Precision Measurement of the Proton Charge Radius

- PEB Workshop -

March 15th, 2012

Mehdi MEZIANE, Duke University

On Behalf of the PRAD Collaboration

OUTLINE

- ***** Introduction
- * ep elastic scattering and nucleon form factors
- **Proton Charge Radius Measurements**
- **❖** Measurement of the proton charge radius at very low Q²
- * Radiative correction beyond the ultra relativistic approximation
- ***** Conclusion

Introduction

- ❖ High accuracy of the QED predictions and precise spectroscopy of simple atomic system allow the determination of fundamental quantities
 - Fine structure constant α from the helium fine structure
 - The electron mass m_e from the g factor of hydrogen-like atoms
 - The Rydberg constant R_{∞} and Lamb shift from the hydrogen spectrum
- **❖** Proton charge radius **r**_p:
 - Indirect measurements from spectroscopy of bound state proton-lepton (electronic or muonic transitions)
 - Direct measurement from extraction of G_{Ep} from ep elastic scattering experiments

Proton Charge Radius Extraction

Unpolarized Cross Section of elastic ep->ep scattering:

$$\boxed{\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\mathrm{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\;2}(Q^2) + \frac{\tau}{\epsilon} G_M^{p\;2}(Q^2)\right)} \text{ where } \boxed{\tau = Q^2/(4M_p^2)}$$

Polarization measurements (in the Born approximation):

Recoil

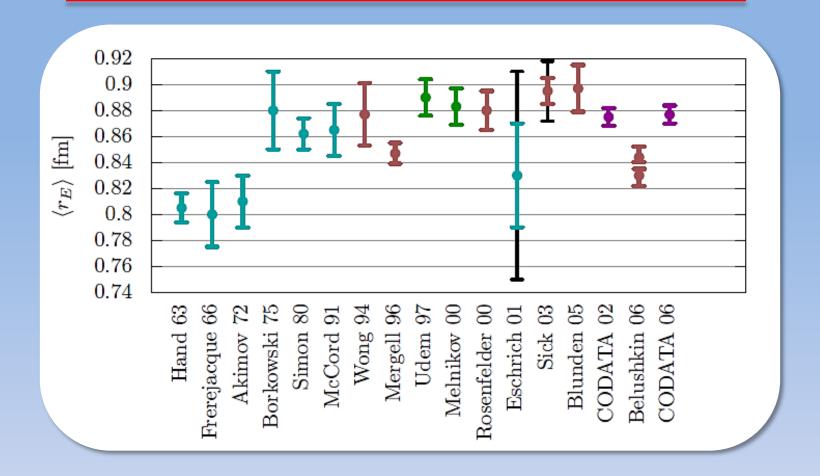
$$\frac{G_E^p}{G_M^p} = -\frac{P_t}{P_l} \frac{E + E'}{2M} \tan\left(\frac{\theta}{2}\right)$$

$$\frac{G_E^p}{G_M^p} = -\frac{P_t}{P_l} \frac{E + E'}{2M} \tan\left(\frac{\theta}{2}\right)$$

$$R = \frac{A_1}{A_2} = \frac{2\tau v_{T'} \cos\theta_1^* G_M^{p-2} - 2\sqrt{2\tau(1+\tau)} v_{TL'} \sin\theta_1^* \cos\phi_1^* G_M^p G_E^p}{2\tau v_{T'} \cos\theta_2^* G_M^{p-2} - 2\sqrt{2\tau(1+\tau)} v_{TL'} \sin\theta_2^* \cos\phi_2^* G_M^p G_E^p}$$

RMS Proton Charge radius:

$$G_E^p(Q^2) = 1 - \frac{Q^2}{6} \langle r^2 \rangle + \frac{Q^4}{120} \langle r^4 \rangle + \dots \bigg| \qquad \qquad \bigg| \langle r^2 \rangle = -6 \frac{dG_E^p(Q^2)}{dQ^2} \bigg|_{Q^2 = 0}$$


$$\left| \langle r^2 \rangle = -6 \frac{dG_E^p(Q^2)}{dQ^2} \right|_{Q^2 = 0}$$

Form Factors (FF)

Significance of low Q² measurements of FF:

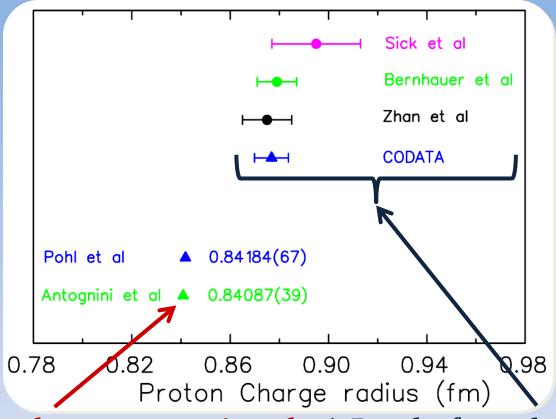
- Sensitive to the pion cloud and provide test of effective field theories of QCD.
- Probe the strange quark contribution to the electromagnetic structure of the nucleon.
- In the limit Q² -> 0, FF are related to the charge and magnetic radii.
- Precise knowledge of the charge radius provides high precision test of QED based on hydrogen Lamb shift measurements.

Radius Data until 2006

Started with: $r_p \approx 0.81$ fm in 1963 Reached: $r_p \approx 0.88$ fm by 2006

Radius Data from ep scattering (and H spectroscopy)

- * Re-analysis e-p scattering $r_p = 0.897 \pm 0.018$ fm *I. Sick, Phys. Lett. B, vol. 576, no. 1–2, pp. 62 67, 2003.*
- ❖ Hydrogen spectroscopy r_p = 0.8768±0.0069 fm
 P. J. Mohr et al. Rev. Mod. Phys., vol. 80, pp. 633-730, Jun 2008.
- * ep scattering exp. at Mainz $r_p = 0.879 \pm 0.008$ fm


 J. Bernauer et al., PRL 105,242001, 2010
- ep scattering exp. at Jlab $r_p=0.875\pm0.01$ fm, re-analysis including form factor ratio constraint obtained from recoil polarization
 - X. Zhan et al., Phys. Lett. B, vol. 705, no. 1–2, pp. 59 64, 2011

Proton Charge Radius Crisis

❖ Muonic hydrogen Lamb shift exp. at PSI

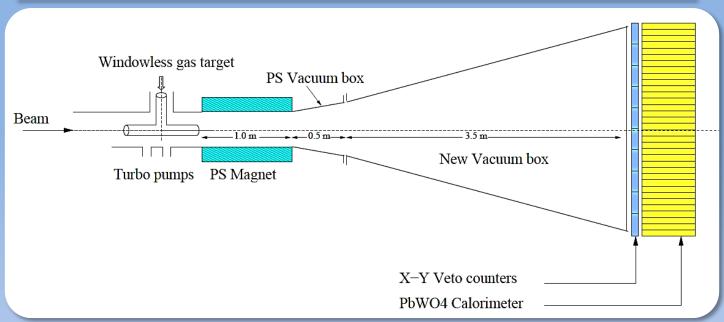
```
r_p = 0.84184(67) fm Pohl, R. et al., Nature 466, 213-217 (2010)
r_{\rm n} = 0.84087(39) fm Antognini. et al., Science 339, 417 (2013)
```

Unprecedented precision

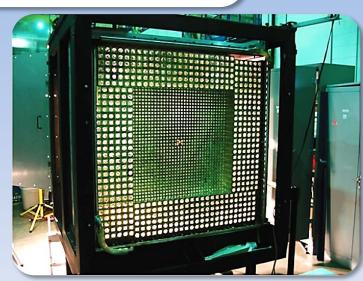
- * 7σ discrepancy between muonic and * Results from electronic and average electronic measurements!
 - scattering measurements agree

Many Questions...

- **❖** Is a new physics discovered?
 - V. Barger, et al., Phys. Rev. Lett. **106**, 153001 (2011)
 - C. Carlson, arXiv:1206.3587 (2012)...
- **Are effects missing from the state-of-the-art calculations?**
 - E. Borie, Phys. Rev. A 71, 032508 (2005).
 - U.D. Jentschura, Annals of Physics **326**, 500 (2011)...
- * Are there additional corrections to the muonic Lamb shift due to the proton structure?
 - G.Miller , arXiv:1209.4667 (2012)
 - C.E. Carlson, V. Nazaryan, K. Griffioen, Phys. Rev. A 83, 042509 (2011).
 - R.J. Hill, G. Paz, arXiv:1103.4617 (2011)...
- ❖ Are the higher moments of the charge distribution taken into account correctly in the extraction of the rms charge radius?
 - M.O. Distler, J.C. Bernauer, T. Walcher, Phys. Lett. B **696**, 343 (2011).
 - A. De Rújula, arXiv:1008.4546 (2010), Phys. Lett. B **693**, 555 (2010), and **697**, 26 (2011).
 - I.C. Clöet, G.A. Miller, Phys. Rev. C 83, 012201(R) (2011).
 - J.D. Carroll, A.W. Thomas, J. Rafelski, G.A. Miller, arXiv:1105.2384, and 1101.40732 (2011)...


Still to date an OPEN question!

Need to carry out an additional measurement using a new technique


Precision measurement of <rp>

- Extract the rms proton charge radius using a novel magnetic spectrometer free method using ep elastic scattering at Jlab HallB
- Explore the lowest Q² ever reached: [2.10⁻⁴ 2.10⁻²] GeV², equivalent to scattering angle range of : 0.7° 3.8°
- Two energies 1.1 GeV and 2.2 GeV
- Reach a sub-percent precision. (low background +accurate knowledge of radiative corrections.)
- Approved by PAC39 with A rating, running opportunities: end 2014- beginning 2015
 - MRI proposal approved, items procurement on its way for a target test.

Experimental Setup with new windowless target

- Windowless H₂ gas flow target
- High energy and position resolutions and large acceptance 25 msr HyCal PbWO₄ calorimeter
- XY veto counters (veto for neutrals)
- Vacuum box, one thin window at HyCal only
- Good beam tune with $\sigma=200\mu m$ and S/N ratio of 10^{-7} 10^{-8} at 1 mm from the beam

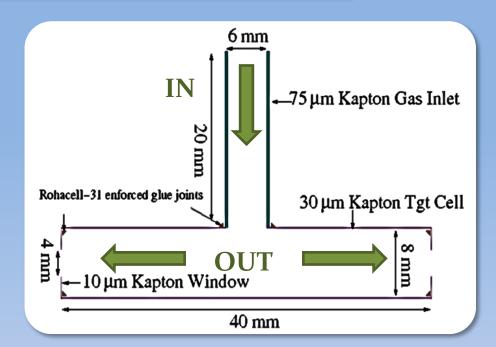
Windowless Gas Flow targets

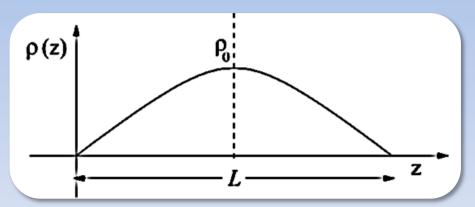
• Design and engineering of polarized and unpolarized internal gas flow target are well established and understood:

	Gas	Length (cm)	Cross section (mm×mm)	Thickness (atoms/cm ²)	Temperature (K)	Polarized
HERMES	H_2/D_2	40	8.9×21	$1-2\times10^{14}$	100	yes
BLAST	H_2/D_2	60	15×15	7×10^{13}	100	yes
OLYMPUS	H_2	60	9×27	3×10^{15}	25	no
VEPP-3	H_2	40	13×24	$\approx 10^{15}$	-	no
Dark Light	H_2	25	2×2	$\approx 10^{19}$	25	no
This proposal	H_2	4	4×4	$\approx 10^{18}$	25	no

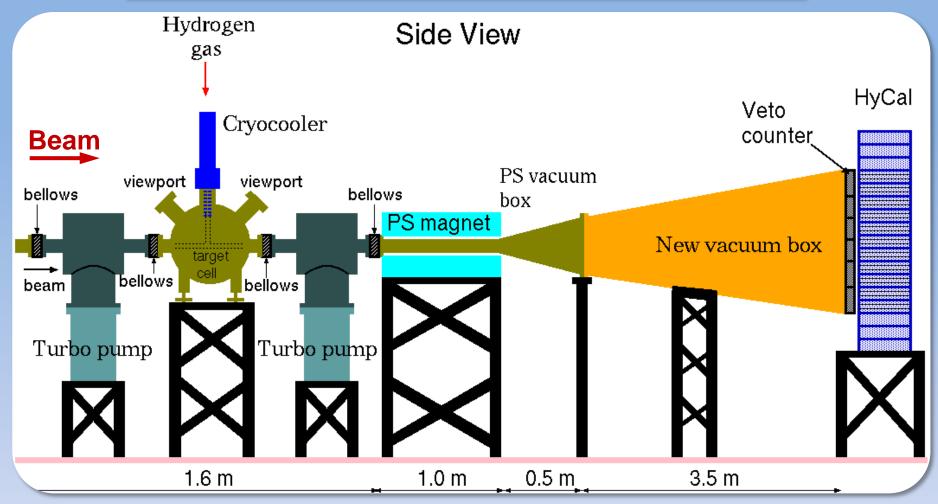
• List is not exhaustive, only focuses on electron/positron scattering experiments.

Proposed

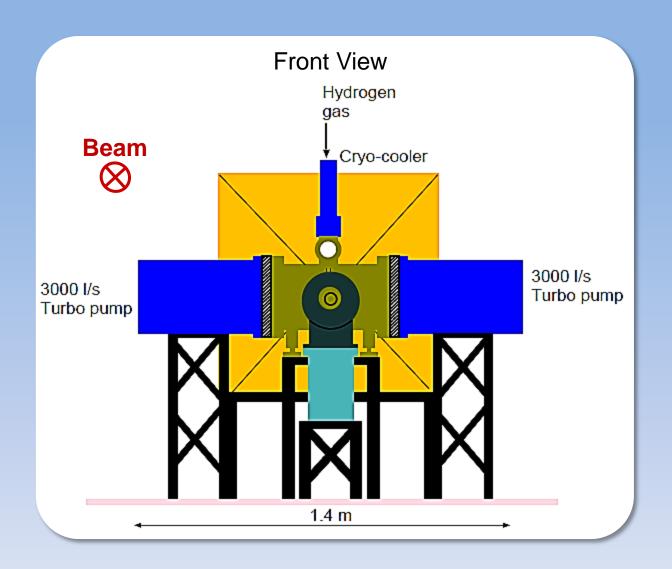

• Wide range of application, very good versatility and reliability.


Windowless Gas Flow target

Target cell


- cell length 4.0 cm
- cell diameter 8.0 mm
- cell material 30 µm Kapton
- input gas temp. 25 K
- target thickness 1x10¹⁸ H/cm²
- average density 2.5x10¹⁷ H/cm²
- gas mass-flow rate 6.3 Torr-l/s

In order to reach such density while keeping a manageable flow rate, cooling the H₂ becomes necessary



Windowless Gas Flow target

- Bellows will ensure a good conductance limit and stability of the system.
- Height of the target vacuum chamber will be adjusted using 100µm pitch screws.

Windowless Gas Flow target

Measurement Principle

- **❖** Will detect ep and Möller electrons simultaneously
- **Extract ep->ep event yields**

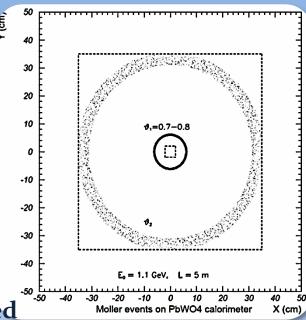
Same for ee->ee

$$\left(\frac{d\sigma}{d\Omega}\right)_{ep}^{}(Q_i^2) = \frac{N_{\rm exp}^{\rm yield}\left(ep \to ep \text{ in } \theta_i \pm \Delta\theta\right)}{N_{\rm beam}^{e^-} \cdot N_{\rm tgt}^{\rm H} \cdot \varepsilon_{\rm geom}^{ep}\left(\theta_i \pm \Delta\theta\right) \cdot \varepsilon_{\rm det}^{ep}} \left[\left(\frac{d\sigma}{d\Omega}\right)_{e^-e^-}\right] = \frac{N_{\rm exp}^{\rm yield}\left(e^-e^- \to e^-e^-\right)}{N_{\rm beam}^{e^-} \cdot N_{\rm tgt}^{\rm H} \cdot \varepsilon_{\rm geom}^{e^-e^-} \cdot \varepsilon_{\rm det}^{e^-e^-}}$$

❖ Normalizing the ep cross section to the Möller:

$$\left(\frac{d\sigma}{d\Omega}\right)_{ep} (Q_i^2) = \left[\frac{N_{\text{exp}}^{\text{yield}} (ep \to ep \text{ in } \theta_i \pm \Delta \theta)}{N_{\text{exp}}^{\text{yield}} (e^-e^- \to e^-e^-)} \cdot \frac{\varepsilon_{\text{geom}}^{e^-e^-}}{\varepsilon_{\text{geom}}^{ep}} \cdot \frac{\varepsilon_{\text{det}}^{e^-e^-}}{\varepsilon_{\text{det}}^{ep}}\right] \left(\frac{d\sigma}{d\Omega}\right)_{e^-e^-}$$

 $\longrightarrow \begin{tabular}{ll} Main sources of systematic uncertainties N_{beam} and N_{tgt} typical for other cross section experiments cancel out in the normalization.$

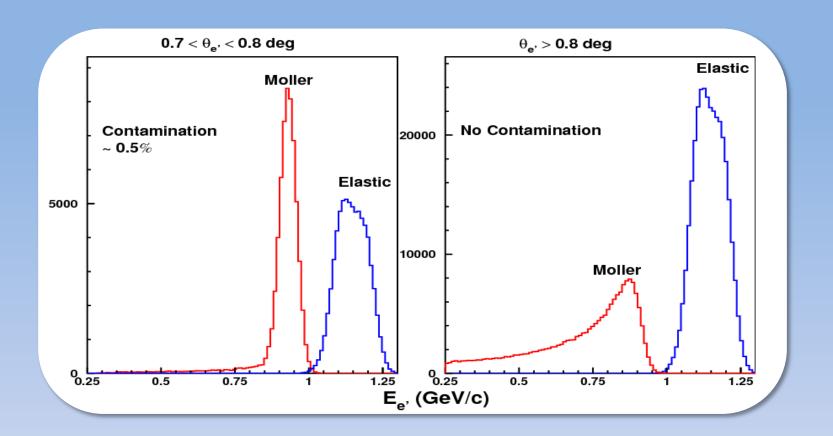

Measurement Principle

3 methods to analyze the Möller electrons:

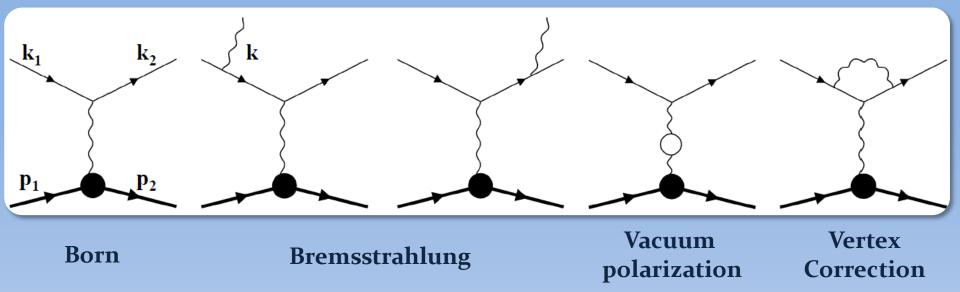
Single arm method: one Moller electron detected:

$$\left(\frac{d\sigma}{d\Omega}\right)_{ep} (Q_i^2) = \left[\frac{N_{\text{exp}}^{\text{yield}} (ep \to ep \text{ in } \theta_i \pm \Delta \theta)}{N_{\text{exp}}^{\text{yield}} (e^-e^- \to e^-e^-)}\right] \left(\frac{d\sigma}{d\Omega}\right)_{e^-e^-}$$

Only detection efficiencies and relative acceptance are needed.

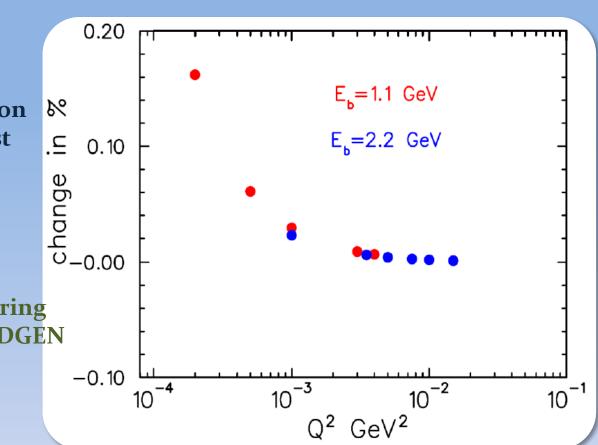

Double arm method: both Möller electrons are detected

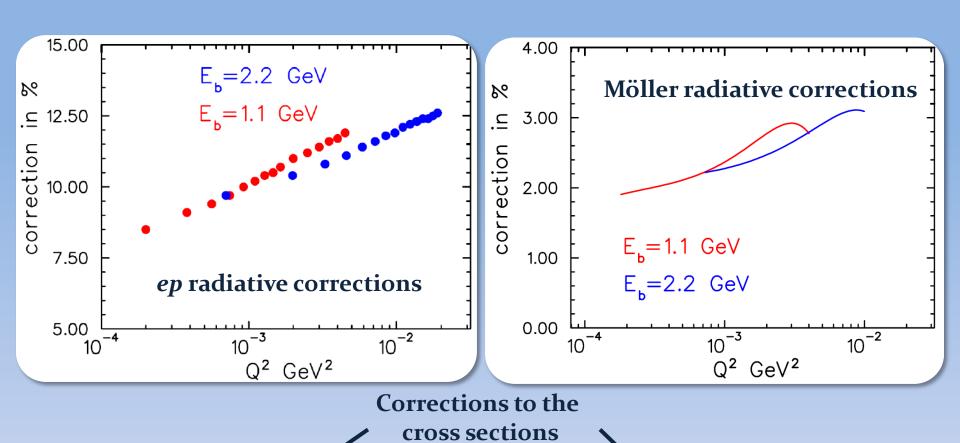
$$\left(\frac{d\sigma}{d\Omega}\right)_{ep} (Q_i^2) = \left[\frac{N_{\rm exp}^{\rm yield} \left(ep \to ep \text{ in } \theta_i \pm \Delta\theta\right)}{N_{\rm exp}^{\rm yield} \left(e^-e^- \to e^-e^-\right)} \cdot \frac{\varepsilon_{\rm geom}^{e^-e^-}}{\varepsilon_{\rm geom}^{ep}} \cdot \frac{\varepsilon_{\rm det}^{e^-e^-}}{\varepsilon_{\rm det}^{ep}}\right] \left(\frac{d\sigma}{d\Omega}\right)_{e^-e^-}$$


❖ Integrated Möller cross section method over all the HyCal acceptance

$$\left(\frac{d\sigma}{d\Omega}\right)_{ep} (Q_i^2) = \left[\frac{N_{\rm exp}^{\rm yield}\left(ep,\ \theta_i \pm \Delta\theta\right)}{N_{\rm exp}^{\rm yield}\left(e^-e^-,\ {\rm on\ PbWO_4}\right)}\right] \frac{\varepsilon_{\rm geom}^{e^-e^-}({\rm all\ PbWO_4})}{\varepsilon_{\rm geom}^{ep}(\theta_i \pm \Delta\theta)} \frac{\varepsilon_{\rm det}^{e^-e^-}({\rm all\ PbWO_4})}{\varepsilon_{\rm det}^{ep}(\theta_i \pm \Delta\theta)} \cdot \left(\frac{d\sigma}{d\Omega}\right)_{e^-e^-}$$

Events Selection

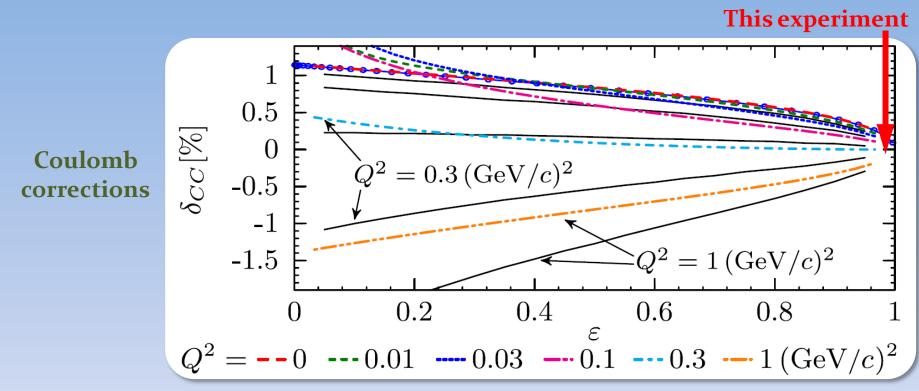

Overlap of $E_{e'}$ spectra of radiative events ~0.5% contamination from Möller events (for 0.7° < $\theta_{e'}$ < 0.8°)



- *Reaching Q² ~10-⁴ (GeV/c)² requires precise knowledge of radiative corrections.
- **Use Bardin-Shumeiko covariant formalism to calculate RC** *Nucl. Phys.* **B127** (1977) 242-258
- *Beyond the ultra relativistic approx. mass of the electron is NOT neglected

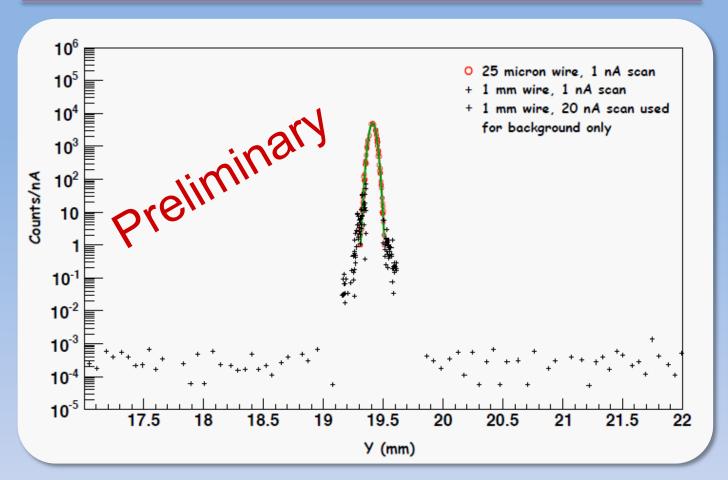
The change in the cross section is less than 0.2% at the lowest Q² point

Modified the elastic ep scattering codes ELRADGEN and MERADGEN accordingly

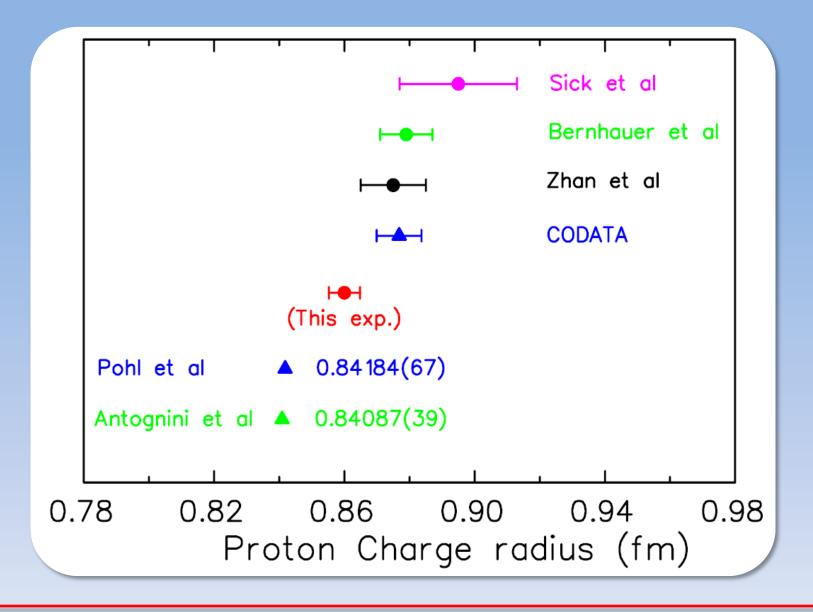


ep : ~8 -13% (ELRADGEN)

Möller: ~2-3% (MERADGEN)


Both latest Arrington (solid lines) and Bernauer et al. (color lines) give Coulomb corrections significantly less than 0.1% to the unpolarized cross section for ε ->1

Largest ε of this experiment: 0.998


Bernauer et al. Phys. Rev. Lett. 105, 242001 (2010) Arrington: Phys. Rev. Lett. 107, 119101 (2011)

Beam Test Results

- ❖ Signal to noise ratio of at least 10⁷.
- ***** Can be improved improve with fine tuning of the accelerator
 - **Background situation is under control**

Expected Results

Collaboration

A. Gasparian (spokesperson, contact person), R. Pedroni

NC A&T University

M. Khandaker (co-spokesperson)

Idaho State University

H. Gao (co-spokesperson), M. Meziane, I Akushevich, S. Jawalkar, C. Peng, M. Huang, G. Laskaris, Q.J. Ye, Y. Zhang, W. Zheng

D. Dutta (co-spokesperson), J. Dunne

Mississippi State University

V. Punjabi, C. Salgado

Norfolk State University

A. Deur, E. Pasyuk, S. Stepanyan, V. Kubarovsky, D. Gaskell, Jefferson Laboratory M. Jones, D. Lawrence, S. Taylor, B. Wojtsekhowski, B. Zhilmann

L. Gan

University of North Carolina Wilmington

G. Gavalian

Old Dominion University

C. Crawford

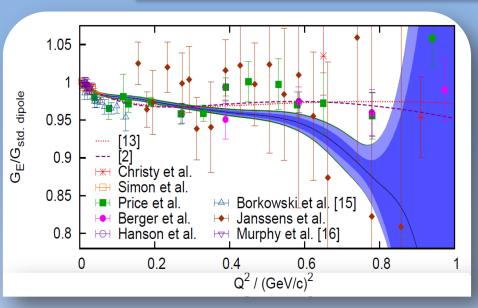
University of Kentucky

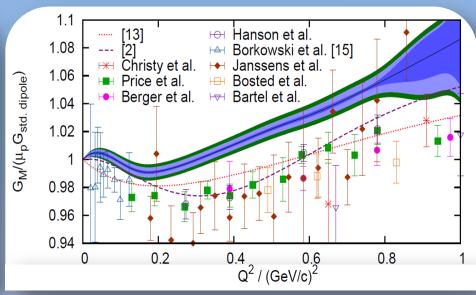
K. Slifer

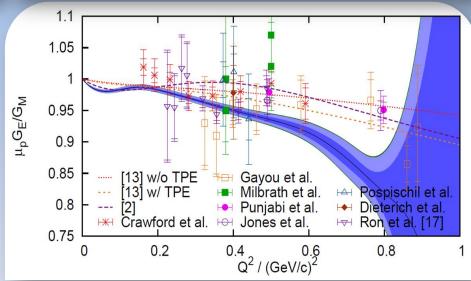
University of New Hampshire

And growing...

Conclusion


❖ Proton Radius is one of the fundamental quantities in physics


❖ 7 o discrepancy between average electronic and muonic measurements


- **❖** <u>Spectrometer free method using *ep* scattering to extract</u> <rp>
 - ep->ep cross sections normalized to Möller scatterings
 - Reach an unprecedented Q^2 range: $[2.10^{-4} 2.10^{-2}]$ GeV²
 - Windowless H₂ gas flow target
 - Tight control of the systematics

Form Factors (FF)

Charge Radius From Atomic Physics

$$\left\langle p(p_f) \middle| \sum_{q} e_q \, \bar{q} \gamma^{\mu} q \middle| p(p_i) \right\rangle = \bar{u}(p_f) \left[\gamma_{\mu} F_1^p(q^2) + \frac{i \sigma_{\mu\nu}}{2m} F_2^p(q^2) q_{\nu} \right] u(p_i)$$

For a charged point like particle for p+l \rightarrow p+l : $\mathcal{M} \propto \frac{1}{q^2} \quad \Rightarrow \quad U(r) = -\frac{Z\alpha}{r}$

Including q² corrections from proton structure:

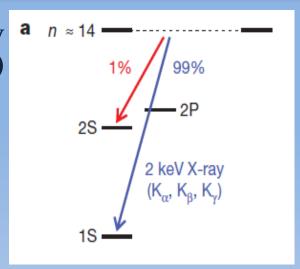
$$\mathcal{M} \propto \frac{1}{q^2}q^2 = 1 \quad \Rightarrow \quad U(r) = \frac{4\pi Z\alpha}{6}\delta^3(r)(r_E^p)^2$$

Slide idea from Gil Paz

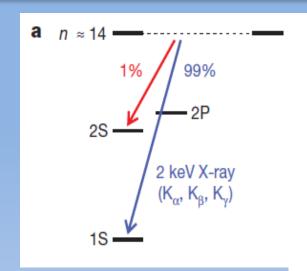
$$\Delta E_{r_E^p} = \frac{2(Z\alpha)^4}{3n^3} m_r^3 (r_E^p)^2 \delta_{\ell 0}$$

with $m_r = m_\ell m_p/(m_\ell + m_p) \approx m_\ell$

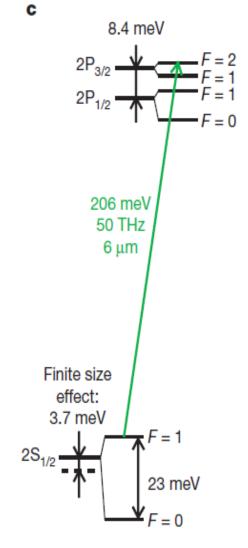
Muonic Hydrogen can give the best measurement of rp

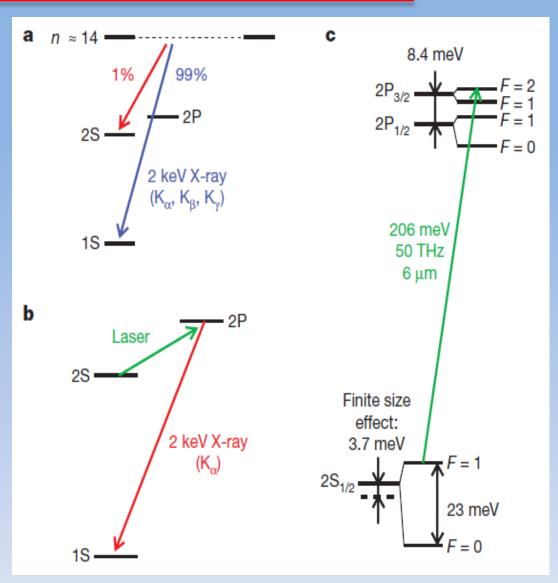

Muonic Hydrogen

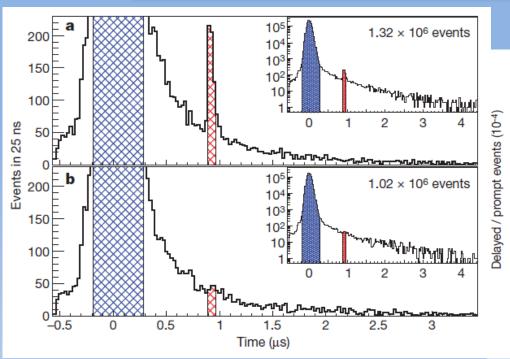
❖ The MUON is about 200 heavier than the electron

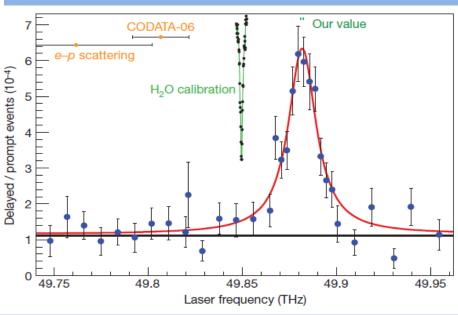

The atomic Bohr radius of muonic hydrogen is thus smaller than in ordinary hydrogen

Muonic Hydrogen Lamb Shift will then be more sensitive to the finite size of the proton.


- ❖ The nuonic hydrogen is highly excited when generated (n=14)
- ❖ Most of the atoms de-excite quickly to 1S but 1% reach the long lives 2S-state (~1µs)


Slides idea from Rebecca Boll




- ❖ For the 2S_{1/2} 2P_{3/2} transition, finite size effect are two order of magnitude higher than for ordinary H
- ❖ A pulsed laser beam induces the excitation from 2S_{1/2} to 2P_{3/2} (gives the largest signal of all possible optical transitions)

This is followed by a deexcitation from 2P_{3/2} to 1S_{1/2} via emission of an X-ray

- Count the delayed X-rays and get a resonance curve by fine tuning of the laser frequency
- ❖ The transition frequency between ${}_{2}P_{3/2}$ to ${}_{1}S_{1/2}$ is $\Delta v = 49881.88(77)$ GHz corresponding to an energy difference of $\Delta E = 206.2949(32)$ meV
- ***** Theory predicts: $\Delta E = 209.9779(49) 5.2262 \, r_p^2 + 0.0347 \, r_p^3 \, meV$

Expected Uncertainties

Contributions	Estimated Uncertainty (%)	
Statistical	0.2	
Acceptance (including Q ² determination)	0.4	
Detection efficiency	0.1	
Radiative corrections	0.3	
Background and PID	0.1	
Fitting	0.2	
Total	0.6	