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Electron Polarimeters in Hall C

« Hall C at Jefferson Lab: typical electron beam parameters
— Energy = 1-6 GeV
— Currents = 100 nA (polarized target) to 180 uA (Q-Weak)
— Polarization = “0” to 88%

* 1996-2010: beam polarization was measured using only
Mgller polarimeter

— 2010 installed and commissioned a new Compton
polarimeter

« Some experiments have used polarized beam at < 1 GeV
— GE, > 800 MeV
— GO backward angle (PV scattering at 110 deg.)
- 360 and 680 MeV
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Moaller Polarimetry

Mgaller polarimetry benefits from

large longitudinal asymmetry > & |
-719 025 |
- Asymmetry independent of : -7/9
energy 05 [
- Relatively slowly varying near :
ecngoo -0.75 |
- Large asymmetry diluted by S
need to use iron foils to create 0 20 20 60 80 100 120 140 160 180
polarized electrons O
P, ~ 8%
- Rates are large, so rapid
measurements are easy

- The need to use Fe or Fe-alloy
foils means measurement must
be destructive

Making measurements at high
beam currents challenging
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Basel-Hall C Mgller Polarimeter

« 2 quadrupole optics maintains constant tune at detector plane

* “Moderate” acceptance mitigates Levchuk effect - still a non-
trivial source of uncertainty

« Target = pure Fe foil, brute-force polarized out of plane with 3-4 T

superconducting magnet

« Total systematic uncertainty = 0.47% [NIM A 462 (2001) 382]
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Hall C Mgaller Acceptance

Optics designed to maintain

similar acceptance at

detectors independent of —

beam energy
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Hall C Mgller Target

« Fe-alloy, in plane polarized targets
typically result is systematic errors

of 2-3%
— Require careful measurement

- splitcoil

magnetic field (4 T) e

magnetization of foil SO
« Pure Fe saturated in 4 T field I R |
— Spin polarization well known - , I eg
0.25% y<= T\ .
— Temperature dependence well laserbeam  \ o
known target
— No need to directly measure foil
polarization
Effect M, [ug] error
Saturation magnetization (T->0 K,B>0 T) 2.2160 +0.0008
Saturation magnetization (T=294 K, B=1T) 2177 +0.002
Corrections for B=124 T 0.0059 +0.0002
Total magnetization 2.183 +0.002
Magnetization from orbital motion 0.0918 +0.0033
Magnetization from spin 2.0911 +0.004
Target electron polarization (T=294 K, B=4T) 0.08043 +0.00015
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Hall C Moller at Low Energies

« Hall C Mgller designed for operation between 1-6 GeV
« GO0 Backward angle experiment ran at 360 and 687 MeV

— Successfully made polarization measurements at 687
MeV, albeit with larger systematic errors

— Operation at 687 MeV proved extremely challenging
due to solenoid field

— Only one, very low precision measurement was made
at 360 MeV — was not able to operate solenoid at “full”
field

« QOperation of any high field Mgller at low energies likely
extremely challenging — issues not unique to Hall C
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Target Solenoid

Commercial split-coil superconducting

magnet provided by Oxford

Beam . g
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Target Solenoid — cool down motion

Solenoid was aligned
relative to warm bore of
T magnet cryostat

- Cooldown to LN2

o 6 e e o temperatures results in
==l motion of coils on the
order of 3 mm

—> Ignored in initial
installation

\—EEOHd T3N3 9

~——

Note: N2 contraction 3 mm

At normal operation energies — this 3 mm offset is inconsequential
- Low energy running for GO, cannot be ignored
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Solenoid steering at 687 MeV
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Solenoid steering at 687 MeV
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Solenoid alighment

* Results of beam test at 687 MeV used to re-align the
solenoid

— Vertical offset = 2.5 mm
— Horizontal offset = 0.5 mm
— Accuracy estimated to be ~ 0.5 mm

* Subsequent measurements at 687 MeV were easier to
set up and execute

« Solenoid is “warm bore”, so field mapping possible

— Accuracy not likely to surpass that achieved by in-hall
beam test

— Cryogenic motion of coils likely has some variation as
well
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Hall C Moller at 360 MeV
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Hall C Moller at 360 MeV

Magaller quadrupole settings verified
using correlation of horizontal
position at left and right detectors

- Operation at very low energy
required modified optics to see any
left-right coincidences

Even with modified optics,
measurements were only possible
with the solenoid at 0.5 T

- With great effort (many hours),
beam was successfully “transported”
at3 T

—> At large solenoid field,
backgrounds were extremely large
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Other Low-energy issues

In addition to simple beam transport issues, Hall C Mgaller suffered from other
complications at low energy

2
- Solenoid focusing: I B2L?,.| - distorts optics at low p
fsol 4 p e/

Optics, “tune” related issues resulted in systematic error
contribution of 0.6% at 687 MeV - compared to 0.2% at 3 GeV

—>Larger contributions from random coincidences due to Mott scattering
(overall higher rates)

i 15

->Analyzing power more  1® [ ,
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High Target-Field Mgller Polarimetry at
Very Low Energies

Use of high-field target at low energies may be possible, but requires

careful design

1. Polarimeter must be well upstream of physics target/detector

—> Difficult steering requirements make it nearly impossible to satisfy orbit
constraints for main experiment and polarimeter at the same time

2. Solenoid must be easily moved and aligned (remotely?)

- Small misalignments of solenoid have disproportionally large effects on
beam orbit

- Even if “perfectly aligned”, imperfect beam orbit may create problems.
|deally, would adjust solenoid to compensate for orbit shifts (feedback
loop?)

3. Large solenoid field has large focusing effect at low energies — beamline
and polarimeter must incorporate this
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Hall C Compton Polarimeter

New Compton polarimeter installed just prior to Q-weak experiment

- Initial layout optimized for ~ 1 GeV running (Q-weak), will be
modified for JLab 12 GeV upgrade

- Systematic error goal = 1%

Components

1. Laser: Low gain (~100-200) cavity pumped with 10 W green laser
2. Photon Detector: Lead tungstate

3. Electron Detector: Diamond strip detector

4,

Dipole chicane

Electron detecto

D1 N ’E D4

Photon
1.25m _ 195 m J D2 2.2m J D3 1.95 m . Detector

11.1m

-
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Electron Detector

Hall C Compton uses a diamond detector to measure scattered electron
- 4 planes, 2 x 2 cm

= 96 strips, 200 um pitch

- 3 dipole momentum analyzes electron

- Asymmetry vs. strip - scattered electron energy

scattered electrons ~.

0.15
Edet E\ Run (Loser ON/OFF) = 22739
6 0.125 Run Durction (Loser ON/OFF) = 4116 Sec.
e o Pol. = 87.7200% +/— 0.3691%
g 0.075 X’ of the Fit = 0.9526
w Theory(rit)
<{ 005
0.025
o -
main electron beam ooms
17 mm
05 - 8.5 mm
|
0 10 20 30 40 50 60

Strip Number

For Qweak kinematics: Compton endpoint = 17.4 mm from beam
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Polarization from electron detector

| Yield for run 25454 |

——}—— background corrected detector yield

I Electron detector analysis uses
= ——+— background(Hz/uA) . . . . .
¢ oF hit spectrum to identify kinematic
E 30 '\ endpoint — provides energy
s 25 calibration point for asymmetry
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Electron detector systematics

Extensive studies of
electron detector
systematics using GEANT3
simulation

Location of Compton edge
(inside edge strip) single
biggest uncertainty

Systematic Uncertainty Uncertainty u::(:?t:iz::;o(r: %)
Compton Edge Location 90 ym <0.55>
Laser Polarization 0.4 % 0.4
Effective Strip pitch (fit parameter) 0.2
Fringe Field -- 0.15
Plane to Plane Secondary Particles 0-04
Beam Energy 1 MeV 0.07
Magnetic Field Strength 1% <0.01
Electron Detector Tilt 1 degree 0.03
Longitucinal Positor Tem <001
Total Uncertainty 0.73-0.83

Strip pitch (momentum resolution) determines limiting systematic error
- 200 um width was verified at the design stage to provide sufficient resolution
to achieve 1% polarimetry - 0.4 MeV/strip resolution
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Compton Polarimetry at 300 MeV

Qweak at 1.16 GeV:
QEY (max) = 46.1 MeV
2>A . =4%

max

300 MeV
éEY (max) = 3.2 MeV
2>A ., = 1%

Rates very similar, so figure of
merit about factor of 16 smaller

_0.02 i FYRN ST SN (NN TR SN S (NS S SN S (SN S S S (S T _—
0 5 10 15 20 25 30 35 40 45 50

E, (MeV)

—~>Qweak: 1 hour run yields 0.5%
stat. unc. for 180 uA

2300 MeV @ 1 mA, 3 x longer
(ok)

Systematic error will depend on “momentum” resolution - chicane should be

designed to allow fine mapping of asymmetry spectrum: larger bend and or/
drift
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Summary

* Precision Mgller polarimetry requires some kind of “high
field” target = iron foil or atomic hydrogen

— High target field greatly complicates beam transport at
low energies

— Hall C experience suggests that extraordinary care
must be taken with solenoid alignment

— Concurrent Mgller measurements and data-taking will
require large separation of polarimeter from
experiment — decouple beam transport completely
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Summary

« Conventional wisdom in years past has been that
Compton polarimetry is best applied at high energies
(many GeV)

— In recent years, this has been shown to be not true

« Hall C Compton polarimeter on track to achieve <1%
systematic error (electron detector)

— Hall A Compton has also achieved <1% at < 1 GeV
(photon detector)

« Compton polarimetry at even lower energies (300 MeV)
looks plausible with appropriate design

— Electron detection seems to be easiest way to go
— 100 MeV? - asymmetries quite small, less feasible
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max
Amax
Rate

'‘Qweak | 300 MeV | 100 MeV

46.13 MeV  3.18 MeV 0.36 MeV
4.06% 1.07% 0.36%
159 kHz 164.4 kHz 165.0 kHz
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Solenoid and Beamline

Qweak beamline (partial)
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