preprints
journal papers
-
Tacchetti, A. , Mallapragada, P., Santoro, M. and Rosasco, L.
GURLS: a Least Squares Library for Supervised Learning.
To appear in Journal of Machine Learning Research, also ArXiv:1303.0934.
- De
Vito, E. Rosasco, L. and Toigo, A.
Learning
Sets with Separating Kernels
to appear in the Journal of Applied and Computational Harmonic Analysis
(ArXiv:1204.3573).
- Villa,
S., Mosci, and Rosasco, L.
Proximal
methods for the latent group lasso penalty
to appear in the Journal of Computational Optimization and Applications
(Arxiv1209.0368).
- Rosasco,
L., Villa, S., Mosci, S., Santoro, M., and Verri, A.
Nonparametric
Sparsity and Regularization
Journal of Machine Learning Research, 14(Jul):1665−1714, 2013.
- Alvarez,
M., Rosasco, L. and Lawrence, N.
Kernels for
Vector-Valued Functions: a Review
To appear in Foundations and Trends in Machine Learning,
arXiv:1106.6251.
-
Baldassarre, L., Barla, A., Rosasco, L. and Verri, A.
Multi-Output
Learning via Spectral Filtering
Machine Learning 83(3).
- Mosci, S., Rosasco, L., Verri, A. and Villa, S,
Applications of Variational Convergence to Regularized Learning
Algorithms
To be published in Optimization.
- De Vito, E., Pereverzev, S. and Rosasco, L.
Adaptive
Learning via the Balancing Principle
Foundations of Computational Mathematics, 8 355-479 (2010).
- P. Fardin, A. Barla, S. Mosci, L. Rosasco, A. Verri, R.
Versteeg, H. Caron, J. Molenaar, I. Ora, A. Eva, M. Puppo and L. Varesio
A biology-driven approach identies the hypoxia gene signature as a
predictor of the outcome of neuroblastoma patients
Molecular Cancer 2010, 9:185.
- Fardin, P., Barla A., Mosci, S., Rosasco, L., Verri, A.
and Varesio, L., Identification of multiple hypoxia signatures
in neuroblastoma cell lines by l1-l2 regularization and data reduction.
Journal of Biomedicine and Biotechnology
Volume 2010 (2010)
- Smale S., Rosasco L., Bouvrie, J., Caponnetto, A. and
Poggio, T.
Mathematics
of the Neural Response
Foundations of Computational Mathematics, June 2009, DOI
10.1007/s10208-009-9049-1.
- Paolo Fardin, Annalisa Barla, Sofia Mosci, Lorenzo
Rosasco, Alessandro Verri, Luigi Varesio.
The l1-l2 regularization framework unmasks the hypoxic signature hidden
in the transcriptome of a set of heterogeneous neuroblastoma cell lines
to appear in BMC Genomics.
- Valerio Del Bono, Alessandra Mularoni, Elisa Furfaro,
Emanuele Delfino, Lorenzo Rosasco, Franca Miletich, and Claudio Viscoli
Clinical
Evaluation of a (1,3)-β-D-Glucan Assay for Presumptive Diagnosis of
Pneumocystis jiroveci Pneumonia in Immunocompromised Patients
Clin. Vaccine Immunol. 2009 16: 1524-1526.
- Rosasco, L., Belkin, M., and De Vito, E.
On
Learning with Integral Operators
Journal of Machine Learning Research 11(Feb):905?934, 2010.
- De Mol,
C., De Vito E. and Rosasco L.
Elastic
Net Regularization in Learning Theory
to appear in the Journal of Complexity (also CBCL paper #273/
CSAILTechnical Report #TR-2008-046,
Massachusetts Institute of Technology, Cambridge, MA, July 24,
2008 and arXiv:0807.3423).
- Lo Gerfo
L., Rosasco L., Odone F., De Vito E. and Verri, A.
Spectral
Algorithms for Supervised Learning
Neural Comput. 2008 20: 1873-1897.
- Bauer
F., Pereverzev S. and Rosasco L.
On
Regularization Algorithms in Learning Theory
J. Complexity 23(1): 52-72 (2007) (Technical Report
DISI-TR-05-19).
- Yao Y.,
Rosasco L. and Caponnetto, A.
On
Early Stopping in Gradient Descent Learning
Constr. Approx. 26 (2007), no. 2, 289–315.
- De Vito
E., Rosasco L. and Caponnetto, A.
Discretization
Error Analysis for Tikhonov Regularization
Analysis and Applications Vol. 4, No. 1 (January 2006).
- De Vito
E., Rosasco L.,Caponnetto A., De giovannini U. and Odone F.
Learning
from Examples as an Inverse Problem
Journal of Machine Learning Research 6(May):883--904, 2005.
- De Vito
E., Rosasco L., Caponnetto A., Piana M. and Verri A.
Some
Properties of Regularized Kernel Methods
Journal of Machine Learning Research 5(Oct):1363--1390, 2004. .
- De Vito
E., Caponnetto A, Rosasco L..
Model
Selection for Regularized Least-Squares Algorithm in Learning Theory
Foundations of Computational Mathematics Volume 5, Number 1 pp.
59 - 85, February 2005 .
- Rosasco
L., Caponnetto A., De Vito E., Piana M. and Verri A.
Are Loss Function
All the Same?
Neural Computation, Vol. 16, Issue 5 - May 2004.
chapters in books
- G.
Chen, A.V. Little, M. Maggioni, L. Rosasco
Some recent advances in multiscale geometric analysis of point clouds,
Wavelets and Multiscale Analysis: Theory and Applications (March, 2010),
Springer.
conference papers and extended abstracts
-
Fanello, S., Ciliberto, C., Santoro, M., Natale, L., Metta, G., Rosasco,
L. and Odone, F.
iCub World: Friendly Robots Help Building Good Vision Data-Sets
IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), 2013.
- Rudi,
A., Canas, G., and Rosasco, L.
On the Sample Complexity of Subspace Learning
In Advances in Neural Information Processing Systems (NIPS) 26. 2013.
Ciliberto,C.,Fanello,S..Santoro,M.,Natale,L.,Metta,G.andRosasco,L.
On the Impactof Learning Hierarchical Representations for Visual
Recognition in Robotics
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2013.
-
Zhang, C., Evangelopoulos, G., Voinea, S., Rosasco, L. and Poggio, T. A
Deep Representation for Invariance and Music Classification,
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2014.
-
Mroueh, Y., Rosasco, L.
Q-ary Compressive Sensing.
Proceedings SampTA, 2013, also Arxiv 1302.5168.
-
Mroueh,Y.,Poggio,T.,Rosasco,L.Slotine,J.J.
Multi-class Learning with Simplex Coding.
InAdvancesinNeural Information Processing Systems, NIPS 2012.
-
Canas, G.D., Rosasco, L., Poggio, T.
Learning Manifolds with K-Means and K-Flats.
In Advances in Neural Information Processing Systems, NIPS 2012.
-
Canas, G.D., Rosasco, L.
Learning Probability Measures with respect to Optimal Transport Metrics.
In Advances in Neural Information Processing Systems, NIPS 2012.
- A.Tacchetti,
P.Mallapragada, M.Santoro and L. Rosasco,
GURLS:
a Least Squares Toolbox for Supervised Learning
NIPS 2011, Workshop on Big Learning: Algorithms, Systems, and Tools for
Learning at Scale, Sierra Nevada
Spain, December 2011.
- A.V. Little, M. Maggioni, L. Rosasco
Multiscale
Geometric Methods for Estimating Intrinsic Dimension
Proc. SampTA 2011 (2010).
- De Vito, E., Rosasco, L. and Toigo, A.
Support
Estimation via Spectral Regularization
Proc.
SampTA 2011 (2010).
- De Vito, E., Rosasco, L. and Toigo, A.
Spectral
Regularization for Support Estimation
Advances in Neural Information Processing Systems (NIPS) 23, 2010.
- Mosci, S., Villa, S. and Rosasco, L.
A
primal-dual algorithm for group sparse regularization with overlapping
groups
Advances in Neural Information Processing Systems (NIPS) 23, 2010.
- Mosci, S., Villa, S. and Rosasco, L.
A fast algorithm for structured gene selection
Fourth International Workshop on Machine Learning in Systems Biology.
- Mosci, S., Villa, S. and Rosasco, L.
Combining l1-l2 regularization with biological prior for multi-level
hypoxia signature in Neuroblastoma.
Fourth International Workshop on Machine Learning in Systems Biology.
- Baldassarre, L., Barla, A., Rosasco, L. and Verri, A.
Learning Vector Fields via Spectral Filtering
Proc. of ECML 2010.
- Mosci, S., Rosasco, L., Santoro, M., Verri, A. and
Villa, S.
Solving Structured Sparsity Regularization with Proximal Methods.
ECML 2010.
- Rosasco, L., Mosci, S., Santoro, M., Verri, A. and
Villa, S.
A Regularization Approach to non linear Variable Selection
Proc. of AISTAT 2010.
- Bouvrie, J., Rosasco, L. and Poggio, T.
On Invariance in Hierarchical Models
Advances in Neural Information Processing Systems (NIPS) 22, 2009.
- Frogner, C., Bristow, C., Morgan, T., Rosasco, L.,
Poggio, T. and Kellis, M.
Learning recurrent mRNA expression patterns from systematic analysis of
in-situ images of Drosophila embryos
RECOMB System Biology (poster).
- Rosasco, L., Belkin, M., and De Vito, E.
A Note on Learning with Integral Operators,
COLT 2009-- 22nd Annual Conference on Learning Theory.
- N.
Noceti, B. Caputo, C. Castellini, L. Baldassarre, A. Barla, L. Rosasco,
F. Odone and G. Sandini
Towards a theoretical framework for learning multi-modal patterns
for embodied agents",
ICIAP-09-- 15th, International Conference on Image Analysis and
Processing.
- S.
Mosci, A. Barla, A. Verri and L. Rosasco.
Finding Structured Gene Signatures,
BIBM, 2008-- IEEE International Conference on Bioinformatics and
Biomedicine.
- Rosasco
L. (joint work with De Mol, C., De Vito E.)
Analysis
of Elastic Net Regularization,
OBERWOLFACH Report, Learning Theory and Approximation Workshop,
Mathematisches Forschungsinstitut Oberwolfach.
- Rosasco
L. (joint work with De Mol, C., De Vito E.)
Elastic net regularization in learning theory,
ICML/UAI/COLT 2008 Joint Workshops-- Sparse Optimization and
Variable Selection Workshop, .
- Barla,
A., Mosci, S., Rosasco, L. and Verri, A.
A method
for robust variable selection with significance assessments"
ESANN-- 16th European Symposium on Artificial Neural Networks.
- Mosci,
S., Rosasco, L. and Verri A.
Dimensionality
reduction and generalization,
ICML 2007-- Proceedings of the 24th International Conference on
Machine Learning.
- Caponnetto
A., Rosasco L., Odone F. and Verri A.
Support
Vectors Algorithms as Regularization Networks,
Esann 2005-- 13th European Symposium on Artificial Neural
Networks.
- Rosasco
L., Caponnetto A., De Vito E., De giovannini U. and Odone F.
Learning,
Regularization and Ill-posed Inverse problems,
NIPS 2004-- Eighteenth Annual Conference on Neural Information
Processing Systems.
technical reports
- Leibo,
J.Z., J. Mutch, L. Rosasco, S. Ullman, and T. Poggio
Learning Generic Invariances in Object Recognition: Translation and
Scale.
MIT-CSAIL-TR-2010-061/CBCL-294, Massachusetts Institute of Technology,
Cambridge,
MA, December 30, 2010.
- Mutch, J., J.Z. Leibo, S. Smale, L. Rosasco, and T.
Poggio
Neurons That Confuse Mirror-Symmetric Object Views.
MIT-CSAIL-TR-2010-062/CBCL-295, Massachusetts Institute of Technology,
Cambridge, MA, December 31,
2010.
- Wibisono, A., J. Bouvrie, L. Rosasco, and T. Poggio
Learning and Invariance in a Family of Hierarchical Kernels.
MIT-CSAIL-TR-2010-035 / CBCL-290, Massachusetts Institute of Technology,
Cambridge, MA, July 30, 2010
- Bouvrie, J., Rosasco, L. , Shakhnarovich, G. and Smale,
S.
Notes on the Shannon Entropy of the Neural Response.
CBCL-281, MIT-CSAIL-TR-2009-049, Massachusetts Institute of Technology,
Cambridge, MA, October 9, 2009.
- Rosasco, L., Belkin, M., and De Vito, E.
"A Note on
Perturbation Results for Learning Empirical Operators"
CBCL paper #274/ CSAIL Technical Report #TR-2008-052 , Massachusetts
Institute of Technology, Cambridge, MA, August 19, 2008.
- De Vito,
E., Pereverzev S. and Rosasco L.
"Adaptive
Kernel Methods via the Balancing Principle",
CBCL paper #275/CSAIL Technical Report#TR-2008-062 Massachusetts
Institute of Technology, Cambridge, MA, October 16, 2008
- De Mol,
C., De Vito E. and Rosasco L.
"Elastic
Net Regularization in Learning Theory",
CBCL paper #273/ CSAILTechnical Report #TR-2008-046,
Massachusetts Institute of Technology, Cambridge, MA, July 24,
2008.
arXiv:0807.3423 (submitted).
- Rosasco
L., De Vito E. and Verri A.
" Spectral
Methods for Regularization in Learning Theory",
Technical report DISI-TR-05-18.
- Caponnetto
A., Rosasco L., De Vito E. and Verri A.
"Empirical
Effective Dimension and Optimal Rates for Regularized Least Squares
Algorithm ",
CBCL Paper #252/AI Memo #2005-019, MIT, Cambridge, MA, May 2005.
- Caponnetto
A. and Rosasco L.
"
Non Standard Support Vector Machines and Regularization Networks",
DISI-TR-04-03.
- De Vito
E., Rosasco L., Caponnetto A., Piana M. and Verri A.
"Representer
Theorem for Convex Loss Fuction",
DISI-TR-03-13.
- De Vito
E., Rosasco L., Caponnetto A., Piana M. and Verri A.
"
Minimization of Tiklhonov Functional: the Continuos Setting",
DISI-TR-03-14 .