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Abstract

Continuous-time stochastic processes have become central to many disciplines, yet the fact
that they are approximations to physically realizable phenomena is often overlooked. We
quantify one aspect of the approximation errors of continuous-time models by investigating
the replication errors that arise from delta hedging derivative securities in discrete time. We
characterize the asymptotic distribution of these replication errors and their joint distribution
with other assets as the number of discrete time periods increases. We introduce the notion of
temporal granularity for continuous-time stochastic processes, which allows us to quantify the
extent to which discrete-time implementations of continuous-time models can track the payo�
of a derivative security. We show that granularity is a function of the contract speci�cations
of the derivative security, and of the degree of market completeness. We derive closed form
expressions for the granularity of geometric Brownian motion and of an Ornstein-Uhlenbeck
process for call and put options, and perform Monte Carlo simulations that illustrate the
practical relevance of granularity.
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1 Introduction

Since Wiener's (1923) pioneering construction of Brownian motion and Itô's (1951) theory

of stochastic integrals, continuous-time stochastic processes have become indispensible to

many disciplines ranging from chemistry and physics to engineering to biology to �nan-

cial economics. In fact, the application of Brownian motion to �nancial markets pre-dates

Wiener's contribution by almost a quarter century (see Bachelier (1900)), and Merton's

(1973) seminal derivation of the Black and Scholes (1973) option-pricing formula in contin-

uous time|and, more importantly, his notion of delta hedging and dynamic replication|is

often cited as the foundation of today's multi-trillion dollar derivatives industry.

Indeed, the mathematics and statistics of Brownian motion have become so intertwined

with so many scienti�c theories that we often forget the fact that continuous-time pro-

cesses are only approximations to physically realizable phenomena. In fact, for the more

theoretically inclined, Brownian motion may seem more \real" than discrete-time discrete-

valued processes. Of course, whether time is continuous or discrete is a theological question

best left for philosophers. But a more practical question remains: under what conditions

are continuous-time models good approximations to speci�c physical phenomena, i.e., when

does time seem \continuous" and when does it seem \discrete"?

In this paper, we provide a concrete answer to this question in the context of continuous-

time derivative-pricing models, e.g., Merton (1973), by characterizing the replication errors

that arise from delta hedging derivatives in discrete time.

Delta-hedging strategies play a central role in the theory of derivatives and in our un-

derstanding of dynamic notions of spanning and market completeness. In particular, delta-

hedging strategies are recipes for replicating the payo� of a complex security by sophisticated

dynamic trading of simpler securities. When markets are dynamically complete (see, for ex-

ample, Harrison and Kreps (1979) and Du�e and Huang (1985)) and continuous trading

is feasible, it is possible to replicate certain derivative securities perfectly. However, when

markets are not complete or when continuous trading is not feasible, e.g., trading frictions

or periodic market closings, perfect replication is not possible and the usual delta-hedging

strategies exhibit tracking errors. These tracking errors comprise the focus of our attention.

Speci�cally, we characterize the asymptotic distribution of the tracking errors of delta-
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hedging strategies using continuous-record asymptotics, i.e., we implement these strategies in

discrete time and let the number of time periods increase while holding the time span �xed.

Since the delta-hedging strategies we consider are those implied by continuous-time models

like Merton (1973), it is not surprising that tracking errors arise when such strategies are

implemented in discrete time, nor is it surprising that these errors disappear in the limit of

continuous time. However, by focusing on the continuous-record asymptotics of the tracking

error, we can quantify the discrepancy between the discrete-time hedging strategy and its

continuous-time limit, answering the question \When is time continuous?" in the context of

replicating derivative securities.

We show that the normalized tracking error converges weakly to a particular stochastic

integral and that the root-mean-squared tracking error is of order N�1=2 where N is the

number of discrete time periods over which the delta hedging is performed. This provides

a natural de�nition for temporal granularity: it is the coe�cient that corresponds to the

O(N�1=2) term. We derive a closed-form expression for the temporal granularity of a di�usion

process paired with a derivative security, and propose this as a measure of the \continuity"

of time. The fact that granularity is de�ned with respect to a derivative-security/price-

process pair underscores the obvious: a need for speci�city in quantifying the approximation

errors of continuous-time processes. It is impossible to tell how good an approximation a

continuous-time process is to a physical process without specifying the nature of the physical

process.

We also characterize the behavior of delta-hedging tracking errors in the case of dy-

namically incomplete markets, markets where, even in the continuous-time limit, derivative

securities cannot be perfectly replicated. Although standard delta-hedging strategies are not

necessarily optimal in incomplete markets, nevertheless this is still an important case be-

cause it provides us with an opportunity to distinguish between two very di�erent economic

sources of tracking errors: the inability to trade continuously (due to market frictions or

institutional restrictions) and the inability to span states of nature (due to an insu�cient

number of securities). Of course, these two sources of tracking errors are deeply related,1

but they are distinct and have di�erent implications for temporal granularity. In particular,

1They can be traded o� to some degree, as Merton (1982a) conjectured and Du�e and Huang (1985)
proved.
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we �nd that the root-mean-squared-error of delta-hedging strategies in incomplete markets

is comprised of two terms: a constant term and a term that is of order N�1=2. This provides

a natural decomposition of granularity into two components, one that is �xed, and the other

that declines with the number of hedging intervals.

In addition to the general usefulness of a measure of temporal granularity for continuous-

time stochastic processes, our results have other, more immediate applications. For example,

for a broad class of derivative securities and price processes, our measure of granularity pro-

vides a simple method for determining the approximate number of hedging intervals N�

needed to achieve a target root-mean-squared-error �: N� = g2=�2 where g is the granu-

larity coe�cient of the derivative-security/price-process pair. This expression shows that to

halve the root-mean-squared-error of a typical delta-hedging strategy, the number of hedging

intervals must be increased approximately fourfold.

Moreover, for some special cases, e.g., the Black-Scholes case, the granularity coe�cient

can be obtained in closed form, and these cases shed considerable light on several aspects of

derivatives replication. For example, in the Black-Scholes case, does an increase in volatility

make it easier or more di�cult to replicate a simple call option? Common intuition suggests

that the tracking error increases with volatility, but the closed-form expression for granularity

(3.2) shows that the granularity achieves a maximum as a function of � and that beyond

this point, it becomes a decreasing function of �. The correct intuition is that at lower

levels of volatility, tracking error is an increasing function of volatility because an increase

in volatility implies more price movements and a greater likelihood of hedging errors in each

hedging interval. But at higher levels of volatility, price movements are so extreme that an

increase in volatility in this case implies that prices are less likely to uctuate near the strike

price where delta-hedging errors are the largest, hence granularity is a decreasing function

of �. In other words, at su�ciently high levels of volatility, the nonlinear payo� function of

a call option \looks" approximately linear and is therefore easier to hedge. Similar insights

can be gleaned from other closed-form expressions of granularity (see, for example, Section

3.2).

In Section 2, we provide a complete characterization of the asymptotic behavior of the

tracking error for delta hedging an arbitrary derivative security, and formally introduce the

notion of granularity for both the complete- and incomplete-markets cases. To illustrate
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the practical relevance of granularity, in Section 3 we obtain closed-form expressions for

granularity in two speci�c cases: call options under geometric Brownian motion, and under

a mean-reverting process. In Section 4 we check the accuracy of our continuous-record

asymptotic approximations by presenting Monte Carlo simulation experiments for the two

examples of Section 3 and comparing them to the corresponding analytical expressions.

We present other extensions and generalizations in Section 5 such as a characterization of

the sample-path properties of tracking errors, the joint distributions of tracking errors and

prices, a PDE characterization of the tracking error, and more general loss functions than

root-mean-squared tracking error. We conclude in Section 6.

2 De�ning Temporal Granularity

The relationship between continuous-time and discrete-time models in economics and �nance

has been explored in a number of studies. One of the earliest examples is Merton (1969), in

which the continuous-time limit of the budget equation of a dynamic portfolio choice problem

is carefully derived from discrete-time considerations (see also Merton (1975, 1982b)). Foley's

(1975) analyis of \beginning-of-period" versus \end-of-period" models in macroeconomics is

similar in spirit, though quite di�erent in substance.

More recent interest in this issue stems primarily from two sources. On the one hand,

it is widely recognized that continuous-time models are useful and tractable approximations

to more realistic discrete-time models. Therefore, it is important to establish that key

economic characteristics of discrete-time models converge properly to the characteristics of

their continuous-time counterparts. A review of recent research along these lines can be

found in Du�e and Protter (1992).

On the other hand, while discrete-time and discrete-state models such as those based on

binomial and multinomial trees, e.g., Cox, Ross, and Rubinstein (1979), He (1990, 1991),

and Rubinstein (1994), may not be realistic models of actual markets, nevertheless they

are convenient computational devices for analyzing continuous-time models. Willinger and

Taqqu (1991) formalize this notion and provide a review of this literature.

For derivative-pricing applications, the distinction between discrete-time and continuous-

time models is a more serious one. For all practical purposes, trading takes place at dis-

4



crete intervals, and a discrete-time implementation of Merton's (1973) continuous-time delta-

hedging strategy cannot perfectly replicate an option's payo�. The tracking error that arises

from implementing a continuous-time hedging strategy in discrete time has been studied by

several authors.

One of the �rst studies was conducted by Boyle and Emanuel (1980), who consider the

statistical properties of \local" tracking errors. At the beginning of a su�ciently small

time interval, they form a hedging portfolio comprised of options and stock according to

the continuous-time Black-Scholes/Merton delta-hedging formula. The composition of this

hedging portfolio is held �xed during this time interval, which gives rise to a tracking error

(in continuous time, the composition of this portfolio would be adjusted continuously to keep

its dollar value equal to zero). The dollar-value of this portfolio at the end of the interval is

then used to quantify the tracking error.

More recently, Toft (1996) shows that a closed-form expression for the variance of the

cash ow from a discrete-time delta-hedging strategy can be obtained for a call or put option

in the special case of geometric Brownian motion. However, he observes that this expression

is likely to span several pages and is therefore quite di�cult to analyze.

But perhaps the most relevant literature for our purposes is Leland's (1985) investigation

of discrete-time delta-hedging strategies motivated by the presence of transactions costs, an

obvious but important motivation (why else would one trade discretely?) that spurred a

series of studies on option pricing with transactions costs, e.g., Bensaid et al. (1992), Boyle

and Vorst (1992), Edirisinghe, Naik, and Uppal (1993), Henrotte (1993), Avellaneda and

Paras (1994), and Grannan and Swindle (1996). This strand of the literature provides com-

pelling economic motivation for discrete delta-hedging|trading continuously would generate

in�nite transactions costs. However, the focus of these studies is the pricing and optimal

replication of derivative securities, not the statistical behavior of tracking errors. Although

we too have investigated these issues (see Bertsimas, Kogan, and Lo [1997]), our focus here

is strictly on the approximation errors that arise from applying continuous-time models

discretely, without regard to the speci�c motivation for discrete trading.

Speci�cally, we investigate the discrete-time implementation of continuous-time delta-

hedging strategies and characterize the stochastic properties of the tracking error in consid-

erable generality by appealing to continuous-record asymptotics. We introduce the notion of
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temporal granularity which is central to the issue of when time may be considered continuous,

i.e., when continuous-time models are good approximations to discrete-time phenomena. In

Section 2.1, we describe the complete-markets framework in which our delta-hedging strat-

egy will be implemented and de�ne the tracking error and related quantities. In Section 2.2,

we characterize the continuous-record asymptotic behavior of the tracking error and de�ne

the notion of temporal granularity. We provide an interpretation of granularity in Section

2.3 and discuss its implications, and in Section 2.4 we extend our de�nition of granularity

to the incomplete-markets case.

2.1 Delta-Hedging in Complete Markets

We begin by specifying the market environment. For simplicity, we assume that there are

only two traded securities: a riskless asset (bond) and a risky asset (stock). Time t is

normalized to the unit interval so that trading takes place from t=0 to t=1. In addition,

we assume

(A1) Markets are frictionless, i.e., there are no taxes, transactions costs, shortsales re-

strictions, or borrowing restrictions.

(A2) The riskless borrowing and lending rate is 0.2

(A3) The price Pt of the risky asset follows a di�usion process

dPt

Pt

= �(t; Pt) dt + �(t; Pt) dWt ; �(t; Pt) � �0 > 0 (2.1)

where the coe�cients � and � satisfy standard regularity conditions that guarantee existence

and uniqueness of the strong solution of (2.1) and market completeness (see Du�e (1996)).

We now introduce a European derivative security on the stock that pays F (P1) dollars at

time t=1. We will call F (�) the payo� function of the derivative. The equilibrium price of

2This entails little loss of generality since we can always renormalize all prices by the price of a zero-
coupon bond with maturity at time 1 (see, for example, Harrison and Kreps [1979]). This assumption does
rule out the case of a stochastic interest rate. However, we are able to accommodate this and other forms of
market incompleteness in Section 2.4.
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the derivative, H(t; Pt), satis�es the following partial di�erential equation (PDE) (see Cox,

Ingersoll, and Ross (1985) and Du�e (1996)):

@H(t; x)

@t
+

1

2
�2(t; x)x2

@2H(t; x)

@x2
= 0 (2.2)

with the boundary condition

H(1; x) = F (x) : (2.3)

This is a generalization of the standard Black-Scholes model which can be obtained as a

special case when the coe�cients of the di�usion process (2.1) are constant, i.e., �(t; Pt) = �,

�(t; Pt) = �, and the payo� function F (P1) is given by Max[P1�K; 0] or Min[P1; K].

The delta-hedging strategy was introduced by Black and Scholes (1973) and Merton

(1973) and when implemented continuously on t 2 [0; 1], the payo� of the derivative at

expiration can be replicated perfectly by a portfolio of stocks and riskless bonds. This

strategy consists of forming a portfolio at time t = 0 containing only stocks and bonds

with an initial investment of H(0; P0), and rebalancing it continuously in a self-�nancing

manner|all long positions are �nanced by short positions and no money is withdrawn or

added to the portfolio|so that at all times t 2 [0; 1] the portfolio contains @H(t; Pt)=@Pt

shares of the stock. The value of such a portfolio at time t = 1 is exactly equal to the

payo�, F (P1), of the derivative. Therefore, the price, H(t; Pt), of the derivative can also be

considered the production cost of replicating the derivative's payo� F (P1) starting at time

t.

Such an interpretation becomes important when continuous-time trading is not feasible.

In this case, H(t; Pt) can no longer be viewed as the equilibrium price of the derivative.

However, the function H(t; Pt), de�ned formally as a solution of (2.2){(2.3), can still be

viewed as the production cost H(0; P0) of an approximate replication of the derivative's

payo�, and may be used to de�ne the production process itself (we formally de�ne a discrete-

time delta-hedging strategy below).3 Therefore, when we refer to H(t; Pt) as the derivative's

3The term \approximate replication" indicates the fact that when continuous trading is not feasible, the
di�erence between the payo� of the derivative and the end-of-period dollar-value of the replicating portfolio
will be nonzero. See Bertsimas, Kogan, and Lo (1997) for a discussion of derivative replication in discrete
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\price" below, we shall have in mind this more robust interpretation of production cost and

approximate replication strategy.4

More formally, we assume:

(A4) Trading takes place only at N regularly spaced times ti, i = 1; : : : ; N , where

ti 2
�
0 ;

1

N
;
2

N
; : : : ;

N � 1

N

�
:

Under (A4), the di�erence between the payo� of the derivative and the end-of-period dollar-

value of the replicating portfolio|the tracking error|will be nonzero.

Following Hutchinson, Lo, and Poggio (1994), let V
(N)
ti be the value of the replicating

portfolio at time ti. Since the replicating portfolio consists of shares of the stock and the

bond, we can express V
(N)
ti as

V
(N)
ti = V

(N)
S;ti

+ V
(N)
B;ti

(2.4)

where V (N)
S;ti

and V
(N)
B;ti

denote the dollar amount invested in the stock and the bond, respec-

tively, in the replicating portfolio at time ti. At time t=0 the total value of the replicating

portfolio is equal to the price (production cost) of the derivative

V
(N)
0 = H(0; P0) (2.5)

and its composition is given by

V
(N)
S;0 =

@H(t; Pt)

@Pt

����
t=0

P0 ; V
(N)
B;0 = V

(N)
0 � V

(N)
S;0 ; (2.6)

time and the distinction between production cost and equilibrium price.
4Alternatively, we can conduct the following equivalent thought experiment: while some market partici-

pants can trade costlessly and continuously in time and thus ensure that the price of the derivative is given
by the solution of (2.2){(2.3), we will focus our attention on other market participants who can trade only
a �nite number of times.
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hence the portfolio contains @H(t; Pt)=@Ptjt=0 shares of stock. The replicating portfolio is

rebalanced at time periods ti so that

V
(N)
S;ti

=
@H(t; Pt)

@Pt

����
t=ti

Pti ; V
(N)
B;ti

= V
(N)
ti � V

(N)
S;ti

: (2.7)

Between time periods ti and ti+1, the portfolio composition remains unchanged. This gives

rise to non-zero tracking errors �
(N)
ti :

�
(N)
ti � H(ti; Pti) � V

(N)
ti : (2.8)

The value of the replicating portfolio at time t = 1 is denoted by V
(N)
1 and the end-of-period

tracking error is denoted by �
(N)
1 .

The sequence of tracking errors contains a great deal of information about the approxi-

mation errors of implementing a continuous-time hedging strategy in discrete time, and in

Sections 2.2{2.4 and 5 we provide a complete characterization of the continuous-time limit-

ing distribution of �(N)
1 and f�tig. However, because tracking errors also contain noise, we

also investigate the properties of the root-mean-squared-error (RMSE) of the end-of-period

tracking error �1 (see Hutchinson, Lo, and Poggio (1994) for other alternatives):

RMSE(N) =
q
E0[ (�

(N)
1 )2 ] : (2.9)

where E0[�] denotes the conditional expectation, conditional on information available at

time t=0. Whenever exact replication of the derivative's payo� is impossible, RMSE(N) is

positive.

Of course, root-mean-squared-error is only one of many possible summary statistics of

the tracking error. A more general speci�cation is the expected loss of the tracking error

E0

h
U(�

(N)
1 )

i

where U(�) is a general loss function, and we consider this case explicitly in Section 5.4.
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2.2 Asymptotic Behavior of the Tracking Error and RMSE

We characterize analytically the asymptotic behavior of the tracking error and RMSE by

appealing to continuous-record asymptotics, i.e., by letting the number of trading periods

N increase without bound while holding the time span �xed. This characterization pro-

vides several important insights into the behavior of the tracking error of general European

derivative securities that previous studies have only hinted at indirectly (and only for simple

put and call options).5 A by product of this characterization is a useful de�nition for the

temporal granularity of a continuous-time stochastic process (relative to a speci�c derivative

security).

We begin with the case of smooth payo� functions F (P1):

Theorem 1 Let the derivative's payo� function F (x) in (2.3) be six times continuously

di�erentiable and all of its derivatives be bounded, and suppose there exists a positive constant

K such that functions �(�; x) and �(�; x) in (2.1) satisfy

����� @�+

@��@x
�(�; x)

����� +
����� @�+

@��@x
�(�; x)

����� +
����� @

�

@x�
(x�(�; x))

����� � K (2.10)

where (�; x) 2 [0; 1]� [0;1), 1 � � � 6, 0 � � � 1, 0 �  � 3, and all partial derivatives

are continuous. Then under Assumptions (A1){(A4):

(a) The RMSE of the discrete-time delta-hedging strategy (2.7) satis�es

RMSE(N) = O

 
1p
N

!
: (2.11)

(b) The normalized tracking error satis�es:

p
N �

(N)
1 ) G

where

G � 1p
2

Z 1

0
�2(t; Pt)P

2
t

@2H(t; Pt)

@P 2
t

dW 0

t ; (2.12)

5See, for example, Boyle and Emanuel (1980) Hutchinson, Lo, and Poggio (1994), Leland (1985), and
Toft (1996).
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W 0

t is a Wiener process independent of Wt, and \)" denotes convergence in distribution.

(c) The RMSE of the discrete-time delta-hedging strategy (2.7) satis�es

RMSE(N) =
gp
N

+ O

�
1

N

�
(2.13)

where

g =
q
E0 [R]; (2.14)

R =
1

2

Z 1

0

 
�2(t; Pt)P

2
t

@2H(t; Pt)

@P 2
t

!2

dt : (2.15)

Proof: See Appendix A.1.

Theorem 1 shows that the tracking error is asymptotically equal in distribution to G=
p
N

(up to O(N�1) terms), where G is a random variable given by (2.12). The expected value of

G is zero by the martingale property of stochastic integrals. Moreover, the independence of

the Wiener processes W 0

t and Wt implies that the asymptotic distribution of the normalized

tracking error is symmetric, i.e., in the limit of frequent trading, positive values of the

normalized tracking error are just as likely as negative values of the same magnitude.

This result might seem somewhat counterintuitive at �rst, especially in light of Boyle

and Emanuel's (1980) �nding that in the Black-Scholes framework the distribution of the

local tracking error over a short trading interval is signi�cantly skewed. However, Theorem

1(b) describes the asymptotic distribution of the tracking error over the entire life of the

derivative, not over short intervals. Such an aggregation of local errors leads to a symmetric

asymptotic distribution, just as a normalized sum of random variables will have a Gaussian

distribution asymptotically under certain conditions, e.g., the conditions for a functional

central limit theorem to hold.

Note that Theorem 1 applies to a wide class of di�usion processes (2.1) and to a variety

of derivative payo� functions F (P1). In particular, it holds when the stock price follows a

di�usion process with constant coe�cients, as in Black and Scholes (1973).6 However, the

requirement that the payo� function F (P1) is smooth|six times di�erentiable with bounded

derivatives|is violated by the most common derivatives of all: simple puts and calls. In the

6For this case, the formula for the RMSE (2.14){(2.15) was �rst derived by Grannan and Swindle (1996).
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next theorem, we extend our results to cover this most basic set of payo� functions.

Theorem 2 Let the payo� function F (P1) be continuous and piecewise linear, and suppose

(2.10) holds. In addition, let

�����x2@
��(�; x)

@x�

����� � K2 (2.16)

for (�; x) 2 [0; 1]� [0;1), 2 � � � 6, and some positive constant K2. Then under Assump-

tions (A1){(A4):

(a) The RMSE of the discrete-time delta-hedging strategy (2.7) satis�es

RMSE(N) =
gp
N

+ o(
1p
N
)

where g is given by (2.14){(2.15).7

(b) The normalized tracking error satis�es

p
N �

(N)
1 ) 1p

2

Z 1

0
�2(t; Pt)P

2
t

@2H(t; Pt)

@P 2
t

dW 0

t (2.17)

where W 0

t is a Wiener process independent of Wt.
8

Proof: See Appendix A.2. By imposing an additional smoothness condition (2.16) on the

di�usion coe�cient �(�; x), Theorem 2 assures us that the conclusions of Theorem 1 also

hold for the most common types of derivatives, those with piecewise linear payo� functions.

Theorems 1 and 2 allows us to de�ne the coe�cient of temporal granularity g for any

combination of continuous-time process fPtg and derivative payo� function F (P1)|it is

the constant associated with the leading term of the RMSE's continuous-record asymptotic

7It is easy to show, using H�older's inequality, that (A.15) implies that g < 1. Details of the argument
are given in Appendix A.2.

8The fact that g <1 implies that the stochastic integral in (2.17) is well de�ned.

12



expansion:

g �

vuuut1
2
E0

2
4Z 1

0

 
�2(t; Pt)P 2

t

@2H(t; Pt)

@P 2
t

!2

dt

3
5 (2.18)

where H(t; Pt) satis�es (2.2) and (2.3).

2.3 Interpretation of Granularity

The interpretation for temporal granularity is clear: it is a measure of the approximation

errors that arise from implementing a continuous-time delta-hedging strategy in discrete

time. A derivative-pricing model|recall that this is comprised of a payo� function F (P1) and

a continuous-time stochastic process for Pt|with high granularity requires a larger number

of trading periods to achieve the same level of tracking error as a derivative-pricing model

with low granularity. In the former case, time is \grainier", calling for more frequent hedging

activity than the latter case. More formally, according to Theorems 1 and 2, to a �rst-order

approximation the RMSE of an N -trade delta-hedging strategy is g=
p
N . Therefore, if we

desire the RMSE to be within some small value �, we require

N � g2

�2

trades in the unit interval. For a �xed error �, the number of trades needed to reduce the

RMSE to within � grows quadratically with granularity. If one derivative-pricing model

has twice the granularity of another, it would require four times as many delta-hedging

transactions to achieve the same RMSE tracking error.

From (2.18) is it clear that granularity depends on the derivative-pricing formula H(t; Pt)

and the price dynamics Pt in natural ways. Equation (2.18) formalizes the intuition that

derivatives with higher volatility and higher \gamma" risk (large second derivative with

respect to stock price) are more di�cult to hedge, since these cases imply larger values for

the integrand in (2.18). Accordingly, derivatives on less volatile stocks are easier to hedge.

Consider a stock price process which is almost deterministic, i.e., �(t; Pt) is very small. This

implies a very small value for g, hence derivatives on such a stock can be replicated almost

13



perfectly, even if continuous trading is not feasible. Alternatively, such derivatives require

relatively few rebalancing periods N to maintain small tracking errors.

Also, a derivative with a particularly simple payo� function should be easier to hedge

than derivatives on the same stock with more complicated payo�s. For example, consider a

derivative with the payo� function F (P1) = P1. This derivative is identical to the underlying

stock, and can always be replicated perfectly by buying a unit of the underlying stock at

time t= 0 and holding it until expiration. The tracking error for this derivative is always

equal to zero, no matter how volatile the underlying stock is. This intuition is made precise

by Theorem 1, which describes exactly how the error depends on the properties of the stock

price process and the payo� function of the derivative: it is determined by the behavior of

the integral R, which tends to be large when stock prices \spend more time" in regions of

the domain that imply high volatility and high convexity or gamma of the derivative.

We will investigate the sensitivity of g to the speci�cation of the stock price process in

Sections 3 and 4.

2.4 Granularity in Incomplete Markets

When markets are dynamically complete, as we assume in Sections 2.1{2.3, the only source

of tracking errors is the fact that delta hedging occurs at discrete intervals. However, in

dynamically incomplete markets, tracking errors are non-zero even in the limit of continuous

delta hedging. For example, derivative-pricing models with stochastic volatility (Hull and

White (1987), Wiggins (1987)) are not arbitrage-based models since the presence of a second

state variable|stochastic volatility|renders perfect replication impossible with only stocks

and bonds as hedging instruments, even with frictionless continuous trading. This suggests

two sources of granularity: one from discreteness, and one from the inability to hedge certain

risks. While one source of granularity may depend on the frequency of delta hedging, the

other should not.9 We formalize this intuition in this section.

Let H(t;Zt) denote the price of a derivative with the payo� function F (Z1), which now

9Of course, in incomplete markets, delta hedging need not be the preferred method for hedging a derivative
security (in particular, Bertsimas, Kogan, and Lo (1997) provide an alternative based on the minimization of
mean-squared-error using stochastic dynamic programming). Nevertheless, an analysis of the delta-hedging
errors in incomplete markets provides considerable insight into the focus of this paper: the approximation
errors inherent in continuous-time models.
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depends on the value of a vector of J+1 state variables Zt at time t=1.10 For notational

compactness, let the entries in Zt be indexed from j = 0; : : : ; J and denote by the �rst state

variable Z0
t the price of the traded asset (stock). We replace Assumption (A3) with

(A30) The state variables Z
j
t are governed by a vector di�usion process

dZj
t = �j(t;Zt)Z

j
t dt + Zj

t

JX
k=0

�jk(t;Zt) dW
k
t ; j = 0; : : : ; J (2.19)

where W k
t are independent Wiener processes, and the coe�cients �j and �jk satisfy standard

regularity conditions that guarantee existence and uniqueness of the strong solution of (2.19).

State variables Zj
t , j = 1; : : : ; J do not correspond to the prices of any traded assets.

Under Assumption (A30), the equilibrium price of the derivative is given by the funda-

mental PDE:

@H(t;Zt)

@t
+

JX
j=1

�̂j(t;Zt)Z
j
t

@H(t;Zt)

@Zj
t

+
1

2

JX
j;k=0

ajk(t;Zt)Z
j
tZ

k
t

@2H(t;Zt)

@Zj
t @Z

k
t

= 0 (2.20)

with the boundary condition

H(1;Z1) = F (Z1) (2.21)

where ajk �
PJ

l=0 �jl�kl and �̂j(t;Zt) are risk-adjusted drift rates.11

Since, by assumption, the state variables Zj
t ; j = 1; : : : ; J do not correspond to the prices

of any traded assets, the market is dynamically incomplete. Nevertheless, a delta-hedging

strategy can still be applied by the holder of the short position in the derivative. Speci�cally,

we assume that the number of shares of stock held in the replicating portfolio at time t is

given by

@H(t;Zt)

@Z0
t

+
JX

j=1

�j(t;Zt)
@H(t;Zt)

@Zj
t

=
JX

j=0

�j(t;Zt)
@H(t;Zt)

@Zj
t

(2.22)

10Vectors and matrices are denoted by boldface roman characters.
11Note that the existence of risk-adjusted drift rates in incomplete markets is far from straightforward, and

requires additional structure and signi�cant restrictions on the underlying model of economic equilibrium.
See, for example, Merton (1973), Garman (1976), He and Pearson (1991), Huang (1987), and Hull and White
(1987).
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where �0(t;Zt) � 1 and the functions �j(t;Zt), j = 1; : : : ; J , determine the extent to which

the traded asset is used to hedge the risk associated with other (non-traded) state variables.

We can now characterize the behavior of the tracking error that arises from the discrete-

time delta-hedging strategy (2.22). First, de�ne the following notation to be used in the

next theorem:

@(�)

@x(�)
� @�0+���+�J

@x�00 � � �x�JJ
; j�j � �0 + � � � + �J :

Then we have:

Theorem 3 Let the payo� function F (Z) be six times continuously di�erentiable with all

of its derivatives bounded. Suppose there exists a positive constant K such that functions

�j(s;Z), �j(s;Z) and �jk(s;Z), j; k = 0; : : : ; J satisfy

����� @�+()

@��@Z()
�j(�;Z)

����� +
����� @�+()

@��@Z()
�j(�;Z)

����� +
����� @�+()

@��@Z()
�jk(�;Z)

����� +
����� @

(�)

@Z(�)
(xj�jk(�;Z))

����� � K (2.23)

for (�;Z) 2 [0; 1]� [0;1)J+1, 1 � j�j � 6, 0 � � � 1, 0 � jj � 3, and all partial derivatives

are continuous. Then under Assumptions (A1), (A2), (A30), and (A4) the RMSE of the

tracking error satis�es

RMSE(N) = a +
gp
N

+ O

�
1

N

�
(2.24)

where

a = E0

h
(I1 + I2)

2
i 1
2 (2.25)

I1 =
Z 1

0

JX
j=1

@H(t;Zt)

@Zj
t

��
�j(t;Zt)� �̂j(t;Zt)

�
Zj
t � �j(t;Zt)�0(t;Zt)Z

0
t

�
dt (2.26)

I2 =
Z 1

0

JX
j=1

@H(t;Zt)

@Zj
t

JX
k=0

�
Zj
t �jk(t; Z

j
t )� �j(t;Zt)Z

0
t �0k(t;Zt)

�
dWk : (2.27)
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and g is a positive constant.

Proof: See Appendix A.3.

In addition to the O(N�1=2) term, the expression for the RMSE in Theorem 3 now

contains an O(1) term a. This con�rms the intuition we started with: tracking errors arise

from both market incompleteness and from discrete hedging, and while the latter declines

in the limit of continuous trading, the former does not. Moreover, (2.26) and (2.27) show

that the magnitude of a is determined by the nature of market incompleteness. If none of

the non-traded state variables enter the derivative-pricing function H, then I1 = I2 = 0 and

we are back to the complete-markets case of Theorems 1 and 2.

Finally, Theorem 3 can also be extended to derivatives with continuous, piecewise linear

payo�s as in Theorem 2, but we omit this straightforward extension to conserve space.

3 Applications

To develop further intuition for our measure of temporal granularity, in this section we derive

closed-form expressions for g in two important special cases: the Black-Scholes option pricing

model with geometric Brownian motion, and the Black-Scholes model with a mean-reverting

(Ornstein-Uhlenbeck) process.

3.1 Granularity of Geometric Brownian Motion

Suppose that stock price dynamics are given by:

dPt

Pt

= � dt + � dWt : (3.1)

where � and � are constants. Under this assumption we obtain the following explicit char-

acterization of the granularity g.
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Theorem 4 Under Assumptions (A1){(A4), stock price dynamics (3.1), and the payo�

function of simple call and put options, the granularity g in (2.13) is given by

g = K�

0
BBBB@
Z 1

0

exp

"
� [�t+ln(P0K )��

2=2]
2

�2(1+t)

#

4�
p
1� t2

dt

1
CCCCA

1
2

(3.2)

where K is the option's strike price.

Proof: See Appendix A.4.

It is easy to see that g = 0 if � = 0 and g increases with � in the neighborhood of zero.

When � increases without bound, the granularity g decays to zero, which means that it has

at least one local maximum as a function of �. The granularity g also decays to zero when

P0=K approaches zero or in�nity. In the important special case of � = 0, we conclude by

direct computation that g is a unimodal function of P0=K, that achieves its maximum at

P0=K = exp(�2=2).

The fact that granularity is not monotone increasing in � may seem counterintuitive at

�rst|after all, how can delta-hedging errors become smaller for larger values of �? The

intuition follows from the fact that at small levels of �, an increase in � leads to larger

granularity because there is a greater chance that the stock price will uctuate around

regions of high gamma (where @2H(t; Pt)=@P
2
t is large, i.e., near the money), leading to

greater tracking errors. However, at very high levels of �, prices uctuate so wildly that

an increase in � will decrease the probability that the stock price stays in regions of high

gamma for very long|in these extreme cases, the payo� function \looks" approximately

linear hence granularity becomes a decreasing function of �.

Also, we show below that g is not very sensitive to changes in � when � is su�ciently

large. This implies that, for an empirically relevant range of parameter values, g, as a

function of the initial stock price, achieves its maximum close to the strike price, i.e., at

P0=K � 1. These observations are consistent with the behavior of the tracking error for

�nite values of N that we see in the Monte Carlo simulations of Section 4.

When stock prices follow a geometric Brownian motion, expressions similar to (3.2) can

be obtained for derivatives other than simple puts and calls. For example, for a straddle,
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consisting of one put and one call option with the same strike price K, the constant g is

twice as large as for the put or call option alone.

3.2 Granularity of a Mean-Reverting Process

Let pt � ln(Pt) and suppose

dpt =
�
�(pt � (�+ �t)) + �

�
dt + � dWt (3.3)

where � = ���2=2 and � is a constant. This is an Ornstein-Uhlenbeck process with a linear

time trend, and the solution of (3.3) is given by

pt = (p0 � �)e�t + (� + �t) + �
Z t

0
e�(t�s) dWs : (3.4)

Under these price dynamics, we have:

Theorem 5 Under Assumptions (A1){(A4), stock price dynamics (3.3), and the payo�

function of simple call and put options, the granularity g in (2.13) is given by

g = K�

0
BBBB@
Z 1

0

p
 exp

"
�[�+�t+(ln(P0K )��) exp(�t)��2=2]

2

�2[(1�t)+1�exp(�2t)]

#

4�
p
1� t

q
(1� t) + 1� exp(�2t)

dt

1
CCCCA

1
2

(3.5)

where K is the option's strike price.

Proof: See Appendix A.5.

Expression (3.5) is a direct generalization of (3.2): when the mean-reversion parameter

 is set to zero, the process (3.3) becomes a geometric Brownian motion and (3.5) reduces

to (3.2). Theorem 5 has some interesting qualitative implications for the behavior of the

tracking error in presence of mean-reversion. We will discuss them in detail in the next

section.
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4 Monte Carlo Analysis

Since our analysis of granularity is based entirely on continuous-record asymptotics, we must

check the quality of these approximations by performing Monte Carlo simulation experiments

for various values of N . The results of these Monte Carlo simulations are reported in Section

4.1. We also use Monte Carlo simulations to explore the qualitative behavior of the RMSE

for various parameter values of the stock price process, and these simulations are reported

in Section 4.2.

4.1 Accuracy of the Asymptotics

We begin by investigating the distribution of the tracking error �(N) for various values of

N . We do this by simulating the hedging strategy of Section 2.2 for call and put options,12

assuming that price dynamics are given by a geometric Brownian motion (3.1).13 We set the

parameters of the stock price process to � = 0:1, � = 0:3, P0 = 1:0 and let the strike price

be K = 1. We consider N = 10; 20; 50; 100, and simulate the hedging process 250;000

times for each value of N .

Figure 1a shows the empirical probability density function (PDF) of �
(N)
1 for each N .

As expected, the distribution of the tracking error becomes tighter as the trading frequency

increases. It is also apparent that the tracking error can be signi�cant even for N = 100.

Figure 1b contains the empirical PDFs of the normalized tracking error,
p
N�

(N)
1 , for the

same values of N . These PDFs are compared to the PDF of the asymptotic distribution

(2.17), which is estimated by approximating the integral in (2.17) using a �rst-order Euler

scheme. The functions in Figure 1b are practically identical and indistinguishable, which

suggests that the asymptotic expression for the distribution of
p
N�

(N)
1 in Theorem 1(b) is

an excellent approximation to the �nite-sample PDF for values of N as small as 10.

To evaluate the accuracy of the asymptotic expression g=
p
N for �nite values of N , we

compare g=
p
N to the actual RMSE from Monte Carlo simulations of the delta-hedging

12According to Theorem 1, the asymptotic expressions for the tracking error and the RMSE are the same
for put and call options since these options have the same second partial derivative of the option price with
respect to the current stock price. Moreover, it is easy to verify, using the put-call parity relation, that these
options give rise to identical tracking errors.

13When the stock price process Pt follows a geometric Brownian motion, the stock price at time ti+1 is
distributed (conditional on the stock price at time ti) as Pti exp((���2=2)�t+�

p
�t�), where � � N (0; 1).

We use this relation to simulate the delta-hedging strategy.
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Figure 1: Empirical probability density functions of (a) the tracking error and (b) the nor-
malized tracking error (dashed line), are plotted for di�erent values of the trading frequency
N . Figure (b) also shows the empirical probability density function of the asymptotic distri-
bution (2.17) (solid line). The stock price process is given by (3.1) with parameters � = 0:1,
� = 0:3, P0 = 1:0. The option is a European call (put) option with strike price K = 1.

strategy of Section 2.2. Speci�cally, we simulate the delta-hedging strategy for a set of

European put and call options with strike price K = 1 under geometric Brownian motion

(3.1) with di�erent sets of parameter values for (�; �; P0). The tracking error is tabulated

as a function of these parameters and the results are summarized in Tables 1, 2, and 3.

Tables 1{3 show that g=
p
N is an excellent approximation to the RMSE across a wide

range of parameter values for (�; �; P0), even for as few as N = 10 delta-hedging periods.

4.2 Qualitative Behavior of the RMSE

The Monte Carlo simulations of Section 4.1 show that RMSE increases with the di�usion

coe�cient � in an empirically relevant range of parameter values (see Table 2), and that

the RMSE is not very sensitive to the drift rate � of the stock price process when � is

su�ciently large (see Table 3). These properties are illustrated in Figures 2a and 3. In

Figure 2a the logarithm of RMSE is plotted against the logarithm of trading periods N for

� = 0:1; 0:2; 0:3|as � increases, the locus of points shifts upward. Figure 3 shows that

granularity g is not a monotone function of � and goes to zero as � increases without bound.
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Table 1: The sensitivity of the RMSE as a function of the initial price P0. The RMSE
is estimated using Monte Carlo simulation. Options are European calls and puts with
strike price K = 1. 250; 000 simulations are performed for every set of parameter values.
The stock price follows a geometric Brownian motion (3.1). The drift and di�usion
coe�cients of the stock price process are � = 0:1 and � = 0:3. RMSE(N) is compared
to the asymptotic approximation gN�1=2 in (2.13){(3.2). The relative error (RE) of the
asymptotic approximation is de�ned as jgN�1=2 � RMSE(N)j=RMSE(N) � 100%.

Parameters

gN�1=2 RMSE(N) R.E.

Call Option Put Option

N P0 H(0; P0)
RMSE(N)

H H(0; P0)
RMSE(N)

H

10 0.50 0.0078 0.0071 8.9% 7E-4 9.64 0.501 0.014

20 0.50 0.0055 0.0052 7.9% 7E-4 6.88 0.501 0.010

50 0.50 0.0035 0.0033 5.9% 7E-4 4.43 0.501 0.007

100 0.50 0.0025 0.0024 3.1% 7E-4 3.22 0.501 0.005

10 0.75 0.0259 0.0248 3.8% 0.023 1.08 0.273 0.091

20 0.75 0.0183 0.0177 2.9% 0.023 0.760 0.273 0.065

50 0.75 0.0116 0.0113 2.6% 0.023 0.490 0.273 0.041

100 0.75 0.0082 0.0082 2.3% 0.023 0.345 0.273 0.029

10 1.00 0.0334 0.0327 4.1% 0.119 0.269 0.119 0.269

20 1.00 0.0236 0.0227 3.4% 0.119 0.192 0.119 0.192

50 1.00 0.0149 0.0145 2.3% 0.119 0.122 0.119 0.122

100 1.00 0.0106 0.0104 1.9% 0.119 0.087 0.119 0.087

10 1.25 0.0275 0.0263 5.8% 0.294 0.088 0.044 0.588

20 1.25 0.0194 0.0187 3.9% 0.294 0.064 0.044 0.423

50 1.25 0.0123 0.0120 2.7% 0.294 0.041 0.044 0.271

100 1.25 0.0087 0.0087 1.8% 0.294 0.029 0.044 0.195

10 1.50 0.0181 0.0169 7.7% 0.515 0.033 0.015 1.130

20 1.50 0.0128 0.0122 5.3% 0.515 0.024 0.015 0.816

50 1.50 0.0081 0.0076 2.9% 0.515 0.015 0.015 0.528

100 1.50 0.0057 0.0056 3.0% 0.515 0.011 0.015 0.373
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Table 2: The sensitivity of the RMSE as a function of volatility �. The RMSE is estimated
using Monte Carlo simulation. Options are European calls and puts with strike price
K = 1. 250; 000 simulations are performed for every set of parameter values. The stock
price follows a geometric Brownian motion (3.1). The drift coe�cient of the stock price
process is � = 0:1, and the initial stock price is P0 = 1:0. RMSE(N) is compared to the
asymptotic approximation gN�1=2 in (2.13){(3.2). The relative error (RE) of the asymptotic
approximation is de�ned as jgN�1=2 � RMSE(N)j=RMSE(N) � 100%.

Parameters

gN�1=2

Call and Put Options

N � RMSE(N) R.E. H(0; P0)
RMSE(N)

H

10 0.3 0.0334 0.0327 4.1% 0.119 0.269

20 0.3 0.0236 0.0227 3.4% 0.119 0.192

50 0.3 0.0149 0.0145 2.3% 0.119 0.122

100 0.3 0.0106 0.0104 1.9% 0.119 0.087

10 0.2 0.0219 0.0212 3.4% 0.080 0.266

20 0.2 0.0155 0.0151 3.0% 0.080 0.189

50 0.2 0.0098 0.0096 2.1% 0.080 0.121

100 0.2 0.0069 0.0068 1.7% 0.080 0.086

10 0.1 0.0100 0.0102 1.6% 0.040 0.255

20 0.1 0.0071 0.0071 0.04% 0.040 0.177

50 0.1 0.0045 0.0044 1.1% 0.040 0.111

100 0.1 0.0032 0.0031 0.9% 0.040 0.078
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Table 3: The sensitivity of the RMSE as a function of the drift �. The RMSE is estimated
using Monte Carlo simulation. Options are European calls and puts with strike price
K = 1. 250; 000 simulations are performed for every set of parameter values. The stock
price follows a geometric Brownian motion (3.1). The di�usion coe�cient of the stock
price process is � = 0:3, and the initial stock price is P0 = 1:0, the number of trading
periods is N = 20. RMSE(N) is compared to the asymptotic approximation gN�1=2

in (2.13){(3.2). The relative error (RE) of the asymptotic approximation is de�ned as
jgN�1=2 � RMSE(N)j=RMSE(N) � 100%.

Parameters

gN�1=2

Call and Put Options

� RMSE(N) R.E. H(0; P0)
RMSE(N)

H

0.0 0.0235 0.0226 4.3% 0.119 0.189

0.1 0.0236 0.0229 3.4% 0.119 0.192

0.2 0.0230 0.0226 1.7% 0.119 0.190

0.3 0.0218 0.0220 1.0% 0.119 0.184

Figure 2b plots the RMSE as a function of the initial stock price P0. RMSE is a unimodal

function of P0=K (recall that the strike price has been normalized to K = 1 in all our

calculations), achieving its maximum around 1 and decaying to zero as P0=K approaches

zero or in�nity (see Table 1). This con�rms the common intuition that close-to-the-money

options are the most di�cult to hedge|they exhibit the largest RMSE.

Finally, the relative importance of the RMSE can be measured by the ratio of the RMSE

to the option price: RMSE(N)=H(0; P0). This quantity is the root-mean-squared error per

dollar invested in the option. Table 1 shows that this ratio is highest for out-of-the-money

options, despite the fact that the RMSE is highest for close-to-the-money options. This is

due to the fact that the option price decreases faster than the RMSE as the stock moves

away from the strike.

Now consider the case of mean-reverting stock price dynamics (3.3). Recall that under

these dynamics, the Black-Scholes formula still holds.14 Nevertheless, the behavior of gran-

14However, the numerical value for � may be di�erent than that of a geometric Brownian motion because
the presence of mean-reversion can a�ect conditional volatility, holding unconditional volatility �xed. See
Lo and Wang (1995) for further discussion.
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Figure 2: (a) The logarithm of the root-mean-squared error log10(RMSE(N)) is plotted as a
function of the logarithm of the trading frequency log10(N). The option is a European call
(put) option with the strike price K = 1. The stock price process is given by (3.1) with
parameters � = 0:1; P0 = 1:0. The di�usion coe�cient of the stock price process takes values
� = 0:3 (x's), � = 0:2 (o's) and � = 0:1 (+'s). (b) The root-mean-squared error RMSE is
plotted as a function of the initial stock price P0. The option is a European put option with
the strike price K = 1. Parameters of the stock price process are � = 0:1, � = 0:3.

ularity and RMSE is quite di�erent in this case. Figure 4 plots the granularity g of call and

put options for the Ornstein-Uhlenbeck process (3.3) as a function of � and P0. Figure 4a

assumes a value of 0:1 for the mean-reversion parameter  and Figure 4b assumes a value

of 3:0. It is clear from these two plots that the degree of mean reversion  has an enormous

impact on granularity. When  is small, Figure 4a shows that the RMSE is highest when P0

is close to the strike price and is not sensitive to �. But when  is large, Figure 4b suggests

that the RMSE is highest when exp(�) is close to the strike price and is not sensitive to P0.

The inuence of  on the granularity can be understood by recalling that granularity is

closely related to the option's gamma (see Section 2.3). When  is small, the stock price

is more likely to spend time in the neighborhood of the strike price|the region with the

highest \gamma" or @2H(t; Pt)=@P
2
t |when P0 is close to K. However, when  is large, the

stock price is more likely to spend time in a the neighborhood of exp(�), thus g is highest

when exp(�) is close to K.
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Figure 3: The granularity g is plotted as a function of � and �. The option is a European
call (put) option with strike price K = 1. The stock price process is geometric Brownian
motion and initial stock price P0 = 1.

5 Extensions and Generalizations

The analysis of Section 2 can be extended in a number of directions, and we briey outline

four of the most important of these extensions here. In Section 5.1, we show that the normal-

ized tracking error converges in a much stronger sense than simply in distribution, and that

this stronger \sample-path" notion of convergence|called, ironically, \weak" convergence|

can be used to analyze the tracking error of American-style derivative securities. In Section

5.2 we characterize the asymptotic joint distributions of the normalized tracking error and

asset prices, a particularly important extension for investigating the tracking error of delta

hedging a portfolio of derivatives. In Section 5.3, we provide another characterization of the

tracking error, one that relies on PDE's, that o�ers important computational advantages.

And in Section 5.4, we consider alternatives to mean-squared-error loss functions and show

that for quite general loss functions, the behavior of the expected loss of the tracking error

is characterized by the same stochastic integral (2.17) as in the mean-squared-error case.
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Figure 4: Granularity g is plotted as a function of P0 and �. The option is a European call
(put) option with the strike price K = 1. Parameters of the stock price process are � = 0:2,
� = 0:05. The stock price process is given by (3.4). Mean-reversion parameter  takes two
values: (a)  = 0:1 and (b)  = 3:0.

5.1 Sample-Path Properties of Tracking Errors

Recall that the normalized tracking error process is de�ned as:

p
N �

(N)
t =

p
N (H(t; Pt)� V

(N)
t ) ; t 2 [0; 1] :

It can be shown that
p
N�

(N)
t converges weakly to the stochastic process Gt, characterized

by the stochastic integral in (2.12) as a function of its upper limit:15

Gt =
1p
2

Z t

0
�2(t; Ps)P

2
s

@2H(s; Ps)

@P 2
s

dW 0

s :

This stronger notion of convergence yields stronger versions of Theorem 1 and 2 that can

be used to analyze a number of sample-path properties of the tracking error by appealing

15The proof of this result consists of two steps. The �rst step is to establish that the sequence of measures

induced by
p
N �

(N)

t is tight (relatively compact). This can be done by verifying local inequalities for the

moments of processes
p
N �

(N)

t using the machinery developed in the �rst part of Appendix A.2 (we must
use Burkholder's inequality instead of the isometric property and H�older's inequality instead of Schwarz's in-
equality throughout). The second step is to characterize the limiting process. Such a characterization follows
from the proof in Appendix A.1.2 and the fact that the results in Du�e and Protter (1992) guarantee weak
convergence of stochastic processes, not just convergence of their one-dimensional marginal distributions.
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to the Continuous Mapping Theorem (see Billingsley [1968]). This well-known result shows

that the asymptotic distribution of any continuous functional �(�) of the normalized tracking
error is given by �(Gt). For example, the maximum of the normalized tracking error over the

entire life of the derivative security, maxt
p
N�

(N)
t , is distributed as maxtGt asymptotically.

These results can be applied to the normalized tracking errors of American-style deriva-

tives in a straightforward manner. Such derivatives di�er from European derivatives in one

respect: they can be exercised prematurely. Therefore, the valuation of these derivatives

consists of both computing the derivative price function H(t; Pt) and the optimal exercise

schedule, which can be represented as a stopping time � . Then the tracking error at the

moment when the derivative is exercised behaves asymptotically as G�=
p
N .16 The tracking

error, conditional on the derivative not being exercised prematurely, is distributed asymp-

totically as (G1=
p
N j � = 1).

5.2 Joint Distributions of Tracking Errors and Prices

Theorems 1 and 2 provide a complete characterization of the tracking error and RMSE for

individual derivatives, but what is often of more practical interest is the behavior of a port-

folio of derivatives. Delta-hedging a portfolio of derivatives is typically easier because of the

e�ects of diversi�cation|as long as tracking errors are not perfectly correlated across deriva-

tives, the portfolio tracking error will be less volatile than the tracking error of individual

derivatives.

To address portfolio issues, we require the joint distribution of tracking errors for multiple

stocks, as well as the joint distribution of tracking errors and prices. Consider another stock

with price P
(2)
t governed by the di�usion equation

dP
(2)
t

P
(2)
t

= �(2)(t; P
(2)
t ) dt + �(2)(t; P

(2)
t ) dW

(2)
t (5.1)

where W
(2)
t can be correlated with Wt. According to the proof of Theorem 1(b) (see Ap-

pendix A.1.2), since the random variables (Wti+1 �Wti)
2 � (ti+1 � ti) and W

(2)
ti+1 �W

(2)
ti are

16Some technical regularity conditions, e.g., the smoothness of the exercise boundary, are required to
ensure convergence. See, for example, Kushner and Dupuis (1992).
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uncorrelated,17 the Wiener processes W 0

t and W
(2)
t are independent. Therefore, as N in-

creases without bound the pair of random variables (
p
N �

(N)
1 ; P

(2)
1 ) converges in distribution

to:

� p
N �

(N)
1 ; P

(2)
1

�
)

 
1p
2

Z 1

0
�2(t; Pt)P

2
t

@2H(t; Pt)

@P 2
t

dW 0

t ; P
(2)
1

!
(5.2)

where W 0

t is independent of Wt and W
(2)
t .

An immediate corollary of this result is that the normalized tracking error is uncorre-

lated with any asset in the economy. This follows easily from (5.2) since, conditional on

the realization of Pt and P
(2)
t , t 2 [0; 1], the normalized tracking error has zero expected

value asymptotically. However, this does not imply that the asymptotic joint distribution

of (
p
N �

(N)
1 ; P

(2)
1 ) does not depend on the correlation between Wt and W

(2)
t |it does, since

this correlation determines the joint distribution of Pt and P
(2)
t .

The above argument applies without change when the price of the second stock follows a

di�usion process di�erent from (5.1), e.g., (2.19). It can also easily be extended to the case

of multiple stocks.

To derive the joint distribution of the normalized tracking errors for multiple stocks, we

consider the case of two stocks since the generalization to multiple stocks is obvious. Let

Wt and W
(2)
t have mutual variation dWt dW

(2)
t = �(t; Pt; P

(2)
t ) dt, where �(�) is a continu-

ously di�erentiable function with bounded �rst-order partial derivatives. We have already

established that the asymptotic distribution of the tracking error is characterized by the

stochastic integral (2.12). To describe the asymptotic joint distribution of two normalized

tracking errors, it is su�cient to �nd the mutual variation of the Wiener processes in the cor-

responding stochastic integrals. According to the proof of Theorem 1(b) (Appendix A.1.2),

this amounts to computing the expected value of the product

�
(Wti+1 �Wti)

2 � (ti+1 � ti)
��

(W
(2)
ti+1 �W

(2)
ti )2 � (ti+1 � ti)

�
:

Using Itô's formula, it is easy to show that the expected value of the above expression is

17This follows from the fact that, for every pair of standard normal random variables X and Y with
correlation �, X = �Y +

p
1 + �2 Z, where Z is a standard normal random variable, independent of Y . Thus

X and Y 2 � 1 are uncorrelated.
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equal to

E0

h
2�2(t; Pti; P

(2)
ti )

i
(�t)2 + O

�
(�t)

5
2

�
:

This implies that �2(t; Pt; P
(2)
t ) is the mutual variation of the two Wiener processes in the

stochastic integrals (2.12) that describe the asymptotic distributions of the normalized track-

ing errors of the two stocks. Together with Theorem 1(b), this completely determines the

asymptotic joint distribution of the two normalized tracking errors.18

Note that the correlation of two Wiener processes describing the asymptotic behavior of

two normalized tracking errors is always nonnegative, regardless of the sign of the mutual

variation of the original Wiener processes Wt and W
(2)
t . In particular, when two derivatives

have convex price functions, this means that even if the returns on the two stocks are

negatively correlated, the tracking errors resulting from delta hedging derivatives on these

stocks are asymptotically positively correlated.

5.3 A PDE Characterization of the Tracking Error

It is possible to derive an alternative characterization of the tracking error using the intimate

relationship between di�usion processes and PDE's. Although this may seem superuous

given the analytical results of Theorems 1{3, the numerical implementation of a PDE rep-

resentation is often computationally more e�cient.

To illustrate our approach, we begin with the RMSE. According to Theorem 1(c), the

RMSE can be completely characterized asymptotically if g is known (see (2.14)). Using

the Feynman-Kac representation of the solutions of PDE's (see Karatzas and Shreve (1991,

Proposition 4.2.)), we conclude that g2 = u(0; P0), where u(t; x) solves the following:

"
@

@t
+ �(t; x)x

@

@x
+
1

2
�2(t; x)x2

@2

@x2

#
u(t; x) +

1

2

 
�2(t; x)x2

@2H(t; x)

@x2

!2

= 0 (5.3)

u(1; x) = 0 ; 8x : (5.4)

18This result generalizes the �ndings of Boyle and Emanuel (1980).
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The PDE (5.3){(5.4) is of the same degree of di�culty as the fundamental PDE (2.2){(2.3)

that must be solved to obtain the derivative-pricing function H(t; Pt). This new representa-

tion of the RMSE can be used to implement an e�cient numerical procedure for calculating

RMSE without resorting to Monte Carlo simulation.19

Summary measures of the tracking error with general loss functions can also be computed

numerically along the same lines, using the Kolmogorov backward equation. The probability

density function of the normalized tracking error
p
N�

(N)
1 can be determined numerically as

a solution of the Kolmogorov forward equation (see, for example, Karatzas and Shreve (1991,

pp. 368{369)).

5.4 Alternative Measures of the Tracking Error

As we observed in Section 2.2, the root-mean-squared error is only one of many possible

summary measures of the tracking error. An obvious alternative is the Lp-norm:

E0

h ����(N)
1

���p i 1p (5.5)

where p is chosen so that the expectation is �nite (otherwise the measure will not be partic-

ularly informative). More generally, the tracking error can be summarized by

E0

h
U(�

(N)
1 )

i
(5.6)

where U(�) is an arbitrary loss function.

Consider the set of measures (5.5) �rst and assume for simplicity that p 2 [1; 2]. From

(2.17), it follows that

E0

h����(N)
1

���pi 1p � N�1=2E0

"����� 1p2
Z 1

0
�2(t; Pt)P

2
t

@2H(t; Pt)

@P 2
t

dW 0

t

�����
p# 1

p

: (5.7)

hence the moments of the stochastic integral in (2.17) describe the asymptotic behavior of

the moments of the tracking error. Conditional on the realization of fPtg, t 2 [0; 1], the

stochastic integral on the right side of (5.7) is normally distributed with zero mean and

19Results of some preliminary numerical experiments provide encouraging evidence of the practical value
of this new representation.
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variance

Z 1

0

 
�2(t; Pt)P

2
t

@2H(t; Pt)

@P 2
t

!2

dt

which follows from Hull and White (1987). The intuition is that, conditional on the re-

alization of the integrand, the stochastic integral behaves as an integral of a deterministic

function with respect to the Wiener process which is a normal random variable. Now let mp

denote an Lp-norm of the standard normal random variable.20 Then (5.7) can be rewritten

as:

E0

h����(N)
1

���pi 1p � mpp
N
E0

h
R p

2

i 1
p (5.8)

where R is given by (2.15).

As in the case of a quadratic loss function, R plays a fundamental role here in describing

the behavior of the tracking error. When p = 2, R enters (5.8) linearly and closed-form

expressions can be derived for special cases. However, even when p 6= 2, the qualitative

impact of R on the tracking error is the same as for p = 2 and our discussion of the

qualitative behavior of the tracking error applies to this case as well.

For general loss functions U(�) that satisfy certain growth conditions and are su�ciently

smooth near the origin, the delta-method can be applied and we obtain:

E0

h
U
�
�
(N)
1

�i
� 1

N

���U 00

(0)
��� g2 =

1

N

���U 00

(0)
���E0[R] : (5.9)

When U(�) is not di�erentiable at 0, the delta method cannot be used. However, we can use

the same strategy as in our analysis of Lp-norms to tackle this case. Suppose that U(�) is
dominated by a quadratic function. Then

E0

h
U
�
�
(N)
1

�i
� E0

"
U

 
1p
2N

Z 1

0
�2(t; Pt)P

2
t

@2H(t; Pt)

@P 2
t

dW 0

t

!#
: (5.10)

20If X is a standard normal random variable, then mp = E[jX jp]1=p.
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Now let

mU (x) = E [U(x�)] ; � � N (0; 1) :

Then

E0

h
U
�
�
(N)
1

�i
� E0

�
mU

�q
R=N

��
: (5.11)

When the loss function U(�) is convex, mU(�) is an increasing function (by second-order

stochastic dominance). Therefore, the qualitative behavior of the measure (5.6) is also

determined by R and is the same as that of the RMSE.

6 Conclusions

We have argued that continuous-time models are meant to be approximations to physical

phenomena, and as such, their approximation errors should be better understood. In the

speci�c context of continuous-time models of derivative securities, we have quanti�ed the

approximation error through our de�nition of temporal granularity. The combination of a

speci�c derivative security and a stochastic process for the underlying asset's price dynamics

can be associated with a measure of how \grainy" the passage of time is. This measure is

related to the ability to replicate the derivative security through a delta-hedging strategy

implemented in discrete time. Time is said to be very granular if the replication strategy does

not work well|in such cases, time is not continuous. If, however, the replication strategy is

very e�ective, time is said to be very smooth or continuous.

We consider the complete-markets case �rst, and under the assumption of general Markov

di�usion price dynamics, we show that that the tracking errors for derivatives with su�ciently

smooth or continuous piecewise linear payo� functions behave asymptotically (in distribu-

tion) as G=
p
N . We characterize the distribution of the random variable G as a stochastic

integral, and also obtain the joint distribution of G with prices of other assets and with other

tracking errors. We demonstrate that the root-mean-squared error behaves asymptotically

as g=
p
N , where the constant g is what we call the coe�cient of temporal granularity. For

two special cases|call or put options on geometric Brownian motion and on an Ornstein-
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Uhlenbeck process|we are able to evaluate the coe�cient of granularity explicitly.

The incomplete-markets case provided an interesting contrast to the complete-markets

case. In this case, the root-mean-squared error of the tracking error behaves asymptotically

as a + g=
p
N , the �rst term arising from market incompleteness and hence independent of

the number of trading periods, and the second term arising from discrete trading.

We also consider a number of extensions of our analysis, including an extension to alter-

native loss functions, a demonstration of the weak convergence of the tracking error process,

a derivation of the joint distribution of tracking errors and prices, and an alternative char-

acterization of the tracking error in terms of PDE's that can be used for e�cient numerical

implementation.

Because these results depend so heavily on continuous-record asymptotics, we perform

Monte Carlo simulations to check the quality of our asymptotics. For the case of European

puts and calls with geometric Brownian motion price dynamics, our asymptotic approxi-

mations are excellent, providing extremely accurate inferences over the range of empirically

relevant parameter values, even with a small number of trading periods.

Now our de�nition of granularity is not invariant to the derivative security, the underlying

asset's price dynamics, and other variables. But we regard this as a positive feature of our

approach, not a drawback. After all, any plausible de�nition of granularity must be a relative

one, balancing the coarseness of changes in the time domain against the coarseness of changes

in the \space" or price domain. Although the title of this paper suggests that time is the

main focus of our analysis, it is really the relation between time and price that determines

whether or not continuous-time models are good approximations to physical phenomena. It

is our hope that the de�nition of granularity proposed in this paper is one useful way of

tackling this very complex issue.
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A Appendix

The essence of these proofs involves the relation between the delta-hedging strategy and

mean-square approximations of solutions of systems of stochastic di�erential equations de-

scribed in Milstein (1974, 1987, 1995). Readers interested in additional details and intuition

should consult these references directly.

A.1 Proof of Theorem 1

A.1.1 Theorem 1(a)

First we observe that the regularity conditions (2.10) imply the existence of a positive con-

stant K1 such that

����� @�+

@��@x
H(�; x)

����� � K1 (A.1)

for (�; x) 2 [0; 1]� [0;1), 0 � � � 1, 1 �  � 4, and all partial derivatives are continuous.21

Next, by Itô's formula,

H(1; P1) = H(0; P0) +
Z 1

0

 
@H(t; Pt)

@t
+
1

2
�2(t; Pt)P

2
t

@2H(t; Pt)

@P 2
t

!
dt +

Z 1

0

@H(t; Pt)

@Pt

dPt : (A.2)

According to (2.2), the �rst integral on the right-hand side of (A.2) is equal to zero. Thus,

H(1; P1) = H(0; P0) +
Z 1

0

@H(t; Pt)

@Pt

dPt (A.3)

21Since the price of the derivative H(�; x) is de�ned as a solution of (2.2), it is equal to the expectation of
F (P1) with respect to the equivalent martingale measure (see Du�e (1996)), i.e.,

H(�; x) = E(t=�;P�

t
=x)[F (P

�

1
)]

where
dP �

t

P �

t

= �(t; P �

t ) dW
�

t :

and W �

t is a Brownian motion under the equivalent martingale measure. Equation (A.1) now follows from
Friedman (1975; Theorems 5.4 and 5.5, p. 122). The same line of reasoning is followed in He (1989, p. 68).
Of course, one could derive (A.1) using purely analytic methods, e.g. Friedman (1964; Theorem 10, p. 72,
Theorem 11, p. 24; and Theorem 12, p. 25).
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which implies that H(t; Pt) can be characterized as a solution of the system of stochastic

di�erential equations

8><
>:

dXt = @H(t;Pt)

@Pt
�(t; Pt)Pt dt + @H(t;Pt)

@Pt
�(t; Pt)Pt dWt

dPt = �(t; Pt)Pt dt + �(t; Pt)Pt dWt

: (A.4)

At the same time, V
(N)
1 is given by

V
(N)
1 = H(0; P0) +

N�1X
i=0

@H(t; Pt)t=ti
@Pt

(Pti+1 � Pti) ; (A.5)

which can be interpreted as a solution of the following approximation scheme of (A.4) (as

de�ned in Milstein (1987)):

8>><
>>:

�Xti+1 �Xti =
@H(t;Pt)t=ti

@Pt
(Pti+1 � Pti)

�Pti+1 � Pti = Pti+1 � Pti;

(A.6)

where �X and �P denote approximations to X and P , respectively. We now compare (A.6) to

the Euler approximation scheme in Milstein (1995)

8>>>>>>>>>>><
>>>>>>>>>>>:

�Xti+1 �Xti =
@H(t;Pt)t=ti

@Pt
�(ti; Pti)Pti(ti+1 � ti) +

@H(t;Pt)t=ti
@Pt

�(ti; Pti)Pti(Wti+1 �Wti)

�Pti+1 � Pti = �(ti; Pti)(ti+1 � ti) +

�(ti; Pti)(Wti+1 �Wti)

: (A.7)

Regularity conditions (2.10) and (A.1) allow us to conclude (see Milstein (1995,Theorem

2.1)) that a one-step version of the approximation scheme (A.7) has order-of-accuracy 2 in

expected deviation and order-of-accuracy 1 in mean-square deviation (see Milstein (1987),

Milstein (1995) for de�nitions and discussion). It is easy to check that the approximation

scheme (A.6) exhibits this same property. Milstein (1995, Theorem 1.1) relates the one-step

order-of-accuracy of the approximation scheme to its order-of-accuracy on the whole interval

(see also Milstein (1987)). We use this theorem to conclude that (A.6) has mean-square
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order-of-accuracy 1=2, i.e.,

s
E0

��
X(1; P1)� �X(1; P1)

�2�
= O

 
1p
N

!
: (A.8)

We now recall that X(t; Pt) = H(t; Pt) and �X(1; P1) = V
(N)
1 and conclude that

s
E0

��
H(1; P1)� V

(N)
1

�2�
= O

 
1p
N

!
(A.9)

which completes the proof.

A.1.2 Theorem 1(b)

We follow the same line of reasoning as in the proof of Theorem 1(a), but we use the Milstein

approximation scheme for (A.4) instead of the Euler scheme:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

�Xti+1 �Xti =
@H(t;Pt)t=ti

@Pt
�(ti; Pti)Pti(ti+1 � ti) +

@H(t;Pt)t=ti
@Pt

�(ti; Pti)Pti(Wti+1 �Wti) +�
@2H(t;Pt)t=ti

@P 2
t

�(ti; Pti)Pti +
@H(t;Pt)t=ti

@Pt

@(�(t;Pt)Pt)t=ti
@Pt

�
�

1
2
�(ti; Pti)Pti

�
(Wti+1 �Wti)

2 � (ti+1 � ti)
�

�Pti+1 � Pti = �(ti; Pti)Pti(ti+1 � ti) + �(ti; Pti)Pti(Wti+1 �Wti) +

1
2
�(ti; Pti)Pti

@(�(t;Pt)Pt)t=ti
@Pt

�
(Wti+1 �Wti)

2 � (ti+1 � ti)
�
:

(A.10)

According to Milstein (1974) (see also Milstein (1995, Theorem 2.1)), this one-step scheme

has order-of-accuracy 2 in expected deviation and 1:5 in mean-square deviation. It is easy

to check by comparison that the scheme

8>>>>>>><
>>>>>>>:

�Xti+1 �Xti =
@H(t;Pt)t=ti

@Pt
(Pti+1 � Pti) +

1
2
�(ti; Pti)

2P 2
ti

@2H(t;Pt)t=ti
@P 2

t

�
(Wti+1 �Wti)

2 � (ti+1 � ti)
�

�Pti+1 � Pti = Pti+1 � Pti

(A.11)
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has the same property. We now use Milstein (1995, Theorem 1.1) to conclude that

H(1; P1) � V
(N)
1 =

N�1X
i=0

1
2
�(ti; Pti)

2P 2
ti

@2H(t; Pt)t=ti
@P 2

t

�

�
(Wti+1 �Wti)

2 � (ti+1 � ti)
�

+ O(
1

N
) (A.12)

where f = O( 1
N
) means that limN!1N

q
Et=0[f 2] <1. By Slutsky's theorem, we can ignore

the O( 1
N
) term in considering the convergence in distribution of

p
N (H(1; P1)�V

(N)
1 ), since

p
N O( 1

N
) converges to zero in mean-squared and, therefore, also in probability. Observe

now that, since Wti+1 �Wti and Wtj+1 �Wtj are independent for i 6= j, (Wti+1 �Wti)
2 and

Wti+1 �Wti are uncorrelated, E0[(Wti+1 �Wti)
2 � (ti+1 � ti)] = 0 and E0[((Wti+1 �Wti)

2 �
(ti+1 � ti))

2] = 2=(ti+1 � ti)
2, by the functional central limit theorem (see Ethier and Kurtz

(1986)), a piecewise constant martingale

q
N=2

[Nt]�1X
i=0

�
(Wti+1 �Wti)

2 � (ti+1 � ti)
�

(A.13)

converges weakly on [0; 1] to a standard Brownian motionW 0

t , which is independent of Wt.
22

We complete the proof by applying Du�e and Protter (1992, Lemma 5.1 and Corollary

5.1).

A.1.3 Theorem 1(c)

Equation (2.13) follows immediately from Theorem 1(a) and the proof of Theorem 1(b).23

Combined with Theorem 1(b), (2.13) implies that

g =

vuuut1

2
E0

2
4
 Z 1

0
�2(t; Pt)P 2

t

@2H(t; Pt)

@P 2
t

dW 0

t

!2
3
5 : (A.14)

Equation (2.14) follows from (A.14) using the isometric property of stochastic integrals.

22The notation [Nt] denotes the integer part of Nt and we use the convention
P

�1

0
= 0.

23Relation (A.12), established as a part of the proof of Theorem 1(b), guarantees that convergence in
(2.12) occurs not only in distribution, but also in mean-squared.
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A.2 Proof of Theorem 2

Before we present the proof, we establish the following result:

Et=0

2
4Z 1

0

�����@
2H(t; Pt)

@P 2
t

�����
2p

dt

3
5 < 1 (A.15)

for some p > 1. First, since F (x) is a continuous piecewise linear function, it su�ces to

establish (A.15) for F (x) = max(0; x� y), y � 0. Using this de�nition of F (x) and the fact

that one can di�erentiate (2.2) with respect to Pt (see Friedman (1964, Theorem 10, p. 72)),

@2H(�; x)=@x2 is equal to the fundamental solution of the Cauchy problem for the following

partial di�erential equation:

@u(�; x)

@�
+ 1

2

@2

@x2
[�2(�; x)x2u(�; x)] = 0 :

After a logarithmic change of variables, conditions (2.10), (2.16), and �(�; x) � �0 > 0 allow

us to apply Friedman (1975, Theorem 4.5, p. 141), from which we conclude that there exist

positive constants K4 and K5, such that

�����@
2H(�; x)

@x2

����� = ju(�; x)j � K4(1� �)�
1
2 exp

"
�K5

j ln(x)� ln(y)j2
1� �

#
:

By the same theorem and Friedman (1975, Theorem 5.4, p. 149), the distribution of Pt has

a density, which is bounded above by K6t
�1=2, K6 > 0. Now, by direct computation, we �nd

that there exists a positive constant K7 such that

E0

2
4
�����@

2H(t; Pt)

@P 2
t

�����
2p
3
5 � K7(1� t)�p+

1
2 :

Condition (A.15) now follows by Fubini's theorem.

To prove part (a) of the theorem, we use Itô's formula and (2.2) to establish that

H(1; P1) � V
(N)
1 = H(1; P1) � H(0; P0) �

N�1X
i=0

@H(t; Pt)t=ti
@Pt

(Pti+1 � Pti)
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=
N�1X
i=0

Z ti+1

ti

�
@H(t; Pt)

@Pt

� @H(t; Pt)t=ti
@Pt

�
dPt

=
N�1X
i=0

Z ti+1

ti

 Z t

ti

@2H(�; P�)

@P 2
�

dP�

!
dPt :

We now use (2.1) to rewrite the last expression as a sum of four terms:

N�1X
i=0

Z ti+1

ti

 Z t

ti

@2H(�; P�)

@P 2
�

�(�; P�)P� d�

!
�(t; Pt)Pt dt

+
N�1X
i=0

Z ti+1

ti

 Z t

ti

@2H(�; P� )

@P 2
�

�(�; P�)P� d�

!
�(t; Pt)Pt dWt

+
N�1X
i=0

Z ti+1

ti

 Z t

ti

@2H(�; P� )

@P 2
�

�(�; P�)P� dW�

!
�(t; Pt)Pt dt

+
N�1X
i=0

Z ti+1

ti

 Z t

ti

@2H(�; P� )

@P 2
�

�(�; P�)P� dW�

!
�(t; Pt)Pt dWt

� I1 + I2 + I3 + I4 :

Now we will show that, for k = 1; 2; 3, limN!1NE0[I
2
k ] = 0. Consider the term I1 �rst.

Using Schwarz's inequality, we conclude that

NE0[I
2
1 ]

� N2E0

2
4N�1X
i=0

Z ti+1

ti

0
@Z t

ti

 
@2H(�; P�)

@P 2
�

�(�; P� )P�

!2

d� � (t� ti)

1
A�2(t; Pt)P

2
t dt ��t

3
5

� E0

2
4N�1X
i=0

Z ti+1

ti

0
@Z t

ti

 
@2H(�; P�)

@P 2
�

�(�; P� )P�

!2

d�

1
A�2(t; Pt)P

2
t dt

3
5

= �tE0

2
41
2

N�1X
i=0

 
@2H(t; Pt)t=��

i

@P 2
t

!2

�2(� �i ; P��
i
)P 2

��
i
�2(t�i ; Pt�

i
)P 2

t�
i
�t

3
5

where �t � ti+1� ti = 1=N . Random times � �i and t�i satisfy ti � � �i � t�i � ti+1 and depend

on a particular realization of the stock price process. Their existence is guaranteed by the
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Mean-Value Theorem. The sum under the expectation sign converges to the integral

1

2

Z 1

0

 
@2H(t; Pt)

@P 2
t

�2(t; Pt)P
2
t

!2

dt

so we need only to justify passing the limit through the expectation. This can be done using

the Lebesgue dominated convergence theorem. Observe that the integral sum is bounded

above by

1

�t

N�1X
i=0

Z ti+1

ti

0
@Z ti+1

ti

 
@2H(�; P�)

@P 2
�

P�

!2

d�

1
A max

(t;S)2[0;1]�[0;1]
�4(t; S) max

t2[0;1]
P 2
t dt

= max
(t;S)2[0;1]�[0;1]

�4(t; S)
Z 1

0

 
@2H(t; Pt)

@P 2
t

Pt

!2

max
t2[0;1]

P 2
t dt

By H�older's inequality, the expected value of the integral in the last expression is bounded

above by

E0

2
4Z 1

0

 
@2H(t; Pt)

@P 2
t

!2p

dt

3
5

1
p

E0

"
max
t2[0;1]

P
4p
p�1

t

# p�1
p

for any p > 1. Regularity conditions on functions �(t; S) and �(t; S) imply that the second

term is �nite (see Friedman (1975, Theorem 2.3, p. 107)). The �rst term is �nite by (A.15).

This allows us to apply the Lebesgue dominated convergence theorem.

For k = 2 we use the isometric property of the stochastic integral �rst and then apply

Schwarz's inequality. As a result we obtain

NE0[I
2
2 ] = NE0

2
4N�1X
i=0

Z ti+1

ti

 Z t

ti

@2H(�; P�)

@P 2
�

�(�; P� )P� d�

!2

�2(t; Pt)P
2
t dt

3
5

� E0

2
4N�1X
i=0

Z ti+1

ti

0
@Z t

ti

 
@2H(�; P�)

@P 2
�

�(�; P�)P�

!2

d�

1
A�2(t; Pt)P

2
t dt

3
5 :

This last expression converges to zero, by the same argument as in the k = 1 case. Similar

arguments (apply Schwarz's inequality �rst and then the isometric property) prove the k = 3

case.
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We now consider the last term, I4. Using the isometric property of the stochastic integral,

we have

E0[I
2
4 ] = E0

2
4N�1X
i=0

Z ti+1

ti

0
@Z t

ti

 
@2H(�; P�)

@P 2
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2
t dt

3
5

= E0

2
4N�1X
i=0
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i
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t
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�2(� �i ; P��
i
)P 2

��
i
�2(t�i ; Pt�

i
)P 2

t�
i

3
5 (�t)2

2

for some ti � � �i � t�i � ti+1. Now, by the same argument as in the k = 1 case,

lim
N!1

NE0[I
2
4 ] = lim

N!1

E0

2
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3
5 �t
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= 1
2

Z 1

0
E0

2
4
 
@2H(t; Pt)

@P 2
t

�2(t; Pt)P
2
t

!2
3
5 dt ;

which completes the proof of part (a) of the theorem.

Using part (a) and Markov's inequality, we conclude that the sequence of probability

measures induced on the real line by
p
N (H(1; P1)� V

(N)
1 ) is tight and therefore relatively

compact (see Billingsley (1986)). This implies that every subsequence of the original sequence

of probability measures contains a weakly converging subsequence. To prove part (b) of

the theorem, we need to show that every weakly converging subsequence of the original

sequence converges weakly to the stochastic integral in (2.17). Consider a weakly converging

subsequence
p
Nk (H(1; P1)� V

(Nk)
1 ). To show that

q
Nk (H(1; P1)� V

(Nk)
1 ) ) 1p

2

Z 1

0
�2(t; Pt)P

2
t

@2H(t; Pt)

@P 2
t

dW 0

t ;

it su�ces to check that for any function �(x) = exp(
p
�1�x),

E0

�
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Nk (H(1; P1)� V
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Z 1
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t

@2H(t; Pt)

@P 2
t

dW 0
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!#
:

We would like to show that for any � > 0, there exists an integer K, such that k > K implies
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that
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As before, let V (Nk)
r denote the value of the replicating portfolio at time r. Then
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� J1 + J2 + J3 :

Fix an arbitrary �0 > 0. Given (A.15), we can always pick r such that

E0

2
41
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Z 1
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�2(t; Pt)P

2
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@2H(t; Pt)

@P 2
t

!2

dt

3
5 < �0 :

According to Theorem 2,24 there exists K1, such that k > K1 implies that jJ1j < �0. Since

j�0(x)j � j�j,

E0

h
J2
2

i
� �2NkE0

��
H(1; P1)� V

(Nk)
1 �H(r; Pr) + V (Nk)

r

�2�
: (A.17)

Using the arguments of part (a), we conclude that there exists K2, such that k > K2 implies

24Necessary regularity conditions can be established using (2.16), Friedman (1964, Theorem 10, p. 72) and
Friedman (1975, Theorems 4.5 and 4.6, pp. 141{142).
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that
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3
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Therefore, for k > K2, E0 [J
2
2 ] < 2�2�. It is also clear from the previous argument that

E0 [J
2
3 ] < �2�. Thus, if we set K = max(K1; K2) and �0 = (1 + 3�2)�1�, inequality (A.16)

will hold for any k > K. This completes the proof of part (b) of the theorem.

A.3 Proof of Theorem 3

By Itô's formula,

H(1;Z1) =
Z 1
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0
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According to (2.20), this is equivalent to
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On the other hand,

V
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1 = H(0;Z0) +

N�1X
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Therefore, the tracking error can be written as

�
(N)
1 = I1 + I2 + I3
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where I1 and I2 are given by (2.26), (2.27) and

I3 =
N�1X
i=0

Z ti+1

ti
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Now we can use the same argument as in the proofs of Theorems 1(b) and 2 to show that

E0[I
2
3 ] = O(

1

N
)

and

E0[(I1 + I2)I3] =
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) :

Thus,
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= E0

h
(I1 + I2)

2
i 1
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Ap
N

+ O(
1

N
) :

and this completes the proof.

A.4 Proof of Theorem 4

Equation (3.2) follows from (2.18). The closed-form expression for the option price as a

function of time and stock price is given by the Black-Scholes option-pricing formula (see

Black and Scholes (1973)). The di�usion coe�cient of a geometric Brownian motion is

constant and the price of the stock Pt has lognormal distribution. We use Fubini's theorem

to change the order of integration in (3.2) and calculate expected values in closed form.
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A.5 Proof of Theorem 5

Equation (3.5) follows from (2.18).25 The closed-form expression for the option price as a

function of time and stock price is given by the Black-Scholes option-pricing formula (see

Black and Scholes (1973)). The di�usion coe�cient of a mean-reverting process is constant

and the price of the stock Pt has a lognormal distribution. We use Fubini's theorem to

change the order of integration in (3.2), and we calculate expected values in closed form.

25The regularity conditions of Theorem 2 are not satis�ed here. This is not surprising, since in our deriva-
tion we assumed that the stock price process can be characterized as a strong solution of the corresponding
stochastic di�erential equation. Therefore, the regularity conditions that we impose on the coe�cients of
such equation are at least as strong as those required by the existence and uniqueness theorem for stochastic
di�erential equations. For the case of the mean-reverting process these regularity conditions are not satis�ed
(the growth rate of the drift coe�cient is faster than linear). However, the stock price process is still well
de�ned: there exists a unique solution of the di�usion equation (3.3) and the stock price process is obtained
from it by exponentiation. Now it is straightforward to verify that our derivation of (2.18) is still valid.
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