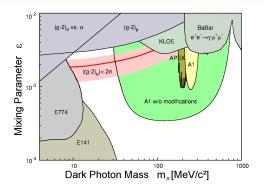
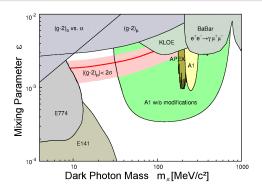
Detectors for dark photon search with MESA

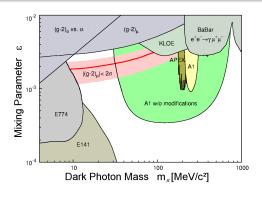
Matthias Molitor

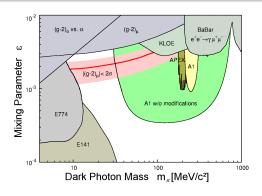
March 15, 2013



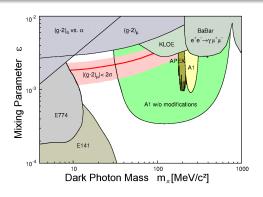


Content


- Exclusion limits and measurements
- 2 The MESA Accelerator
- Possible detector configurations
 - 4π detectors
 - Spectrometer
- 4 Conclusion

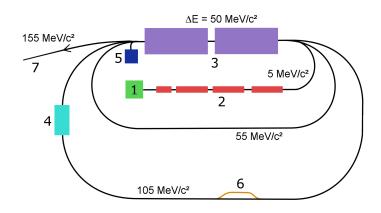


• predictions from $(g-2)_{\mu}$ calculations


M. Pospelov, Phys. Rev., D80, 095002 (2009)

- predictions from $(g-2)_{\mu}$ calculations
 - M. Pospelov, Phys. Rev., D80, 095002 (2009)
- electron scattering at Tantalum
- e⁺e⁻ detection with A1 spectrometers

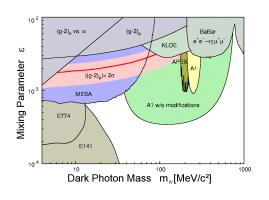
- predictions from $(g-2)_{\mu}$ calculations
 - M. Pospelov, Phys. Rev., D80, 095002 (2009)
- electron scattering at Tantalum
- e⁺e⁻ detection with A1 spectrometers
- minimum beam energy: 180 MeV


- predictions from $(g-2)_{\mu}$ calculations
 - M. Pospelov, Phys. Rev., D80, 095002 (2009)
- electron scattering at Tantalum
- e⁺e⁻ detection with A1 spectrometers
- minimum beam energy: 180 MeV

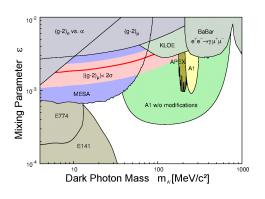
Therefore:

- MAMI not feasible for masses below 40 MeV/c²
- new accelerator needed

MESA


Mainz Energy recovering Superconducting Accelerator

Sensitive area of MESA


- 100 days beam on target
- 1 mA beam current
- luminosity: $10^{36} \text{ cm}^{-2} \text{ s}^{-1}$
- Θ acceptance: $20^{\circ} 160^{\circ}$
- $\Delta m = 1 \text{ MeV/c}^2$

Sensitive area of MESA

- 100 days beam on target
- 1 mA beam current
- luminosity: $10^{36} \text{ cm}^{-2} \text{ s}^{-1}$
- Θ acceptance: 20° 160°
- $\Delta m = 1 \text{ MeV/c}^2$

Sensitive area of MESA

- 100 days beam on target
- 1 mA beam current
- luminosity: $10^{36} \text{ cm}^{-2} \text{ s}^{-1}$
- Θ acceptance: 20° 160°
- $\Delta m = 1 \text{ MeV/c}^2$
- estimated elastic event rate:
 ≈ 180 MHz

Detector configurations

4π detector

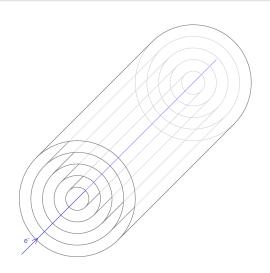
with solenoid field with toroid field

 \rightarrow No spiralising tracks accepted

Detector configurations

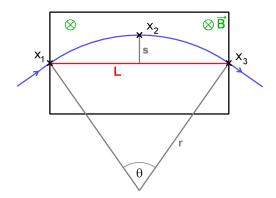
4π detector

with solenoid field with toroid field

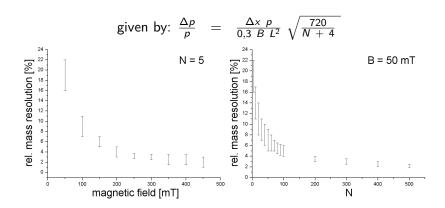

 \rightarrow No spiralising tracks accepted

High resolution detector

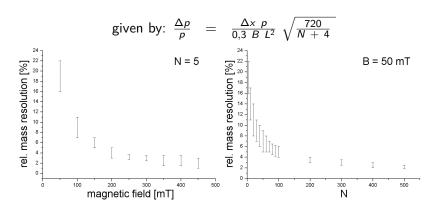
Spectrometer


Detector with solenoid field

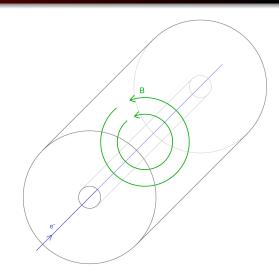
- 1 m diameter
- 2 m long
- 5 detection layers with 10 cm intervals

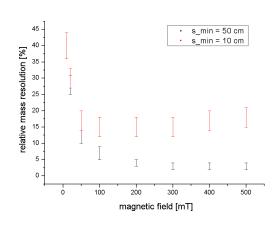


Relative resolution of the solenoid


given by:
$$\frac{\Delta p}{p} = \frac{\Delta x \ p}{0.3 \ B \ L^2} \sqrt{\frac{720}{N+4}}$$

Relative resolution of the solenoid


Relative resolution of the solenoid


 \Rightarrow Maximum Resolution $\approx 4\%$

Detector with toroidal field

- 1.2 m diameter
- 2 m long

Relative resolution of the toroid

Resolution

- maximum reached at B = 200 mT
- worse for shorter tracks

Comparison of resolution

solenoid field

- B = $100 \, \text{mT}$, N = $5 \, \text{m}$
- passing all detection layers

toroid field

- $B = 100 \, mT, N = 5$
- trace length greater 50 cm

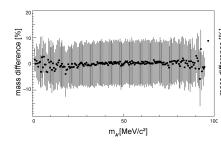
Comparison of resolution

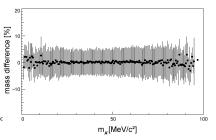
solenoid field

- $B = 100 \, mT$, N = 5
- passing all detection layers

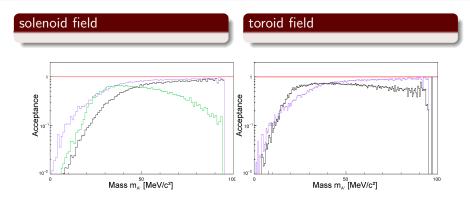
toroid field

- B = $100 \, \text{mT}$, N = $5 \, \text{m}$
- trace length greater 50 cm

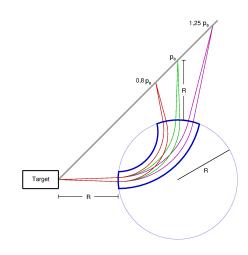

Uncertainties


- $\bullet \ \Delta\Theta \ = \ \Delta\Phi \ = \ 0.1^{o}$
- $\bullet \Delta x = 0.1 \, mm$

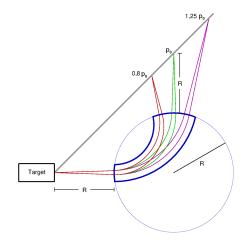
Comparison of resolution


solenoid field

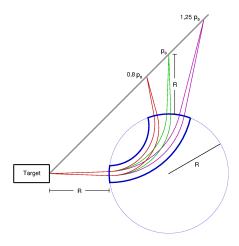
toroid field



Comparison of acceptance

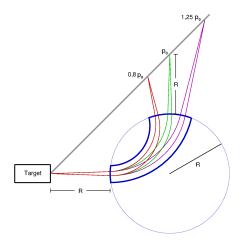


Blue: Reference from first estimations Black: Target in the middle of detector Green: Target at beginning of detector


+

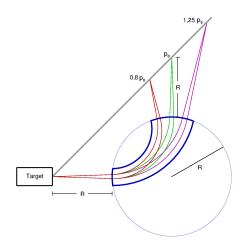
simple spectrometer using just a dipole

+

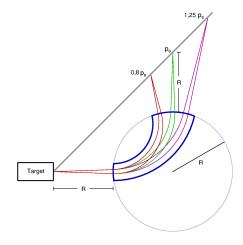

- simple spectrometer using just a dipole
- very good momentum-/mass-resolution

+

- simple spectrometer using just a dipole
- very good momentum-/mass-resolution


• small angular acceptance

+

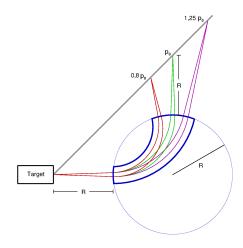

- simple spectrometer using just a dipole
- very good momentum-/mass-resolution

- small angular acceptance
- mass spectrum must be scanned in intervals

Resolution of the spectrometer

Parameters	
R	50 cm
В	42 - 333 mT
focal plane	68 cm
Δx	0.1 mm

Resolution of the spectrometer


Parameters

R	50 cm
В	42 - 333 mT
focal plane	68 cm
Δx	0.1 mm

Resolution

$$\frac{\Delta p}{p} = 6.62 \cdot 10^{-5}$$

 \Rightarrow relative mass resolution $\approx 0.03 \%$

momentum acceptance: $80\,\%$ to $125\,\%$ of p_0

⇒ scanning in mass-intervals

⇒ suppression of elastic line

momentum acceptance: 80 % to 125 % of p₀

- ⇒ scanning in mass-intervals
 - ⇒ suppression of elastic line

angular acceptance

- ullet cone shaped, opening angle $pprox 4^o$
- only one sort of electrical charge detectable in a spectrometer

momentum acceptance: 80% to 125% of p_0

- ⇒ scanning in mass-intervals
 - ⇒ suppression of elastic line

angular acceptance

- ullet cone shaped, opening angle $pprox 4^o$
- only one sort of electrical charge detectable in a spectrometer
 - ⇒ solid angle decreases by a factor of 3100 compared to first estimations

momentum acceptance: 80% to 125% of p_0

- ⇒ scanning in mass-intervals
 - ⇒ suppression of elastic line

angular acceptance

- ullet cone shaped, opening angle $pprox 4^o$
- only one sort of electrical charge detectable in a spectrometer
 - ⇒ solid angle decreases by a factor of 3100 compared to first estimations
 - \Rightarrow use of higher Z target (e.g. Xe): $d\sigma/d\Omega$ increases with Z^2 by a factor of 2900

Exclusion limits and measurements
The MESA Accelerator
Possible detector configurations
Conclusion

Conclusion

A1 Collaboration searching at masses above 40 MeV/c²

Exclusion limits and measurements
The MESA Accelerator
Possible detector configurations
Conclusion

- A1 Collaboration searching at masses above 40 MeV/c²
- MESA suitable for masses below 60 MeV/c²

- A1 Collaboration searching at masses above 40 MeV/c²
- MESA suitable for masses below 60 MeV/c²
- simple detector construction with solenoid field

- A1 Collaboration searching at masses above 40 MeV/c²
- MESA suitable for masses below 60 MeV/c²
- simple detector construction with solenoid field
- better acceptance and resolution with toroidal field

- A1 Collaboration searching at masses above 40 MeV/c²
- MESA suitable for masses below 60 MeV/c²
- simple detector construction with solenoid field
- better acceptance and resolution with toroidal field
- best resolution with spectrometers

- A1 Collaboration searching at masses above 40 MeV/c²
- MESA suitable for masses below 60 MeV/c²
- simple detector construction with solenoid field
- better acceptance and resolution with toroidal field
- best resolution with spectrometers
 - → lower acceptance can be compensated

- A1 Collaboration searching at masses above 40 MeV/c²
- MESA suitable for masses below 60 MeV/c²
- simple detector construction with solenoid field
- better acceptance and resolution with toroidal field
- best resolution with spectrometers
 - → lower acceptance can be compensated
 - → suitable for hadron and other nuclear physics

Exclusion limits and measurements
The MESA Accelerator
Possible detector configurations
Conclusion

Thank you for your attention