γµ− γ(1 + γ)σ2/2 = r(γ);

(iii) If µ− γσ2/2 = 0, then rt = r(γ) = r(1).

Case (i) of Proposition 2 is the one in which the “interest rate puzzle” can arise in a rep-

resentative agent economy: a relatively high Sharpe ratio in the economy with γ? = γ is also

associated with a relatively high risk-free interest rate, i.e. r(γ) > r(1). It is also the case that is

relevant for empirical analysis, since most reasonable parameter choices would satisfy the condition

µ − γσ2/2 > 0, which says that the risk-adjusted growth rate of the economy is positive. The

proposition shows that in this case, in the heterogeneous economy, the risk-free rate is always lower

than in the representative-agent economy with risk aversion equal to γ, i.e., rt < r(γ). Moreover,

for sufficiently large values of t, or equivalently for an initial wealth distribution with enough wealth

controlled by the log-agent, the risk-free rate in the heterogeneous economy is even lower than in

the log-agent economy, that is, rt < r(1). Thus, in contrast to the representative-agent economies,

in our heterogeneous-agent economy the risk-free rate is almost entirely divorced from the Sharpe

ratio of stock returns. In fact, in an economy with only a small fraction of wealth controlled by the

more risk averse type of agents, the Sharpe ratio of stock returns is the same as in a homogeneous

economy with risk aversion of γ, while the risk-free rate is even lower than in a homogeneous

economy with risk aversion of one.

The intuition underlying the result in Proposition 2 is the following. When most of the wealth in

the economy is controlled by the investor with log utility, the level of expected stock returns is close

to that in a homogeneous economy with a log-utility representative agent, that is, ρ + µ. This is

because the consumption rate of the log-utility agent is a constant fraction of his/her wealth, given

by the time preference parameter ρ (e.g., Merton 1969). Market clearing requires that the wealth of

the log agent is approximately equal to the stock price, while his/her consumption approximately
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equals the aggregate endowment, from which the result on the price level and expected stock returns

follows immediately. However, following Proposition 1, we argued that it is quite intuitive why the

Sharpe ratio of stock returns is determined by risk aversion of the effectively unconstrained, more

risk averse investor. Thus, the presence of the borrowing constraint drives a wedge between the

risk-free rate and the Sharpe ratio of stock returns.

3.3 Comparison with an economy without borrowing constraints

To further isolate the effect of the borrowing constraint, we consider the benchmark economy

where agents are heterogeneous and there is no constraint on borrowing. This is precisely the

setting studied by Wang (1996). We assume that the agent’s preferences in the unconstrained

economy are identical to those in the constrained economy. Unfortunately, the asset prices in the

unconstrained economy cannot be computed in closed form, which limits the scope of our analysis.

Nevertheless, some comparative results can be established.

Proposition 3 The instantaneous Sharpe ratio of stock returns in the unconstrained economy falls

between σ and γσ and hence is lower or equal to that in the economy with borrowing constraints,

regardless of the cross-sectional distribution of wealth in each of the economies.

Proposition 3 establishes that imposing the borrowing constraint raises the Sharpe ratio of stock

returns. In the unconstrained economy, there is no well-defined marginal investor, risk aversion of

both agents affects the Sharpe ratio of stock returns. As we argued above, imposing a borrowing

constraint effectively makes the log-utility agent infra-marginal and the Sharpe ratio of stock returns

is now set by the more risk averse agents. Thus, it is not surprising that in the constrained economy

the Sharpe ratio is higher than in its unconstrained counterpart.

Intuitively, one could also conjecture that imposing the borrowing constraint lowers the risk-free

interest rate. This is because imposing the constraint reduces the demand for borrowing on behalf

of the less risk averse investors, so for the bond market to clear, the more risk averse investors

should not be willing to lend, and therefore the risk-free rate must fall. This argument is heuristic

because it ignores the general-equilibrium effects that the borrowing constraint has on the dynamic
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properties of stock returns and the risk-free rate. Nevertheless, this intuition is appealing and is

formalized in Proposition 4 below.

Because the wealth distribution in the unconstrained economy cannot be derived explicitly, it

is difficult to compare interest rates in the constrained and the unconstrained economies while

controlling for the wealth distribution. In the following proposition, we take a different approach,

by assuming that the consumption distribution in the two economies is identical and comparing

the corresponding interest rates. This is not a standard comparative statics experiment, since the

consumption distribution in the two economies being the same is not equivalent to the wealth

distribution being the same. However, together with Proposition 3, this establishes the following

important result. For an unconstrained economy with any wealth distribution one can always find

a wealth distribution in a constrained economy with the same preferences to simultaneously achieve

a lower value of the risk-free rate and a higher value of the Sharpe ratio of stock returns.

Proposition 4 Given the same cross-sectional distribution of consumption in the constrained and

the constrained economies, the risk-free interest rate in the constrained economy is lower than or

equal to that in the unconstrained economy.

Propositions 3 and 4 show that, holding the agents’ preferences fixed, imposing a borrowing con-

straint increases the Sharpe ratio of stock returns and lowers the risk-free interest rate. One could,

however, argue that because the distribution of risk-aversion coefficients is not directly observable,

one would often treat it as a free parameter in calibration, and therefore an unconstrained economy

could potentially have properties similar to a constrained economy, albeit with a different choice

of risk aversion parameters. The following proposition demonstrates that this is not the case. In

fact, an unconstrained heterogeneous economy exhibits a tradeoff between the Sharpe ratio of stock

returns and the risk-free rate that is very similar to the one in representative-agent economies with

CRRA preferences. In the latter case, the Sharpe ratio of stock returns, denoted by SR(γ), and

the risk-free rate are related by

r(γ) = ρ +
µ

σ
SR(γ)− 1 + γ−1

2
SR(γ)2.
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For realistic choices of model parameters, a high Sharpe ratio of returns implies a relatively high risk-

free rate. As the following proposition shows, the situation is not very different in an unconstrained

heterogeneous economy.

Proposition 5 Let SRunc
t denote the instantaneous Sharpe ratio of stock returns in an uncon-

strained heterogeneous-agent economy. Then the risk-free interest rate and the Sharpe ratio of

stock returns satisfy

runc
t > ρ +

µ

σ
SRunc

t − (SRunc
t )2 . (10)

The inequality (10) does not explicitly depend on the preference parameter γ or the distribution

of wealth in a heterogeneous economy, that is, it applies for any wealth distribution within a

particular economy and also across various economies, differing in agents’ risk aversion. Figure 1

below illustrates the implication of Proposition 5. Note that, as the wealth distribution shifts from

the log-utility agent to the more risk averse agent (as ωγ increases), both the interest rate and the

Sharpe ratio rise in the unconstrained economy. However, to achieve a high value of the Sharpe

ratio, the risk-free rate must be unrealistically high. On the other hand, a constrained economy

with the same parameter values can generate a high Sharpe ratio while the risk-free rate remains

relatively low.

Finally, we find that the borrowing constraint does not have an obvious systematic effect on the

volatility of stock returns. In the constrained economy, the instantaneous return volatility equals

the volatility of the endowment process σ, while in the unconstrained economy it can be either

higher or lower, depending on the choice of model parameters.

4 Numerical analysis: More general borrowing constraints

In this section, we analyze a more general case, when the proportion of individual wealth invested

in the risky asset is bounded from above, π ≤ π > 1. An explicit solution in this case is not

available and we have to resolve to numerical methods. Our objective is to illustrate that the

explicit solution in the economy without borrowing is qualitatively similar to the behavior of an

economy with a relatively tight restriction on leverage.
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We consider an economy in which the moments of the aggregate endowment growth are given

by µ = 0.018 and σ = 0.033 (these correspond to the unconditional moments of the century-long

U.S. aggregate consumption series). We set the subjective time discount rate to ρ = 0.02. We

assume that the more risk averse agent in the economy has the relative risk aversion parameter

γ = 10. We set π = 1.05, i.e., the agents cannot borrow more than 5% of their individual wealth.

Our results are shown in Figure 1. In the region where the borrowing constraint is binding,

which corresponds approximately to ωγ > 0.05, the Sharpe ratio of stock returns is close to the

value in the economy without borrowing, which is the same as in the representative-agent economy

with risk aversion of γ. The risk-free rate is monotonically increasing in ωγ , as in the economy

analyzed above. Note that if most of wealth in the economy is controlled by the less risk-averse,

log-utility, agent, the interest rate can be lower than in a representative-agent log-utility economy,

as predicted by our analytical solution above (the results of Proposition 2, obtained in the limit of

large values of time t are equivalent to the limit of the wealth distribution ωγ approaching zero, since

the wealth distribution in the economy without borrowing is a deterministic monotone function of

time and limt→∞ ωγ,t = 0).

5 Conclusion

In this article, we study a general equilibrium exchange economy with multiple agents who differ in

their degree of risk aversion and face borrowing constraints. We show that, unlike in a representative

agent model, in an economy with borrowing constraints the Sharpe ratio of stock returns can be

relatively high, while the risk-free interest rate remains relatively low. In particular, the Sharpe ratio

of stock returns in the constrained heterogeneous-agent economy is the same as in the representative-

agent economy populated only by the more risk averse of the two agents, while the risk-free rate in

the constrained heterogeneous-agent economy may be even lower than in the representative-agent

economy populated by the less risk averse of the two agents. And, comparing the constrained

heterogeneous-agent economy to one where agents are heterogeneous but unconstrained, we find

that imposing a borrowing constraint increases the Sharpe ratio of stock returns and lowers the

risk-free interest rate. Moreover, we show that the heterogeneous-agent unconstrained economies
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suffer from the same limitations as the representative-agent economies with CRRA preferences,

namely the tight link between the Sharpe ratio of stock returns and the level of the risk-free rate,

which is not the case in economies with borrowing constraints.
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Appendix A: Proofs and technical results

Proof of Proposition 1

We first examine the decision problem of individual agents, subject to the market prices given in

parts (ii–iv) of the Proposition. We then show that markets clear as long as the system of equations

(4,5) has a solution. Finally, we prove that such a solution exists and is unique.

Individual agents’ consumption/portfolio choice

Since the first, more risk averse, agent is unconstrained in equilibrium, his problem can be formu-

lated in an equivalent static form (see Cox and Huang, 1989)

max
Cγ,t

E0

[∫ ∞

0
e−ρt

C1−γ
γ,t

1− γ
dt

]
, (A1)

subject to the budget constraint

E0

[∫ ∞

0
e−RtξtCγ,tdt

]
= ωγE0

[∫ ∞

0
e−RtξtDtdt

]
= ωγ,0S0. (A2)

where ξt is the density of the equivalent martingale measure (EMM density). Given (ii) ξt takes

the following form

ξt = e−
1
2
γ2σ2t−γσWt . (A3)

The optimal consumption of the first agent then satisfies

e−ρtC−γ
γ,t = λ1e

−Rtξt, (A4)

where λ1 is the Lagrange multiplier on his budget constraint. Thus,

Cγ,t = λ
− 1

γ

1 e
Rt
γ e

�
−ρ−γµ+γ(1+γ)σ2/2

γ

�
t
Dt. (A5)

To solve the problem of the log-utility agent, we use the technique developed in Cvitanic and

Karatzas (1992) for portfolio optimization with constraints. Specifically, we introduce a fictitious
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market in which the diffusion component of stock returns is the same as in the original market, but

the EMM density is now given by

ξ̃t = e−
1
2
σ2t−σWt (A6)

and the interest rate by

r̃t = rt − (1− γ) σ2. (A7)

It is easy to check that the expected stock return in the fictitious market is the same as in the

original market. If it turns out that the optimal portfolio strategy for the agent in the fictitious

market satisfies the original constraints, this strategy would also be optimal in the original market

(see Cvitanic and Karatzas, 1992).

The log-utility agent’s problem in fictitious market is

max
C1,t

E0

[∫ ∞

0
e−ρt ln C1,tds

]
, (A8)

subject to

E0

[∫ ∞

0
e−Rt+(1−γ)σ2tξ̃tC1,tdt

]
= (1− ωγ,0)S0. (A9)

The optimality condition takes form

e−ρtC−1
1,t = λ2e

−Rt+(1−γ)σ2tξ̃t, (A10)

and therefore

C1,t = λ−1
2 eRte(−ρ−µ+γσ2)tDt. (A11)

Market clearing conditions

Let us define

R̄t = Rt − (ρ + µ− γσ2)t. (A12)

Then, equations (A5) and (A11) take form

Cγ,t = λ
− 1

γ

1 e

�
R̄t+(1−γ)(µ−γσ2/2)t

γ

�
Dt, (A13)

C1,t = λ−1
2 eR̄tDt. (A14)
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The market clearing condition in the consumption market is then given by

λ
− 1

γ

1 e

�
R̄t+(1−γ)(µ−γσ2/2)t

γ

�
+ λ−1

2 eR̄t = 1, (A15)

which should hold for every t ∈ [0,∞). The condition (A15) at time t = 0 implies that λ−1
2 =

1− λ
− 1

γ

1 = C1,0/D0. Let us denote C1,0/D0 as A and express (A15) as

(1−A) exp
(

R̄t + (1− γ)(µ− γσ2/2)t
γ

)
+ A exp(R̄t) = 1. (A16)

Consider now the budget constraint of the log-utility agent:

(1− ωγ,0)S0 = E0

[∫ ∞

0
e−Rt+(1−γ)σ2tξ̃tC1,tdt

]
= A

∫ ∞

0
e−ρtdt =

A

ρ
. (A17)

Since

S0 = E0

[∫ ∞

0
e−RtξtDtdt

]
=

∫ ∞

0
e−Rte(µ−γσ2)tdt =

∫ ∞

0
e−R̄t−ρtdt, (A18)

equation (A17) is equivalent to

A = ρ(1− ωγ,0)
∫ ∞

0
e−R̄t−ρtdt. (A19)

As long as the budget constraint of the log-utility agent is satisfied, so is the budget constraint

of the non-log agent, which follows from equations (A13), (A16), and (A18). Finally, note also

that according to (A18), the ratio of the stock price to the aggregate endowment is a deterministic

function of time, and hence the instantaneous volatility of stock returns equals σ. Similarly, the

volatility of wealth of the log-utility agent (computed using the EMM density ξ̃t) is equal to σ.

Hence, the log-utility agent invests all of his/her wealth in the stock market, and therefore, the

no-borrowing constraint is satisfied. The same is true for the non-log agent. Thus, we conclude

that the equilibrium postulated in Proposition 1 exists as long as the system of two equations (A16,

A19) (equations (4) and (5) in Proposition 1) has a solution.
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Existence and uniqueness of solution to equations (4) and (5)

Differentiating (4) with respect to A we have

(∂AR̄t)
1− (1− γ)A exp(R̄t)

γ
= exp

(
R̄t + (1− γ)(µ− γσ2/2)t

γ

)
− exp(R̄t). (A20)

Consider two cases:

Case: µ− γσ2/2 > 0

Equation (4) implies that in this case R̄t ≥ 0. From equation (A20) then it follows that ∂AR̄t < 0.

Let us define a mapping

I(A) = ρ(1− ωγ,0)
∫ ∞

0
e−R̄t−ρtdt. (A21)

Differentiating (A21) with respect to A we have

I ′(A) = −ρ(1− ωγ,0)
∫ ∞

0
∂AR̄te

−R̄t−ρtdt ≥ 0. (A22)

From (4) we have

0 < I(0) = (1− ωγ,0)ρ/[ρ− (1− γ)(µ− γσ2/2)] < 1

0 < I(1) = (1− ωγ,0) < 1.

Therefore, by the Brouwer Fixed-Point theorem, the system of equations (4), (5) has a solution.

To show that the solution is unique, we compute the second derivative of I(A):

I ′′(A) = ρ(1− ωγ,0)
∫ ∞

0
[(∂AR̄t)2 − ∂AAR̄t]e−R̄t−ρtdt. (A23)

Differentiating (A20) with respect to A we have

∂AAR̄t

(
1− (1− γ)A exp(R̄t)

)− (1− γ)∂AR̄t(1 + A∂AR̄t) exp(R̄t) =

= ∂AR̄t

(
exp

(
R̄t + (1− γ)(µ− γσ2/2)t

γ

)
− exp(R̄t)

)
+ (1− γ)∂AR̄t exp(R̄t).
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Therefore,
[
(∂AR̄)2A,t − ∂AAR̄t

]
(1− (1− γ)A exp(R̄t)) =

∂AR̄t(γ − 1)

[
1 + (2γ − 1)AeR̄t

]
exp

(
R̄t+(1−γ)(µ−γσ2/2)t

γ

)
+ exp(R̄t)

(
1−A exp(R̄t)

)

1− (1− γ)A exp(R̄t)
.

Since ∂AR̄t < 0 and γ > 1, we conclude that I ′′(A) < 0 and the uniqueness of the solution follows.

Case: µ− γσ2/2 ≤ 0

Equation (4) implies that in this case R̄t ≤ 0. From equation (A20) then it follows that ∂AR̄t > 0

and, therefore, I ′(A) ≤ 0. This implies that the equation I(A) = A has a unique solution.

Proof of Proposition 2

Differentiating equation (4) with respect to t at t = 0 proves (9). To show that z is a decreasing

function of the ωγ,0, it is enough to prove that A is a decreasing function of ωγ,0, since z is

monotonically increasing in A. A = I(A,ωγ,0) holds for every ωγ,0 ∈ [0, 1]. Differentiating this

equality in ωγ,0, we find that

[1− ∂AI(A,ωγ,0)]∂ωγ,0A = ∂ωγ,0I < 0.

At the fixed point of the mapping I(A), it must be that ∂I(A,ωγ,0) < 1, and hence ∂ωγ,0A < 0.

To establish the asymptotic properties of the risk-free rate, we examine (4) as t approaches

infinity.

(i) Case µ− γσ2/2 > 0: limt→∞ R̄t = − ln A, and therefore, limt→∞ rt = ρ + µ− γσ2.

(ii) Case µ − γσ2/2 < 0: limt→∞ R̄t + (1 − γ)(µ − γσ2/2)t = const, and therefore, limt→∞ rt =

ρ + γµ− γ(1 + γ)σ2/2.

(iii) Case µ− γσ2/2 = 0: R̄t = 0 and rt = ρ + µ− γσ2.
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Proof of Propositions 3–5

First, we establish some properties of the unconstrained economy. The equilibrium allocation of

consumption in such economy is Pareto-optimal and can be recovered as a solution of the central

planner’s problem (see Wang, 1996)

max
Cγ+C1=D

C1−γ
γ

1− γ
+ λ ln C1 (A24)

for a suitable choice of the utility weight λ. Let u(D;λ) denote the solution of (A24), which can be

interpreted as a utility function of the representative agent (social planner). Using the optimality

conditions, it is easy to show that (A24) implies

∂DCγ =
Cγ

D − (1− γ)C1
(A25)

∂DDCγ =
(1− γ)γCγC1

(D − (1− γ)C1)3
, (A26)

and therefore,

∂Du(D; λ) = λ
1
C1

, (A27)

and

∂DDu(D; λ) = −λ
1
C1

γ

D − (1− γ)C1
. (A28)

According to the consumption CAPM, the instantaneous Sharpe ratio of stock returns is given by

SRunc
0 = σ

−D0∂DDu(Dt;λ)
∂Du(Dt; λ)

= σ
γ

(1−A) + γA
∈ [σ, γσ], (A29)

where A = C1,0/D0 denotes the consumption share of the log-utility agent at time zero, as in the

constrained economy characterized in Proposition 1. This proves Proposition 3.

The risk-free rate in the unconstrained economy can be computed using the derived utility

function of the representative agent. Specifically,

runc
t = ρ− Dt∂DDu(Dt; λ)

∂Du(Dt; λ)
µ− 1

2
D2

t ∂DDDu(Dt; λ)
∂Du(Dt; λ)

σ2. (A30)
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It then follows that

runc
0 = ρ +

γ

1 + (γ − 1)A


µ−

1 + γ − γ(1−γ)A
1+(γ−1)A

(1 + (γ − 1)A)
σ2

2


 . (A31)

Now compare runc
0 to the interest rate in the constrained economy with the same initial distribution

of consumption, as given by Proposition 1. We find that

runc
0 − r0 =

γAσ2

2(1−A + γA)3
[
(γ − 1)3A2 + A(γ3 + γ2 − 5γ + 3) + 2(γ − 1)

]
.

It is easy to see that since A ∈ [0, 1] and γ ≥ 1,

runc
0 − r0 ≥ 0.

This proves Proposition 4. The result of Proposition 5 follows from (A29) and (A31).
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Appendix B: General case

In this section, we consider a general case of two agents with CRRA utility functions.

U1
t (c1) = Et

[∫ ∞

t
e−ρ(s−t) c1−γ1

γ1,s

1− γ1
ds

]
and U2

t (c2) = Et

[∫ ∞

t
e−ρ(s−t) c1−γ2

γ2,s

1− γ2
ds

]
. (B1)

Without loss of generality we assume that γ1 > γ2. We prove the following analog of Proposition 1.

Proposition 6 Let ρ > max[(1 − γ1)µ + γ1(γ1−1)
2 σ2, 0]. There exists a competitive equilibrium in

which

(i) The consumption processes of the two agents are given by

Cγ1,t = (1−A) exp
(

R̄t + (γ2 − γ1)(µ + (1− γ1 − γ2)σ2/2)t
γ1

)
Dt, (B2)

Cγ2,t = A exp(R̄t)Dt, (B3)

where the constant A = C1,0/D0 ∈ [0, 1] and the deterministic process R̄t are determined as

a solution of the following system of equations:

(1−A) exp
(

R̄t + (γ2 − γ1)(µ + (1− γ1 − γ2)σ2/2)t
γ1

)
+ A exp

(
R̄t

γ2

)
= 1, (B4)

A

∫ ∞

0
e
− γ2−1

γ2
R̄t−ψt

dt− (1− ωγ1,0)
∫ ∞

0
e−R̄t−ψtdt = 0, (B5)

where

ψ = ρ + (γ2 − 1)(µ− γ2σ
2/2). (B6)

(ii) The instantaneous Sharpe ratio of stock returns equals

µSt − rt

σSt
= γ1σ; (B7)

(iii) The instantaneous volatility of stock returns equals

σSt = σ; (B8)
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(iv) The risk-free interest rate process rt is deterministic and is given by

rt =
dR̄t

dt
+ (ρ + γ2µ− (γ1 + γ2(γ2 − 1)/2)σ2).

Proof. Following the same line of arguments as before we find that the first agent’s solution to

the unconstrained problem with EMM density

ξt = e−
1
2
γ2
1σ2t−γ1σWt (B9)

is

Cγ1,t = λ
− 1

γ1
1 e

Rt
γ1 e

�
−ρ−γ1µ+γ1(1+γ1)σ2/2

γ1

�
t
Dt. (B10)

where λ1 is the Lagrange multiplier on his budget constraint. To solve the problem of the less risk-

averse second agent, we use the technique developed in Cvitanic and Karatzas (1992) for portfolio

optimization with constraints. Specifically, we introduce a fictitious market in which the diffusion

component of stock returns is the same as in the original market, but the EMM density is now

given by

ξt = e−
1
2
γ2
2σ2t−γ2σWt (B11)

and the interest rate by

r̃t = rt − (γ2 − γ1) σ2. (B12)

Thus, the second agent solves

max
Cγ2,t

E0

[∫ ∞

0
e−ρs c1−γ2

γ2,s

1− γ2
ds

]
, (B13)

subject to

E0

[∫ ∞

0
e−Rt+(γ2−γ1)σ2tξ̃tCγ2,tdt

]
= (1− ωγ1,0)S0. (B14)

As a result, his consumption is given by

Cγ2,t = λ
− 1

γ2
2 e

Rt
γ2 e

�
−ρ−γ2µ+(γ1+γ2(γ2−1)/2)σ2

γ2

�
t
Dt. (B15)
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Market clearing conditions

Let us define

R̄t = Rt − (ρ + γ2µ− (γ1 + γ2(γ2 − 1)/2)σ2)t. (B16)

The market clearing condition in the consumption market is then given by

(1−A) exp
(

R̄t + (γ2 − γ1)(µ + (1− γ1 − γ2)σ2/2)t
γ1

)
+ A exp

(
R̄t

γ2

)
= 1, (B17)

where, as before, A = C1,0/D0 = λ
− 1

γ2
2 = 1−λ

− 1
γ1

1 = C1,0/D0. Consider now the budget constraint

of the less risk-averse agent:

(1− ωγ,0)S0 = E0

[∫ ∞

0
e−Rt+(γ2−γ1)σ2tξ̃tCγ2,tdt

]
= A

∫ ∞

0
e
− ρ

γ2
t
e

γ2−1
γ2

[−Rt+(
γ2
2
−γ1)σ2t]. (B18)

Since

S0 = E0

[∫ ∞

0
e−RtξtDtdt

]
=

∫ ∞

0
e−Rte(µ−γ1σ2)tdt =

∫ ∞

0
e−R̄t−(ρ+(γ2−1)(µ−γ2σ2/2))tdt, (B19)

equation (B18) is equivalent to

A

∫ ∞

0
e
− ρ

γ2
t
e

γ2−1
γ2

[−Rt+(
γ2
2
−γ1)σ2t] = (1− ωγ,0)

∫ ∞

0
e−R̄t−(ρ+(γ2−1)(µ−γ2σ2/2))tdt, (B20)

or

A

∫ ∞

0
e
− γ2−1

γ2
R̄t−ψt

dt = (1− ωγ1,0)
∫ ∞

0
e−R̄t−ψtdt. (B21)

As long as the budget constraint of the second agent is satisfied, so is the budget constraint of

the first agent, which follows from equations (B17) and (B19). Finally, note also that according

to (B19), the ratio of the stock price to the aggregate endowment is a deterministic function of

time, and hence the instantaneous volatility of stock returns equals σ. Similarly, the volatility of

wealth of the second agent (computed using the EMM density ξ̃t) is equal to σ. Hence, the second

agent invests all of his wealth in the stock market, and therefore, the no-borrowing constraint is

satisfied. The same is true for the first agent. Thus, we conclude that the equilibrium postulated

in Proposition 1 exists as long as the system of two equations (B17, B21) has a solution.
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Existence of solution to equations (B17) and (B21)

Let us define a mapping

I(A) = A

∫ ∞

0
e
− γ2−1

γ2
R̄t−ψt

dt− (1− ωγ1,0)
∫ ∞

0
e−R̄t−ψtdt. (B22)

From (B17) and (B22) we have

I(0) < 0 < I(1).

Therefore, the system of equations (B17), (B21) has a solution.
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Figure 1: Effect of borrowing constraint on Sharpe ratio and risk-free rate

Panel A plots the instantaneous Sharpe ratio of stock returns in the constrained economy
(solid line) and in the unconstrained economy (dotted line) as a function of the wealth
distribution, ωγ . Panel B gives the corresponding plots of the risk-free interest rate. The
following parameter values are used: µ = 0.018, σ = 0.033, ρ = 0.02. The more risk averse
agent in the economy has γ = 10. The constraint on borrowing is given by π ≤ 1.05, that
is, the agents cannot borrow more than 5% of their individual wealth. The dashed and
dashed-dotted lines correspond to the representative-agent economies with risk aversion of
γ = 1 and γ = 10, respectively.
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