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Nucleon Axial Charge in Full Lattice QCD
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The nucleon axial charge is calculated as a function of the pion mass in full QCD. Using domain wall
valence quarks and improved staggered sea quarks, we present the first calculation with pion masses as
light as 354 MeV and volumes as large as (3.5 fm)>. We show that finite volume effects are small for our
volumes and that a constrained fit based on finite volume chiral perturbation theory agrees with

experiment within 7% statistical errors.
DOI: 10.1103/PhysRevLett.96.052001

Introduction.—The nucleon axial charge, g4, is a fun-
damental property of the nucleon, governing 8 decay and
providing a quantitative measure of spontaneous chiral
symmetry breaking in low energy hadronic physics. The
axial vector form factor, g,(g?), is defined by the momen-
tum space matrix element of the isovector axial current,

A,u = quVS %q
- _ 7
(N(p + q, s"|A,IN(p, s)) = a(p + q, s’)i[gA(qz)nws

+ gp(g*)quyslulp, s). (1)

The axial charge is the form factor at g> = 0 and is
measured from neutron B decay, g4 = g4(0) = 1.2695 =
0.0029. It may also be written in terms of the zeroth mo-
ments with respect to the momentum fraction x of the light
cone quark helicity distributions, Ag(x) = g;(x) — ¢;(x).
For each quark flavor g, with our normalization [1], these
moments are defined and related to forward nucleon matrix
elements of twist-2 operators as

1
(s, = ﬁ d[Ag() + AG()]

2MNS,U,<1>Aq = <N(p’ S)|(?7M7561|N(P, S)>,

and the axial charge is given by g4 = (1), — (1)ag-

The axial charge is also physically important for several
other reasons. The Adler-Weisberger sum rule [2,3] relates
the excess of g3 beyond the trivial value of 1 for a point,
structureless nucleon to an integral over the difference
between the 7 p and 77~ p scattering cross sections, which
is dominated by coupling to the A(1230) resonance. The
Goldberger-Treiman relation [4], g4 = fn&ann/Mn,
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which is exact in the chiral limit, relates it to the pion
decay constant, pion nucleon coupling constant, and nu-
cleon mass to an accuracy of 5%. Finally, the matrix
elements in Eq. (2) directly measure the contribution of
each flavor to the spin of the nucleon, and the flavor singlet
combination 3 = (1), + (1)as + (1)4, specifies the frac-
tion of the total nucleon spin arising from the spin of the
quarks. Thus, a first principles calculation of the axial
charge is an essential step in understanding key issues in
hadron structure ranging from chiral dynamics to the spin
content of the nucleon.

The axial charge is the ideal starting point in the quest
for precision lattice calculation of hadron structure for
several reasons. It is accurately measured experimentally
and the isovector combination (1), — (I1)a, has no con-
tributions from disconnected diagrams, which are much
more computationally demanding than the connected dia-
grams considered in this work. The functional dependence
on both m2 and volume is known at small masses from
chiral perturbation theory (yPT) [5,6] and renormalization
of the lattice axial vector current can be performed accu-
rately nonperturbatively using the five-dimensional con-
served current for domain wall fermions. Thus,
conceptually, it is a ““gold plated” test of our ability to
calculate hadron observables from first principles on the
lattice. In addition, since it is known to be particularly
sensitive to finite lattice volume effects that reduce the
contributions of the pion cloud [7,8], it is also a stringent
test of our control of finite volume artifacts.

Lattice calculation in the chiral regime.—The computa-
tional challenge of precision lattice QCD lies in simulta-
neously approaching the continuum limit of small lattice
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spacing, the chiral limit of low quark masses, and the large
volume limit. For nucleon structure, where the pion cloud
extends to large distances and plays a major role, the latter
two requirements are particularly severe. Instead of refer-
ring to the unobservable bare quark mass, since m,, « m2,
it is convenient to express the quark mass dependence of
observables by their dependence on m2. To include the
essential physics of the pion cloud, the box size must be
large compared to the pion Compton wavelength, m !, and
the ultimate computational cost of a full QCD lattice
calculation in such a box including dynamical sea fermions
has mass dependence approximately m,°.

To address this demanding regime of light pion mass and
large volume with current computational resources, we
have used a hybrid combination of computationally eco-
nomical staggered sea quark configurations generated us-
ing the so-called Asqtad improved action by the MILC
Collaboration [9,10] with domain wall valence quarks that
have chiral symmetry on the lattice. Improved staggered
quarks have been strikingly successful in precision calcu-
lations [11] and even predictions of heavy quark systems
[12]. Although there is not yet a proof that the continuum
limit of the fourth root of the staggered determinant has the
correct continuum limit, recent renormalization group ar-
guments suggest that it does [13]. Assuming that the
staggered continuum limit is correct, the continuum limit
of the hybrid calculation will also be correct. Both the
Asqtad and domain wall actions have leading errors of
order a” in the lattice spacing a.

As tabulated in Table I, calculations were performed at
five pion masses down to 354 MeV on 203 X 32 lattices
with a spatial volume V = (2.5 fm)? and the lightest mass,
which is most sensitive to finite volume effects, was also
calculated on a 28* X 32 lattice with a spatial volume V =
(3.5 fm)>. The scale is set by the lattice spacing a =
0.12406 fm determined from heavy quark spectroscopy
[14] with an uncertainty of 2%. To reduce the effect of
dislocations at this lattice spacing and thus improve the
chiral properties of the domain wall fermions, the fermion
action was defined to include HYP smearing [15] of the
gauge fields, in which each link is replaced by a sum of

TABLE I

links within the unit hypercube. This HYP smearing
changes the action by an irrelevant operator, is restricted
in range to a single lattice spacing, and has coefficients
defined to minimize fluctuations of Wilson loops.

The domain wall fermion [16,17] propagators are calcu-
lated on a five-dimensional lattice with fifth dimension L5
and five-dimensional mass Ms. The physical quark fields,
q(%, 1), reside on the four-dimensional boundaries with fifth
coordinate 1 and Ls and have bare quark parameter
(am)?WF. The value M5 = 1.7 was chosen on the basis of
spectral flow analyses to optimize the evaluation of domain
wall propagators, and Ls = 16 was chosen [18] to ensure
that the residual mass characterizing residual chiral sym-
metry breaking is always less than 10% of the physical
quark mass for the pion masses in Table I. The values of
(am)7™F were tuned to reproduce the lightest 1y, = Mg,
Asqtad pion masses [19] within 1% and as shown in
Ref. [18], the resulting nucleon masses were also consis-
tent with the Asqtad masses.

Lattice matrix elements of the axial vector current
(NG, ysqIN) are calculated from the ratio of three
point functions to two point functions using the same
smeared nucleon sources and methodology as in Ref. [1].
The renormalization factor, Z,, for the four-dimensional
axial current operator A, = g7y, ¥sq is calculated using
the five-dimensional conserved axial current for domain
wall fermions A, by the relation [20] (A ,(1)A,(0)) =
Zx(A L (AL (0)).

Lattice results.—The lattice renormalization constants,
Z4, and values of the renormalized axial charge, g, =
Za(NIgy . vsqIN)*t<, are tabulated in Table I for the
five pion masses and two volumes considered in this
work. Measurement of g, to 5% accuracy at m, =
354 MeV is a major achievement of this work, requiring
655 configurations on the 203 lattice and correspondingly
fewer on the larger lattice where volume averaging im-
proves statistics.

The dependence of g4 on the pion mass [5,6,21,22], and
on both the mass and volume [5,6] is known from yPT,
where at sufficiently low pion mass, the functional form

The number of configurations, pion mass, renormalization factor, and axial charge

for each of the measurements on two lattice volumes.

20° X 32 lattice V = (2.5 fm)?

Number of configurations m, (MeV) Zs ga
425 761 (2) 1.1296 (6) 1.167 (11)
350 693 (3) 1.1197 (6) 1.153 (16)
564 594 (2) 1.1085 (5) 1.193 (16)
486 498 (2) 1.0994 (4) 1.173 (29)
655 354 (3) 1.0847 (6) 1.244 (58)

283 X 32 lattice V = (3.5 fm)?

Number of configurations m, (MeV) Zy 8a

270 353 (1) 1.0840 (5) 1.212 (59)
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follows from the symmetries of QCD and the coefficients
are low energy constants of QCD that, in principle, can be
calculated on the lattice. We have used the yPT form of
Ref. [5] and verified that it agrees closely numerically with
the other corresponding infinite volume [6,21] and finite
volume [6] results for our masses and volumes. Our yPT fit
includes six constants: f (the pion decay constant), m, —
my (the Delta-nucleon mass splitting), g4, gaa, and gya
(the couplings of the axial current between two nucleons,
two Deltas, or a nucleon and Delta, respectively), and a
counterterm C.

Figure 1 shows the lattice data and our fit to it using
finite volume yPT. The yPT function was fit to each data
point at the corresponding mass and finite volume, and the
parameters of the fit were then used to determine the
infinite volume axial charge. In the absence of lattice
calculations of g4 at still lower pion masses, it is not
presently possible to do a complete extrapolation from
lattice measurements alone. Hence, following Ref. [21],
we performed a constrained fit and the heavy solid curve is
determined by setting f,, ma — my, and gya to their
physical values [21] and performing a least squares fit for
g4, &an, and C. The error band arising from this three
parameter fit is shown in Fig. 1 and the resulting value for
the axial charge at the physical pion mass is g,(m, =
140 MeV) = 1.226 * 0.084. Given the smooth behavior
of the chiral fit and the small magnitude of the chiral logs,
it is clear that the extrapolation for the axial charge is quite
benign, and that the lattice data are extrapolating convinc-
ingly towards experiment.

Although there has been concern that g, is particularly
sensitive to finite volume effects [7,8,23], Fig. 1 shows
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FIG. 1. Nucleon axial charge g, as a function of the pion mass.

Lattice data are denoted by squares (smaller volume) and a
triangle (larger volume), the lowest smaller volume point is
displaced slightly to the right for clarity, and experiment is
denoted by the circle. The heavy solid line and shaded error
band show the yPT fit to the finite volume data evaluated in the
infinite volume limit, and the lines below it show the behavior of
this chiral fit in boxes of finite volume L3, as L is reduced to 3.5,
2.5, and 1.6 fm, respectively.

these effects are well under control and introduce negli-
gible errors for our volumes. The light curves show the
behavior expected from yPT in volumes L* with L of 3.5,
2.5, and 1.6 fm. Note that at the lightest mass, our 3.5 and
2.5 fm results are statistically indistinguishable, consistent
with the yPT change of less than 1%, and that the correc-
tions applied in correcting our data from 2.5 or 3.5 fm to
infinity in the yPT fit are quite small. At heavier masses,
although the truncated yPT expansion is not quantitatively
reliable, the finite volume effects are physically sup-
pressed. The order of magnitude of the corrections from
1.6 to 2.5 fm is also consistent with the fact that quenched
calculations [7] have shown that increasing the box length
from 1.2 fm to 2.4 fm increases g4 by the order of 10% for
pion masses ranging from 550 to 870 MeV, and un-
quenched calculations for 770 MeV pions [8] have shown
that increasing L from 1.1 to 2.2 fm increases g, by 20%.

In addition to the statistical error arising from fitting the
parameters g4, gaa, and C, several systematic errors may
be estimated. The three constrained parameters can be
calculated directly on the lattice and the linear response
of our chiral fit to varying each of them shows very weak
dependence. Calculation of f, on our lattices yields
92.4 MeV = 3%, corresponding to an error in g, of
0.12%, and a rough calculation of m, — my (which can
be improved) with 18% uncertainty corresponds to an error
of 0.35%. Although we have not yet calculated gy, it
should be calculable to 20%, corresponding to an error in
g4 of 0.19%. Thus the total error from the constrained
parameters is much less than a percent. The error in the
lattice scale, which can shift all masses by 2%, will induce
a negligible effect since the curve in Fig. 1 is so flat. An
alternative lattice renormalization method based on calcu-
lating the ratio of the axial and vector charges, which
should have the same renormalization constant in the chiral
limit, yields discrepancies less than 2% for the heaviest
masses and statistically indistinguishable results at lighter
masses, suggesting that the renormalization error is less
than a few percent.

Finally, we compare our results with the world’s supply
of unquenched lattice calculations of g, in Fig. 2. The
dotted line shows the continuation of our yPT fit to higher
masses to guide the eye, but is not quantitatively reliable
due to the limitations of yPT at such large pion masses.
Our previous calculations [1] using SESAM configurations
[24] with dynamical Wilson quarks and spatial box size
1.5 fm are shown for the heaviest three quark masses.
These are consistent with the current hybrid calculations
within statistics, although the lowest mass point may have
a small systematic shift downwards due to the small vol-
ume. The three points by the RBCK Collaboration [25]
using dynamical domain wall fermions in a 1.9 fm box are
also consistent with our present results within statistics. We
also show the most recent results by the QCDSF/UKQCD
Collaboration [26] using improved Wilson dynamical fer-
mions in boxes ranging from 1.43 to 2.03 fm. (Data in
smaller boxes having larger finite volume corrections are
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FIG. 2 (color online). Comparison of all full QCD calculations
of g4, as described in the text. The solid line and error band
denote the infinite volume yPT fit of Fig. 1, and its continuation
to higher masses is indicated by the dotted line. Two of our data
points and one SESAM point have been displaced in mass by the
symbol width for clarity.

omitted for clarity, as are data at masses beyond the range
of the graph.) The discrepancy in the vicinity of m2 ~
0.35 GeV? is of the order of magnitude of the finite volume
effects in Fig. 1.

Conclusions.—In summary, we have calculated g, in
full QCD in the chiral regime. The hybrid combination of
improved staggered sea quarks and domain wall valence
quarks enabled us to extend calculations to the lightest
mass, 354 MeV, and largest box size, 3.5 fm, yet attained,
and to obtain statistical accuracy of 5% with negligible
error from volume dependence. Chiral perturbation theory
implies mild dependence on the pion mass, and a three
parameter constrained fit yields an excellent fit to the data
and generates an error band of size 7% at the physical pion
mass which overlaps experiment. Thus, this calculation
represents a significant milestone in the quest to calculate
hadron structure from first principles.

The fact that g, is so accurately measured and amenable
to lattice calculations offers significant opportunities for
further refining and testing the precision of lattice calcu-
lations. Extending the range of pion masses to include 300
and 250 MeV and decreasing error bars to 3% offers the
prospect of reducing the present statistical error by a factor
of 2, and the feasibility of this with existing MILC con-
figurations is being explored. Additional opportunities in-
clude calculation on MILC lattices with lattice spacings
a = 0.09 and 0.06 fm to determine finite lattice spacing
dependence, and using partially quenched hybrid yPT [27]
to account for differences in valence and sea quarks in
extrapolating to the continuum limit.
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