Weak Interaction Studies with

$$\vec{e}$$
 + $^3He \rightarrow ^3H + \nu$

Dipangkar Dutta

Mississippi State University

in collaboration with

Alexandre Deur (JLab) & Blaine Norum (U. of Virginia)

PEB Workshop

@ MIT

March 14-16, 2013

Weak Currents and QCD

- One of the main goals of QCD is to understand nucleons and nuclei in terms of quarks and the forces of QCD.
- We believe that the spontaneous breaking of chiral symmetry of QCD is responsible for the large effective mass of quarks confined in nucleons and nuclei.
- The best way to study these effects is to measure the weak currents in nucleons and nuclei. The axial current is of primary importance.
- However, the axial form factor of light nuclei such as ³He has never been measured.
- Weak interaction measurements will also provide information about axial two-body currents.
- Weak capture of polarized electrons in ³He has great potential to fill this gap and also help test for 2nd class currents.
- Complementary to e-capture in proton discussed by A. Deur.

PEB Workshop Mar 2013

Second Class Currents

Introduced by Weinberg Phys. Rev. 112, 1375 (1958)

Represent the properties of strangeness conserving ($\Delta S=0$) Vector and Axial currents under G-parity transformation

First class:
$$GV_{\mu}^{(I)\pm}G^{-1}=V_{\mu}^{(I)\pm}, \quad GA_{\mu}^{(I)\pm}G^{-1}=-A_{\mu}^{(I)\pm}$$

Second class:
$$GV_{\mu}^{(II)\pm}G^{-1} = -V_{\mu}^{(II)\pm}, \quad GA_{\mu}^{(II)\pm}G^{-1} = A_{\mu}^{(II)\pm}$$

Experimentally, so far there is no evidence for or against the existence of second class currents

The e + ${}^{3}\text{He} \rightarrow {}^{3}\text{H} + \nu$ Reaction

Neglecting lepton masses

$$\frac{d\sigma}{d\Omega_n} = K(E_e, E_\nu, \theta_\nu) \sigma_0(f_E, f_M, f_A)$$

f_E, f_M, f_A are the electric, magnetic and axial formfactors of ³He

Neglecting electron mass, there are no contributions from 2nd class currents and no spin-momentum correlations.

Small cross section ~ 10⁻⁴⁰ cm²/sr

If the mass of the electron is not neglected (relevant for the low energies proposed here)

$$\frac{\mathbf{d}\sigma}{\mathbf{d}\Omega_{n}} = \mathbf{K}(\mathbf{E_{e}}, \mathbf{E_{\nu}}, \theta_{\nu})\sigma_{0}\left[1 + \frac{\mathbf{m_{e}}}{\sigma_{0}}[(\mathbf{k'}\cdot\mathbf{s})\mathbf{g_{1}}(\mathbf{W_{1}}, \mathbf{W_{2}}, \mathbf{W_{5}}) + (\mathbf{P}\cdot\mathbf{s})\mathbf{g_{2}}(\mathbf{W_{2}}, \mathbf{W_{5}}) + (\mathbf{q}\cdot\mathbf{s})\mathbf{g_{3}}(\mathbf{W_{5}}, \mathbf{W_{6}})]\right]$$

$$\mathbf{q} = \mathbf{k} - \mathbf{k}'$$
; $\mathbf{P} = \mathbf{p}_1 - \mathbf{p}_2$; $\mathbf{s} = \text{electron spin vector}$

W₁₋₆ are functions of the nuclear form factors with W₅ and W₆ entirely due to second class currents

If the mass of the electron is not neglected (relevant for the low energies proposed here)

$$\frac{\mathbf{d}\sigma}{\mathbf{d}\Omega_{\mathbf{n}}} = \mathbf{K}(\mathbf{E_e}, \mathbf{E_\nu}, \theta_\nu)\sigma_0 \left[\mathbf{1} + \frac{\mathbf{m_e}}{\sigma_0} [(\mathbf{k'} \cdot \mathbf{s})\mathbf{g_1}(\mathbf{W_1}, \mathbf{W_2}, \mathbf{W_5}) + (\mathbf{P} \cdot \mathbf{s})\mathbf{g_2}(\mathbf{W_2}, \mathbf{W_5}) + (\mathbf{q} \cdot \mathbf{s})\mathbf{g_3}(\mathbf{W_5}, \mathbf{W_6}) \right] \mathbf{m_e} \left[\mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} \right] \mathbf{m_e} \left[\mathbf{v} \cdot \mathbf{v} \right] \mathbf{m_e} \left[\mathbf{v} \cdot \mathbf{v} \right] \mathbf{m_e} \left[\mathbf{v} \cdot \mathbf{v}$$

$$\mathbf{q} = \mathbf{k} - \mathbf{k}'$$
; $\mathbf{P} = \mathbf{p}_1 - \mathbf{p}_2$; $\mathbf{s} = \text{electron spin vector}$

W₁₋₆ are functions of the nuclear form factors with W₅ and W₆ entirely due to second class currents

Observation of a non-zero correlation between q-vector and electron spin direction would be sufficient to verify the existence of second-class currents.

If the mass of the electron is not neglected (relevant for the low energies proposed here)

$$\frac{\mathbf{d}\sigma}{\mathbf{d}\Omega_{\mathbf{n}}} = \mathbf{K}(\mathbf{E_e}, \mathbf{E_\nu}, \theta_\nu)\sigma_0 \left[\mathbf{1} + \frac{\mathbf{m_e}}{\sigma_0} [(\mathbf{k'} \cdot \mathbf{s})\mathbf{g_1}(\mathbf{W_1}, \mathbf{W_2}, \mathbf{W_5}) + (\mathbf{P} \cdot \mathbf{s})\mathbf{g_2}(\mathbf{W_2}, \mathbf{W_5}) + (\mathbf{q} \cdot \mathbf{s})\mathbf{g_3}(\mathbf{W_5}, \mathbf{W_6}) \right] \mathbf{m_e} \left[\mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} \right] \mathbf{m_e} \left[\mathbf{v} \cdot \mathbf{v} \right] \mathbf{m_e} \left[\mathbf{v} \cdot \mathbf{v} \right] \mathbf{m_e} \left[\mathbf{v} \cdot \mathbf{v}$$

$$\mathbf{q} = \mathbf{k} - \mathbf{k}'$$
; $\mathbf{P} = \mathbf{p}_1 - \mathbf{p}_2$; $\mathbf{s} = \text{electron spin vector}$

W₁₋₆ are functions of the nuclear form factors with W₅ and W₆ entirely due to second class currents

Observation of a non-zero correlation between q-vector and electron spin direction would be sufficient to verify the existence of second-class currents.

PEB Workshop Mar 2013 Also relevant for the \overrightarrow{e} + p \rightarrow ν + n reactions discussed in the previous talk

If the mass of the electron is not neglected (relevant for the low energies proposed here)

Ignoring second class currents and for q² << M²Targ

$$\frac{d\sigma}{d\Omega_n} = K(E_e, E_\nu, \theta_\nu)\sigma_0[1 + A_1 + \gamma h m_e A_2 \cos \theta_n (1 + \frac{|f_A(q^2)|^2}{|f_V(q^2)|^2})],$$

h is electron helicity, f_A and f_V are axial and vector formfactors of ³He

If the mass of the electron is not neglected (relevant for the low energies proposed here)

Ignoring second class currents and for q² << M²Targ

$$\frac{d\sigma}{d\Omega_n} = K(E_e, E_\nu, \theta_\nu)\sigma_0[1 + A_1 + \gamma h m_e A_2 \cos\theta_n (1 + \frac{|f_A(q^2)|^2}{|f_V(q^2)|^2})],$$

h is electron helicity, f_A and f_V are axial and vector formfactors of ³He

The coefficient of the $cos\theta_n$ moment of the longitudinal asymmetry can give us the ratio of the axial to vector formfactor

If the mass of the electron is not neglected (relevant for the low energies proposed here)

Ignoring second class currents and for q² << M²Targ

$$\frac{d\sigma}{d\Omega_n} = K(E_e, E_\nu, \theta_\nu)\sigma_0[1 + A_1 + \gamma h m_e A_2 \cos \theta_n (1 + \frac{|f_A(q^2)|^2}{|f_V(q^2)|^2})],$$

h is electron helicity, f_A and f_V are axial and vector formfactors of ³He

The coefficient of the $cos\theta_n$ moment of the longitudinal asymmetry can give us the ratio of the axial to vector formfactor

Implies that \overrightarrow{e} + p $\rightarrow \nu$ + n reaction will allow access to $|g_A(Q^2)/g_V(Q^2)|$ via a new method unlike the ones traditionally used to measure this ratio.

PDG Compilation of ga/gv

The most precise measurements of g_A/g_V from neutron beta decay seems to be inconsistent with each other.

PDG Compilation of ga/gv

The most precise measurements of g_A/g_V from neutron beta decay seems to be inconsistent with each other.

PEB Workshop Mar 2013

The $\vec{e} + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + \nu$ Reaction

Neglecting lepton masses

$$\frac{d\sigma}{d\Omega_{n}} = K(E_{e}, E_{\nu}, \theta_{\nu})\sigma_{0}(f_{E}, f_{M}, f_{A})$$

f_E, f_M, f_A are the electric, magnetic and axial formfactors of ³He

Want to measure a small cross section buried under electromagnetic background to extract the axial formfactor of ³He

Strategy:

- Detect 3H in backward lepton kinematics to enhance Weak/EM cross sections
- Detect elastic backward going electrons in coincidence to reduce backgrounds
- Use high intensity low energy beam with a thin target
- Use polarization degrees of freedom to cleanup parity conserving backgrounds

Only left-handed neutrinos exist in the Standard Model with massless neutrinos.

If polarized electrons are used

$$\stackrel{\rightarrow}{e}$$
 + $^{3}He \rightarrow ^{3}H + \nu$

cross section is non-zero only for left handed electrons

For a symmetric detector any parity conserving (electromagnetic) background would cancel in:

$$\sigma$$
 (h=+1) - σ (h=-1)

Backgrounds

- Elastic scattering from ³He and ³H (cross sections 8 9 orders of magnitude larger) Elastic rates ~ 10⁵ 10⁶ Hz compared to 10⁻³ Hz for signal Target must be ultra-pure with ³H contamination at 10⁻⁹ level Elastic background can be reduced by detecting the scattered e⁻ in coincidence
- Elastically scattered ³He undergoes charge exchange with cell wall to yield ³H Detect scattered e⁻ in coincidence
- Elastically scattered ³He picking up an e⁻ to become indistinguishable from ³H Charge sensitive detector

 Detect scattered e⁻ in coincidence

Use longitudinally polarized electrons with high polarization

Weak Charged Current Cross Sections

Using $\langle r_c^{3He} \rangle = 1.87$ fm; $\langle r_m^{3He} \rangle = 1.74$ fm $\langle r_c^{3H} \rangle = 1.70$ fm; $\langle r_m^{3H} \rangle = 1.70$ fm

PEB Workshop Mar 2013

Windowless Target

under development at JLab for the **Proton Charge Radius Experiment (PRAD)**

A. Gasparian (NCA&T), D. D(Miss. State), H. Gao (Duke) and M. Khandakar (Idaho State)

PEB Workshop Mar 2013

Similar target also being developed for the DarkLight experiment at the JLab FEL

Detector Design

Large acceptance (2π polar angle and 20° - 160° azimuthal) with a solenoidal/toroidal field

Avalance Chambers	r = 4 & 8 cm, σ ~ 100 ps/ 200 μm
Chamber Gas	2-10 Torr Isobutane
Chamber Windows	40-50 μg/cm ² Polypropylene
Silicon Micro-strips	r = 10 cm, t ~ 100 & 400 μm, σ ~ 100μm
Scintillator	r = 15 cm, t ~ 2 cm

PEB Workshop Mar 2013 Low Energy Recoil Detector under development by K. Hafidi (ANL), R. Dupré (Saclay) and S. Stepanyan (JLab)

Detector Design

Momentum range of ³H 80 - 550 MeV/c

× through tracks⋈ stopped tracks

Component			t	Particle	Threshold (MeV/c)				
WC	SiX	SiY	SC	Identification	p	d	3H	3He	4He
×	\otimes			ΔE_{WC} , E_X , T	55	75	95	150	180
×	×	\otimes		ΔE_{WC} , E_{X} , T ΔE_{X} , E_{Y}	80	120	160	240	290
×	×	×	\otimes	ΔE_{X+Y} , E_{SC}	130	210	280	420	

PEB Workshop Mar 2013 Low Energy Recoil Detector under development by K. Hafidi (ANL), R. Dupré (Saclay) and S. Stepanyan (JLab)

Projected Rates

 $I_e = 600 \mu A$, polarized beam

Target density ~ 10¹⁹ atoms/cm²

Luminosity $\sim 4x10^{34}$ /cm²

Rates @ $E_e = 0.08 \text{ GeV } \sim 8x10^{-4} / \text{sec}$

⇒ ~3% statistics in 350 hrs

3% systematic uncertainty assumed for all settings.

Stat. and total error shown for each point

PEB Workshop Mar 2013

Summary of Experiment

- 1. 0.08 0.12 GeV, highly polarized beam with 600 µA current
- 2. Windowless gas flow/jet target with ultra-pure ³He
- 3. Solenoidal magnet (low energy/warm)
- 4. Large acceptance recoil detector with excellent PID detect recoil ³H and elastically scattered electrons in coincidence (to reduce backgrounds)
- 5. Eliminate parity conserving EM backgrounds using (σ (h=+1) σ (h=-1))
- 6. Use electron scattering data on $f_M^{3He}(Q^2)$ to extract $f_A^{3He}(Q^2)$
- 7. Look for spin correlations in search of second class currents
- 8. Use spin correlations to measure f_A/f_V of ³He

Conclusions

- Weak capture of electrons on the proton and ³He can provide unique opportunities to measure the axial formfactor.
- Backgrounds can be controlled using polarized electrons and well designed detectors.
- •Several ideal detectors and targets already under development for other experiments.
- At very low energies measurement of spin correlations can test for 2nd class currents.
- On protons one can measure $|g_A/g_V|$ with completely different systematics compared to neutron beta decay.
- Weak capture of electrons would be complementary to the traditional neutrino scattering experiments and less resource intensive.
- Will help launch a new program to measure the charge changing weak current. The next reaction to attempt e + p → Λ + v

(cross section 1/25 of capture cross section on p)