preprints
- A.V. Little, M. Maggioni and L. Rosasco,
Multiscale Geometric Methods for Data Sets
I: Intrinsic dimension
- J. Bouvrie, S. Smale and L. Rosasco,
Cuts in Hilbert Spaces
2010
- Leibo, J., J. Mutch, L. Rosasco, S. Ullman, and T. Poggio,
"Invariant Recognition of Objects by Vision"
CBCL-291Massachusetts Institute of Technology, Cambridge, MA, November 2, 2010
- Smale S., Rosasco L., Bouvrie, J., Caponnetto, A. and Poggio, T.
"Mathematics of the Neural Response"
67-91, 2010 10, Foundations of Computational Mathematics.
- G. Chen, A.V. Little, M. Maggioni and L. Rosasco,
Some Recent Advances in the Geometric Analysis of Point Clouds in High Dimensions
To appear in 20 Years of Wavelets, 2010
- De Vito, E., Pereverzev S. and Rosasco L.
"Adaptive Kernel Methods via the Balancing Principle",
455-479, 2010, Vol. 10, Num. 4, Foundations of Computational Mathematics (also CBCL paper #275/CSAIL #TR-2008-062 MIT 2008).
- De Vito, E., Rosasco, L. and Toigo, A.
Spectral Regularization for Support Estimation,
To appear in Advances in
Neural Information Processing Systems (NIPS) 23, 2010.
- Mosci, S., Villa, S. and Rosasco, L.
A primal-dual algorithm for group sparse regularization with overlapping groups.
To appear in Advances in Neural Information Processing Systems (NIPS) 23, 2010.
- Baldassarre, L., Barla, A., Rosasco, L. and Verri, A.
Learning Vector Fields via Spectral Filtering.
To appear in
proceeding of ECML 2010.
- Rosasco, L., Mosci, S., Santoro, M., Verri, A. and Villa, S.
Solving Structured Sparsity Regularization with
Proximal Methods.
To appear in proceeding of ECML 2010.
- Rosasco, L., Mosci, S., Santoro, M., Verri, A. and Villa, S.
A Regularization Approach to non linear Variable
Selection.
To appear in proceeding of AISTAT 2010.
- Mosci, S., Villa, S. and Rosasco, L.,
A fast algorithm for structured gene selection.
Fourth International Workshop on Machine Learning in Systems Biology, 2010.
- Mosci, S., Villa, S. and Rosasco, L.
Combining l1-l2 regularization with biological prior for multi-level hypoxia
signature in Neuroblastoma.
Fourth International Workshop on Machine Learning in Systems Biology, 2010.
2009
- Bouvrie, J., Rosasco, L. and Poggio, T.
On Invariance in Hierarchical Models
Advances in Neural Information
Processing Systems (NIPS) 22, 2009.
- Paolo Fardin, Annalisa Barla, Sofia Mosci, Lorenzo Rosasco, Alessandro Verri, Luigi Varesio.
The l1-l2 regularization framework unmasks the hypoxic signature hidden in the transcriptome of a set of heterogeneous neuroblastoma cell lines.
BMC Genomics, 2009, 10:474.
- Valerio Del Bono, Alessandra Mularoni, Elisa Furfaro, Emanuele Delfino, Lorenzo Rosasco, Franca Miletich, and Claudio Viscoli
Clinical Evaluation of a (1,3)-β-D-Glucan Assay for Presumptive Diagnosis of Pneumocystis jiroveci Pneumonia in Immunocompromised Patients
Clin. Vaccine Immunol. 2009 16: 1524-1526.
- Rosasco, L., Belkin, M., and De Vito, E.
"On Learning with Integral Operators"
Journal of Machine Learning Research,
- N. Noceti, B. Caputo, C. Castellini, L. Baldassarre, A. Barla, L. Rosasco, F. Odone and G. Sandini
"Towards a theoretical framework for learning multi-modal patterns for embodied agents",
ICIAP-09-- 15th, International Conference on Image Analysis and Processing.
- Rosasco, L., Belkin, M., and De Vito, E.
"A Note on Learning with Integral Operators",
COLT 2009-- 22nd Annual Conference on Learning Theory.
- Charlie Frogner, Christopher A. Bristow, Tom Morgan, Lorenzo Rosasco, Pouya Kheradpour, Rachel Sealfon, Tomaso Poggio, Manolis Kellis.
Learning recurrent mRNA expression patterns from systematic analysis of in-situ images of Drosophila embryos.
(Poster) RECOMB Regulatory and Systems Biology, 2009.
- Wibisono, A., Rosasco, L., and Poggio, T.
Sufficient Conditions for Uniform Stability of Regularization Algorithms,
CBCL paper #284/CSAIL Technical Report#MIT-CSAIL-TR-2009-060, Massachusetts Institute of
Technology, Cambridge, MA, December 1, 2009.
2008
- De Mol, C., De Vito E. and Rosasco L.
"Elastic Net Regularization in Learning Theory",
to appear in the Journal of Complexity (also CBCL paper #273/ CSAILTechnical Report #TR-2008-046,
Massachusetts Institute of Technology, Cambridge, MA, July 24, 2008 and arXiv:0807.3423).
- Lo Gerfo L., Rosasco L., Odone F., De Vito E. and Verri, A.
"Spectral Algorithms for Supervised Learning",
Neural Comput. 2008 20: 1873-1897.
- Rosasco L. (joint work with De Mol, C., De Vito E.)
"Elastic net regularization in learning theory",
ICML/UAI/COLT 2008 Joint Workshops-- Sparse Optimization and Variable Selection Workshop.
- Rosasco L. (joint work with De Mol, C., De Vito E.)
"Analysis of Elastic Net Regularization",
OBERWOLFACH Report, Learning Theory and Approximation Workshop, Mathematisches Forschungsinstitut Oberwolfach.
- S. Mosci, A. Barla, A. Verri and L. Rosasco.
"Finding Structured Gene Signatures",
BIBM, 2008-- IEEE International Conference on Bioinformatics and Biomedicine.
2007
- Bauer F., Pereverzev S. and Rosasco L.
"On Regularization Algorithms in Learning Theory",
J. Complexity 23(1): 52-72 (2007) (Technical Report DISI-TR-05-19).
- Yao Y., Rosasco L. and Caponnetto, A.
"On Early Stopping in Gradient Descent Learning",
Constr. Approx. 26 (2007), no. 2, 289–315.
- Mosci, S., Rosasco, L. and Verri A.
" Dimensionality reduction and generalization ",
ICML 2007-- Proceedings of the 24th International Conference on Machine Learning.
- Barla, A., Mosci, S., Rosasco, L. and Verri, A.
"A method for robust variable selection with significance assessments"
ESANN-- 16th European Symposium on Artificial Neural Networks, 2007.
2006
2005
- De Vito E., Rosasco L.,Caponnetto A., De giovannini U. and Odone F.
"Learning from Examples as an Inverse Problem ",
Journal of Machine Learning Research 6(May):883--904, 2005.
- De Vito E., Caponnetto A, Rosasco L..
"Model Selection for Regularized Least-Squares Algorithm in Learning Theory",
Foundations of Computational Mathematics Volume 5, Number 1 pp. 59 - 85, February 2005.
- Caponnetto A., Rosasco L., Odone F. and Verri A.
" Support Vectors Algorithms as Regularization Networks ",
Esann 2005-- 13th European Symposium on Artificial Neural Networks.
2004
- De Vito E., Rosasco L., Caponnetto A., Piana M. and Verri A.
"Some Properties of Regularized Kernel Methods",
Journal of Machine Learning Research 5(Oct):1363--1390, 2004. .
- Rosasco L., Caponnetto A., De Vito E., Piana M. and Verri A.
"Are Loss Function All the Same?"
Neural Computation, Vol. 16, Issue 5 - May 2004.
- Rosasco L., Caponnetto A., De Vito E., De giovannini U. and Odone F.
" Learning, Regularization and Ill-posed Inverse problems ",
NIPS 2004-- Eighteenth Annual Conference on Neural Information Processing Systems.
technical reports
- Rosasco, L., Belkin, M., and De Vito, E.
"A Note on Perturbation Results for Learning Empirical Operators"
CBCL paper #274/ CSAIL Technical Report #TR-2008-052 , Massachusetts Institute of Technology, Cambridge, MA, August 19, 2008.
- De Vito, E., Pereverzev S. and Rosasco L.
"Adaptive Kernel Methods via the Balancing Principle",
CBCL paper #275/CSAIL Technical Report#TR-2008-062 Massachusetts Institute of Technology, Cambridge, MA, October 16, 2008
- De Mol, C., De Vito E. and Rosasco L.
"Elastic Net Regularization in Learning Theory",
CBCL paper #273/ CSAILTechnical Report #TR-2008-046,
Massachusetts Institute of Technology, Cambridge, MA, July 24, 2008.
arXiv:0807.3423 (submitted).
- Rosasco L., De Vito E. and Verri A.
" Spectral Methods for Regularization in Learning Theory",
Technical report DISI-TR-05-18.
- Caponnetto A., Rosasco L., De Vito E. and Verri A.
"Empirical Effective Dimension and Optimal Rates for Regularized Least Squares Algorithm ",
CBCL Paper #252/AI Memo #2005-019, MIT, Cambridge, MA, May 2005.
- Caponnetto A. and Rosasco L.
" Non Standard Support Vector Machines and Regularization Networks",
DISI-TR-04-03.
- De Vito E., Rosasco L., Caponnetto A., Piana M. and Verri A.
"Representer Theorem for Convex Loss Fuction",
DISI-TR-03-13.
- De Vito E., Rosasco L., Caponnetto A., Piana M. and Verri A.
" Minimization of Tiklhonov Functional: the Continuos Setting",
DISI-TR-03-14 .