Parity Violating Polarized eC Scattering Asymmetry A_{RL}(eC) & New Physics

- 1) eC(±0.3%) vs ±25% Bates
- 2) New Physics Sensitivity
 - $Q_W(C)$ vs $Q_W(Cs)$, $Q_W(e)$, $Q_W(p)$
 - i) Short-Distance Phys.
 - ii) Dark Parity Violation

William J. Marciano March 15, 2013 M.I.T.

Advertisement

For a recent review containing much of this material see:

"Low-Energy Measurements of the Weak Mixing Angle"

Annual Review of Nuclear and Particle Science (2013) K. Kumar, S. Mantry, W. Marciano & P. Souder

Elastic Polarized PV eC→eC

$$A_{RL} \equiv \sigma_R - \sigma_L / \sigma_R + \sigma_L$$

• *G. Feinberg(1975)*: Simple 0+→0+ Amplitude

$$A_{RL}(eC) = -2^{1/2}G_FQ^2/48\pi\alpha \times Q_W(^{12}C)$$

$$Q_W(^{12}C)=-24\sin^2\theta_W$$

Hadronic Effects Cancel at low Q² (see Donnelly Talk)

Robust Carbon Target can take high current No Solenoid Spectrometer Polarized Target Issue for 0⁺

A_{RL}(eC) (historical comparison)

BATES EXP $A_{RL}(eC)$ (1978-1990)

P. Souder et al. PRL65, 694(1990) (Pioneering Effort)

(0⁺→0⁺ Elastic Scattering)

Very Modest Effort by today's standards

 E_e =0.25GeV, P_e =0.37±0.02, I=30-60 μ A, <Q>=150MeV, T=150hrs

 $A_{RL}(eC)^{SM} = G_{u}Q^{2}sin^{2}\theta_{W}/\sqrt{2\pi\alpha}$ $P_{e}A_{RL}(eC)^{exp} = 0.60\pm0.14\pm0.02x10^{-6}$

Measured $\sin^2\theta_w = 0.20 \pm 0.05$

Current ±25% can be improved (statistically) to ±0.2% or better!

 P_e =0.85, I=150-500μA, T=1500-5000hrs, 20xAcceptance \rightarrow ±0.2%!

Roughly Equivalent to 3xAPV(Cs) Sensitivity but no Atomic Theory

Main Issue: Polarization ±0.2%, (Very Challenging!)

Note, if only ±0.4% Pol. Attainable, that will be ≈ uncertainty

Elastic eC vs ep F.O.M

Statistical Figure of Merit ≈ A² x # scattering events ±0.2% eC compared to ±1% ep (requires <u>25x</u> larger F.O.M.)

All else equal (Pol., I, Target, Acceptance, Q²(small)...)

F.O.M.(eC) = $[(4s^2/(1-4s^2)]^2x36≈5500!$ → eC takes ≈1/200 time! F.O.M.(ep)

Alternative lower <Q>≈40MeV in eC statistically easy!

A_{RL}(eC) good exp at Mainz or JLAB (limited by Pol. Unc.)

Polarization: Needs R&D Effort ±0.2% - ±0.4%

Standard Model Predictions

- m_{Higgs}=125-126GeV SM Now Complete!
 Combined with other fundamental parameters
- $\alpha^{-1} = 137.035999173(35)$
- $G_F = 1.1663787(6) \times 10^{-5} \text{ GeV}^{-2}$
- $m_Z = 91.1876(21) \text{ GeV}$
- $m_t = 173.3(8) \text{ GeV}$

And Electroweak Radiative Corrections

Precise Predictions Possible – Test "New Physics" Eg. S & T Loop Effects: 4th Generation, Technicolor... Zx from SO(10), Contact Interactions...

$m_W \& sin^2 \theta_W(m_Z)_{MS}$ Predictions

 $m_W = 80.362(6) GeV[1-0.0036S+0.0056T]$ $m_W = 80.385(15) GeV (experiment) somewhat high$

 $\sin^2\theta_W(m_Z)_{MS} = 0.23124(6)[1+0.0157S-0.0112T]$ $\sin^2\theta_W(m_Z)_{MS} = 0.23125(16)$ (Z pole experimental ave.)

S = 0.07±0.09 and T = 0.10±0.09 Very dependent on $sin^2\theta_W(m_z)_{MS}$ value!

Significantly Constrains: 4th Generation, Technicolor, SUSY...

Low Q² Measurements of $sin^2\theta_W(m_Z)_{MS}$

sin²θ_W(m_z)_{MS} =0.2283(20) Cs APV at ⟨Q⟩ ≈ 2.4 MeV

<u>Dzuba, Berengut, Flambaum, Roberts 2012 PRL</u>

Q_W(Cs)→-72.58(29)(32)_{th} Update vs SM -73.24(5)

<u>(1.5 sigma APV deviation)</u>

 $sin^2\theta_W(m_Z)_{MS}$ =0.2329(13) Møller A_{PV} at ⟨Q⟩≃160 MeV A_{RL}(ee)=-131(14)(10)x10⁻⁹ α (1-4sin²θ_W) Measured to ±12% →sin²θ_W to ±0.6%

 $\sin^2\theta_W(m_Z)_{MS}$ =0.2356(16) $v_\mu N$ at $\langle Q \rangle \approx 5$ GeV Needs Reanalysis

Future Expectations

QWEAK exp at JLAB (Under Analysis)

 $A_{RL}(ep \rightarrow ep) \approx -3x10^{-7} E=1.165GeV, <Q> \approx 160MeV, Pol \approx 89\pm1\%$

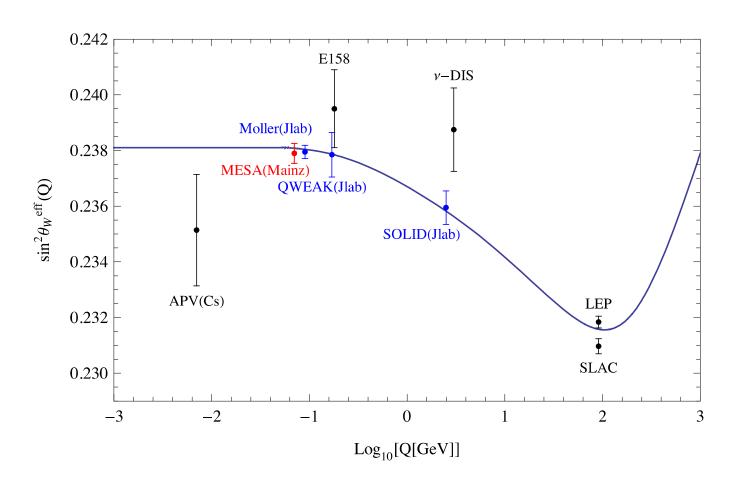
 $\Delta sin^2 \theta_W(m_Z)_{MS} = 0.0008$ via ±4% measurement of A_{RL}

Polarized Moller at JLAB E=11GeV <Q>=75MeV

 $A_{RL}(ee \rightarrow ee) \text{ to } \pm 2.5\%$ $\Delta sin^2 \theta_W(m_Z)_{MS} = \pm 0.00025!$

P2 MESA Flagship Experiment A_{RL}(ep→ep)

Like JLAB QWEAK but Lower Energy & More Running Time


E_e =1.1GeV→0.14GeV(?) (Reduces Theory Unc.) <Q>~100MeV?

 $\Delta \sin^2 \theta_W = \pm \underline{0.00018}$ (stat) \pm (syst. 2 loop, pol.,)

Pol. $\pm 0.5\% + 2loop\ unc. \rightarrow \Delta sin^2 \theta_W = \pm 0.00020_{syst}$

Overall ±0.0003-0.0004

APV Update & Possible A_{RL} Measurements

Comparison of (static) weak charges

$$Q_W(e) = -0.0435(9)[1 + 0.25T - 0.34S + 0.7X(Q^2) + 7m^2_Z/m^2_{Z\chi}]$$

$$Q_W(p)=0.0707(9)[1+0.15T-0.21S+0.43X(Q^2)+4.3m^2_Z/m^2_{Z_X}]$$

$$Q_W(^{133}Cs)=-73.24(5)[1+0.011S-0.023X(Q^2)-0.9m^2_Z/m^2_{Zx}]$$

$$Q_W(^{12}C) = -5.510(5)[1-0.003T+0.016S-0.033X(Q^2)-m^2_Z/m^2_{Z\chi}]$$

Exp. Goals: $Q_W(e) \pm 2.5\%$, $Q_W(p) \pm 1.5\%$, $Q_W(^{12}C) \pm 0.3\%$

Observations

 $A_{RL}(eC)$ at ±0.3% about 3xmore sensitive to new physics than current $Q_W(Cs)$ (now1.5 sigma deviation from SM)

 $A_{RL}(eC)$ at ±0.3% about the same or better than $A_{RL}(ee)$ at ±2.5% and $A_{RL}(ep)$ at ±1.5% for $m_{Z\chi}$ (2TeV) and some contact int.

 $A_{RL}(eC)$ at ±0.3% about 2-2.5x worse than $A_{RL}(ep)$ & $A_{RL}(ee)$ for $sin^2\theta_W$, S (lower <Q> \rightarrow better X(Q²) sensitivity).

A_{RL}(eC) negligible 2 loop uncertainty

A_{RL}(ep) & A_{RL}(ee) currently 2 loop unc. ±1.3% & ±2%

Polarized ee, ep, eC Asymmetries

• $A_{RL} = \sigma_R - \sigma_L / \sigma_R + \sigma_L$ Parity Violating $\alpha \ Q^2$ very small

Experiment	<q>MeV</q>	Δ sin $^2\theta_{ m W}$	Measurement
Cs APV	2.4	±0.0020	Atomic Theory
E158 SLAC	160	±0.0013	ee Completed
Q _{weak} JLAB	160	±0.0008	ep in analysis
Moller JLAB	75	±0.00029	ee approved
MESA (ep) P2	100?	±0.00037	ep Low Energy
eC (±0.3%)	40-120?	±0.0007?	Pol. & Syst.

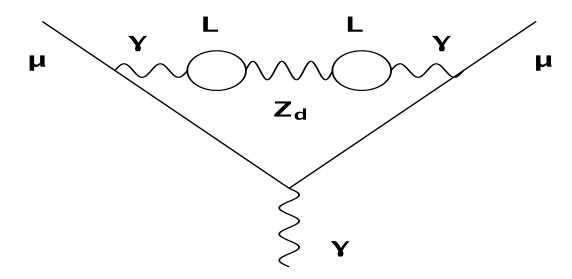
Do Both P2 and $A_{RL}(eC)$ at MESA (Complementary)

Dark Parity Violation

U(1)_d gauge symmetry from the Dark Sector
 Dark Photon, U Boson, Secluded ... Dark Z (Z_d)

Interaction with our world:

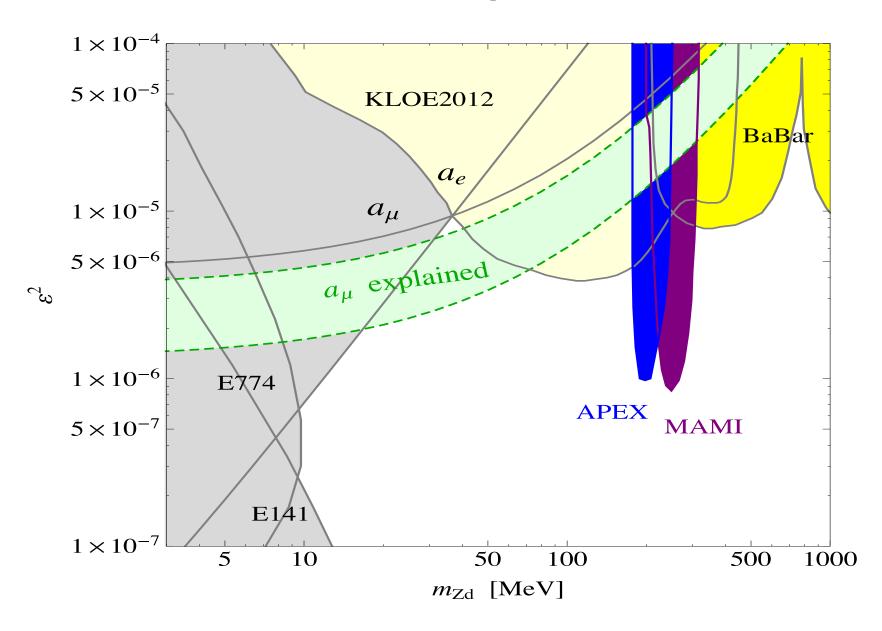
Induced by heavy fermion loops & extended Higgs


- 1) Kinetic Mixing $U(1)_Y x U(1)_d \epsilon e Z_d^{\mu} J_{\mu}^{em} \epsilon \approx \alpha/\pi \approx 2x 10^{-3}$
- 2) Z-Z_d Mass Mixing $\epsilon_z g/2 \cos \theta_W Z_d^{\mu} J_{\mu}^{NC}$ $\epsilon_z = m_{zd}/m_z \delta = O(m_{zd}/m_z)^2 \approx 10^{-6}$

$$\Delta a_{\mu} = a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 286(80) \times 10^{-11} \left(\frac{3.6 \sigma \, discrepancy!}{(3.6 \sigma \, discrepancy!} \right)$$

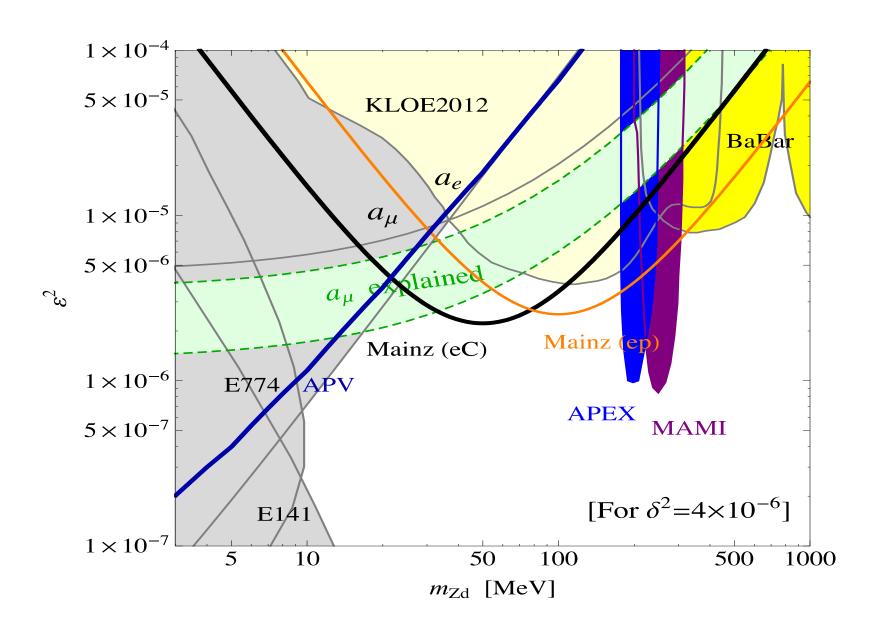

$$\approx \frac{1}{4} (\alpha/\pi)^3 \text{ (Effective 3 loop physics?)}$$

Effective 3 loop g_u-2 Diagram

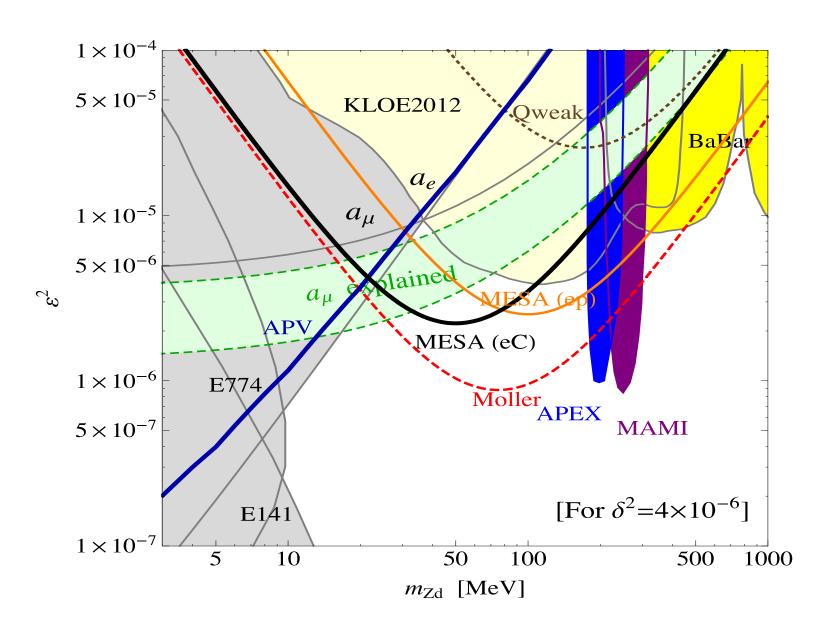

 a_{μ}^{Zd} =α/2πε²F(m_{Zd}/m_{μ}), F(0)=1 solves g_{μ}-2 discrepancy for ε²≈3-5x10⁻⁶ & m_{Zd}≈20-60MeV (see figure)

Old a_e vs Recent a_e (3 sigma bound) (Davoudiasl, Lee & WJM)

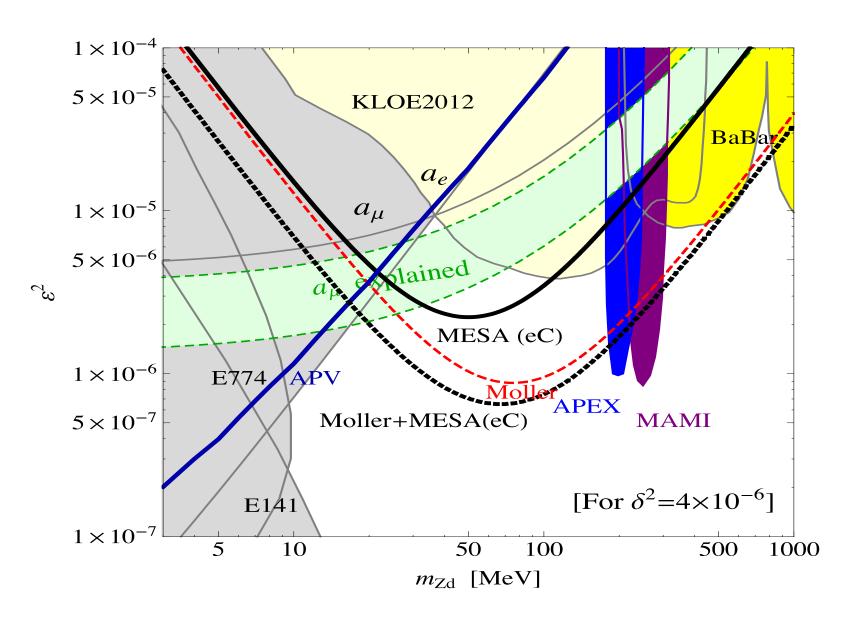
+2012 KLOE Update PL

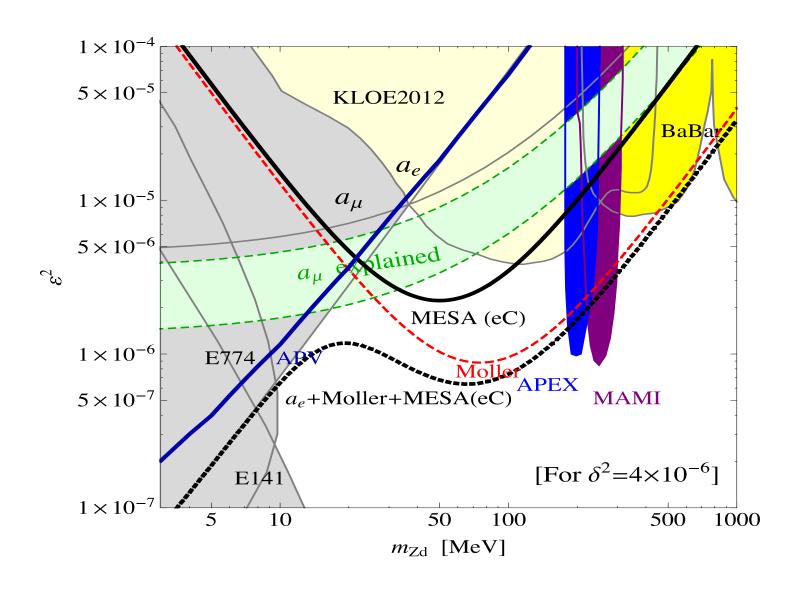

Dark Parity Violation

Effect of $\varepsilon \& \varepsilon_Z$ together: (at low Q²<<m_Z²)


```
\Delta \sin^2 \theta_W(Q^2) = -0.42 \epsilon \delta m_Z m_{Zd} / (Q^2 + m_{Zd}^2)
For \delta \approx m_{Zd} / m_Z, \Delta \sin^2 \theta_W(Q^2) = \pm 0.42 \epsilon m_{Zd}^2 / (Q^2 + m_{Zd}^2)
Shift largest at small Q^2 < m_{Zd}^2 (\approx O(1\%)! Eg APV)
```

(1.5 sigma APV deviation) fit → $\varepsilon\delta$ =4x10⁻⁶ or $\varepsilon\approx\delta\approx2x10^{-3}$ for $(g_{\mu}$ -2) & APV → $m_{Zd}\approx50$ MeV region $\sin^2\theta_W(Q\approx75$ MeV) shift by $\pm O(0.5-1\%)!!$ δ down to $\approx10^{-3}$ Potentially Observable A_{RL} (ee) & A_{RL} (eC) at low Q² Potentially Important


$A_{RL}(eC)$ at <Q>=50MeV vs $A_{RL}(ep)$ at <Q>=100MeV


+Moller A_{RL} (ee) at <Q>=75MeV

Moller $<Q>=75MeV + A_{RL}(eC) < Q>=50MeV$

Combined Constraints

Conclusion

 $A_{RL}(eC)$ at ±0.3% about 3x sensitivity of $Q_W(Cs)$ <u>1.5 σ deviation?</u> No Atomic Theory Unc. But Polarization Unc. (Dominant?)

Statistically A_{RL}(eC) much easier than A_{RL}(ep) at low energy Complementary. Motivates improved (±0.2-0.4%) polarimetery

If "dark photon" (20-60MeV) evidence emerges in direct searches → motivation for low Q² A_{RL}(eC)

Do <Q>≈40-120MeV look for <u>relative</u> sin²θ_W(Q²) change Overcomes pol. Uncertainty!

Deserves Further Study