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Abstract

We examine a hidden symmetry of the hydrogen atom in quantum mechan-

ics using the quantum mechanical analog of the classical Lenz vector and its

relation to the generators of the familiar SO(3) rotational group. We use as our

tool some basic concepts in algebraic group theory. The result is a mathemati-

cal description of a higher-dimension symmetry under the SO(4) group, or the

rotational group in four dimensions. We use this insight to derive the energy

eigenvalues of the hydrogen atom, and many of its constraints and features,

free of the Schrödinger wave equation.
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1 Introduction

The problem of the hydrogen atom central potential in quantum mechanics is usu-

ally solved by explicit separation of variables in the governing Schrödinger Equa-

tion. Formidable calculations then yield the resulting eigenstates of the Hamiltonian

uniquely characterized by the quantum numbers n, l, and m, where n is the energy

level, l is a measure of the magnitude of the orbital angular momentum, and m con-

tains information about its direction. We find that for a given n, l can range from

n − 1 to 0 in integer steps, and m can range from −l to +l, again in integer steps.

The corresponding energy eigenvalues of the system is also quantized with,

En = −µZ
2e4

2h̄2n2
, for n = 1, 2, 3... (1)

It is at once evident that this spectrum is many-fold degenerate in l and m,

dependent only on the quantum number, n. Seeking further physical insight into this

important system, we examine the conditions and conserved properties that lead to

this remarkable degeneracy.

2 Symmetry and Degeneracy

2.1 Conservation Laws

To begin, consider the relation between symmetry and conserved quantities in clas-

sical mechanics. We see that geometric symmetries in the environment, such as

translationally and rotationally invariant potentials, allow for conservation of linear

and angular momentum, respectively. The analog is true in quantum mechanics. We

motivate this by a simple example. Consider a state |α〉 with wavefunction ψα(~r).

We can create a displaced wavefunction ψα′(~r) that is related to ψα(~r) by a linear

transformation such that,

ψα′(~r) = ψα(~r − ~r0) (2)

We look for unitary transformation U(~r0) that takes the state ψα(~r) to the state

ψα′(~r). This matter can be simplified by a rotation of the coordinate system, such

that the direction of translation is along the x−axis, see Figure 1. U(~r0) then satisfies

the following relation:

U(x0)ψα(x, y, z) = ψα(x− x0, y, z) = ψα′(x, y, z) (3)
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Figure 1: Displacement of wavefunction ψα through distance x0.

A Taylor Expansion of the right-hand side of the equation yields,

ψα(x− x0, y, z) = ψα(x, y, z) − x0
∂
∂x
ψα(x, y, z)

+
x2

0

2!

∂2

∂x2ψα(x, y, z) − ... (4)

which we recognize as the power series expansion of

e−x0(
∂
∂x

)ψα(x, y, z) (5)

Inserting the momentum operator px = −ih̄ ∂
∂x

, we compare equations 3 and 5, and

find the explicit expression for a U(x0) to be e−
ipxx0

h̄ . The operator generalizes easily

to three dimensions. By allowing the translation to be along any vector in space and

invoking ~p = −ih̄∇ in our derivation, we arrive at the space-translation operator,

U(~r0) = e−
i~p·~r0
h̄ (6)

Since ~p is the invoked operator here, we say ~p generates translation. Though this

operator can be applied to any state, ψα(~r), the resulting state, ψα′(~r), need not

satisfy the same Hamiltonian; in other words, the translated state does not necessarily

represent a possible motion of the system. But, it’s enlightening to consider under

what circumstances the new state |α′〉 also solves the time-dependent Schrödinger

Equation, ih̄∂ψ
∂t

= Hψ. Here, we use the reverse translation, U †(~r0)|α′〉 = |α〉, where

U † = U−1 is the adjoint of U and equal to e
i~p·~r0
h̄ .

ih̄
∂

∂t
|α′〉 = ih̄

∂

∂t
U |α〉

= Uih̄
∂

∂t
|α〉

= UH|α〉
= UHU †|α′〉 (7)
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We learn that in order for translated state |α′〉 to be a possible solution to the

Schrödinger Equation with Hamiltonian, H , the following relation must be satisfied,

UHU † = H

⇒ UH = HU (8)

which is only true if ~p commutes with H , i.e. [~p,H ] = 0. We see that solution

eigenstates to a space-displacement symmetric (translationally invariant) system can

have a well-defined, constant momentum. Likewise, for rotationally invariant systems,

possible states can be found (through the use of a rotation operator) to have a well-

defined, constant angular momentum.

2.2 Relation to Degeneracy

Now, consider a system governed by Hamiltonian, H . Suppose this system possesses

a symmetry defined by operator, Ω, such that [Ω, H ] = 0. We see that this necessarily

leads to energy degeneracy of linearly independent states.

H|α〉 = Eα|α〉
ΩH|α〉 = ΩEα|α〉

H(Ω|α〉) = Eα(Ω|α〉) (9)

If |α〉 is an eigenstate of the Hamiltonian with eigenvalue, Eα, Ω|α〉 will be another

eigenstate with the same energy eigenvalue. When it is linearly independent of |α〉, as

often is the case with operators of the kind discussed in the previous section, the result

is energy degeneracy in states related by operator Ω, or, degeneracy as a consequence

of symmetry.

Considering a particle in a translationally symmetric potential, we have arrived at

an intuitively obvious result. Energy of such a particle is independent of its location.

Its momentum is a conserved quantity. If we think of a free particle, this makes sense.

The translation of a free particle in space can correspond to a possible time evolution

of the system, and time evolution is generated by the Hamiltonian, in this case with

no effect on its momentum. The usefulness of this connection between symmetry

and degeneracy, however, goes beyond the derivation of conservation laws; it can be

applied to dynamically as well as geometrically symmetric systems. We will use it in

later sections to derive the energy eigenvalues of the hydrogenic atom.
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3 Motivating Dynamical Symmetry

3.1 Extra Degeneracy in the Hydrogen Atom Problem

Equation 1 gives the energy levels of a hydrogen atom under a central coulombic

potential. As noted earlier, the energy is degenerate with respect to both m and l. In

light of the previous discussion on the correlation of symmetry with degeneracy, one

would expect to find each of the observed degeneracies to be related to a symmetry

of the system. This is true for m and spherical symmetry of the coulomb potential,

since a rotational operator that commutes with the Hamiltonian can be constructed

to map states onto other states with different m values. This result is also intuitive.

A rotationally symmetric potential should have no preferred direction in space. The

orientation of the angular momentum vector has no impact on the energy of the

system. Furthermore, we see that this degeneracy in m is lifted by application of a

directional field, such as an external magnetic field. In this case, we have now set a

preferred axis and the potential is no longer spherically symmetric, resulting in energy

dependence on m.

However, an extra degeneracy remains unexplained in the hydrogen atom. This

is a degeneracy in magnitude of the total angular momentum, l. We suspect the

culprit to be an overlooked conserved quantity in the system, yet we’ve exhausted all

geometrical symmetries. We motivate the concept of dynamical symmetries from the

Kepler problem in classical mechanics.

3.2 The Lenz Vector and The Kepler Problem

The gravitational potential in classical mechanics holding celestial bodies in orbit is a

direct analog of the coulombic potential of such great interest in quantum mechanics.

The Hamiltonian, rewritten in relative coordinates, is given below.

H =
~p 2

2µ
− κ

r
(10)

In the case of the gravitational potential, κ = GMm, while the coulomb potential

requires that κ = Ze2. Here, Z is the atomic number of the atom.

A classical kepler orbit with a distinct energy has many closed-orbit stable solu-

tions, circular and elliptical solutions among them. Eccentricity, e, is a measure of an

orbit’s deviation from a perfect circle. e =

√
a2 − b2
a , with a as the semimajor axis,
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Figure 2: A closed non-circular orbit in a central potential. O is the location of the center of

gravity.

half the distance from perihelion to aphelion (labeled by P and A in Figure 2), and

b as the semiminor axis, perpendicular to a. A circular orbit has eccentricity zero.

The time-displacement symmetry of the Hamiltonian and the rotational symmetry

of the potential motivates the conclusion that both total energy and angular momen-

tum are conserved quantities. Using classical arguments and ~L = ~r× ~p, we find that

[4],

E = − κ

2a
(11)

~L 2 = µκa(1 − e2) (12)

In a perfect inverse-square central force potential, there is one further conserved

quantity. This vector, known as the Lenz Vector, first derived by Jakob Hermann,

lies in the plane of the orbit, pointing from O to P in Diagram 2, and defines direction

and orientation of the major axis. More explicitly, its construction can be seen in

Figure 3. Mathematically, it is,

~M =
~p× ~L

µ
− κ

r
r̂ (13)

Defined in this way, its magnitude is,

| ~M | = κe (14)

We assume the vector to be fixed in direction and magnitude for our purposes,

however, small perturbations to the inverse-square central force potential have been

known to cause the vector to rotate [4]. The Lenz Vector characterizes the dynamical

symmetry, a hidden symmetry, of the Kepler problem, acts as an additional constraint
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Figure 3: The Lenz Vector (given here by ~M) at several points during an orbit [5]. Center of

gravity indicated by a point.

on the system. Classically it obeys the following relations [1]:

~L · ~M = 0 ~M2 =
2H

µ
~L2 + κ2 (15)

where H is the Hamiltonian given in 10.

4 Construction of the SO(4) Rotation Group

4.1 Quantum Mechanical Analog to the Lenz Vector

With ~r, ~p, and ~L as already established quantum mechanical operators, the classical

Lenz vector, ~M can be translated directly into quantum mechanics. There is only a bit

of subtlety involved in its construction. Since [~p, ~L] 6= 0, we must take care in defining

the cross product. We notice that ~p × ~L 6= −~L × ~p; Equation 13 is not Hermitian.

Following the derivation in Schiff [1], we redefine ~M as a symmetric average,

~M =
1

2µ
(~p× ~L− ~L× ~p) − κ

r
~r (16)

As expected, this vector commutes with the Hamiltonian,

[ ~M,H ] = 0 (17)

and defines a conserved quantity in the quantum mechanical analog of the classical

Kepler problem. We find that with a small modification, the relations in 15 still

apply:

~L · ~M = ~M · ~L = 0 ~M2 =
2H

µ
(~L2 + h̄2) + κ2 (18)
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From here, we look to understand how this new commuting operator relates to

the physical system and all the existing conserved quantities. We examine the system

in light of well-established geometrical symmetries.

4.2 Angular Momentum as Generators of the SU(2) or SO(3)

Rotation Group

It is known that spherical symmetry of the coulomb potential leads to degeneracy in

orientation of the angular momentum vector, ~L. More rigorously, this consequence

can be viewed in light of some basic concepts in algebraic group theory.

We perform a rotation of ket |α〉 into |α′〉, such that |α′(~r)〉 = |α(R−1(~r))〉. Here,

R is simply a 3-dimensional linear operator which rotates vectors ~r in space; R−1(~r)

is analogous to writing x−x0 in the linear case. Incidentally, the set of all rotation R

form the SO(3) group, or, the special orthogonal group in three dimensions: the set of

all rotations in 3-dimensions which preserves orientation and vector length. They are

most commonly represented by 3×3 real, orthonormal matrices with a determinant

of +1. The SO(3) group shares three independent parameters, or generators, one for

each orthogonal axis of rotation.

With a little bit of work, which can be examined in detail in Schiff [1], and using the

results from Section 2.1, we can find an explicit expression for the rotation operator

UR(~φ), which takes ψα(~r) to ψα′(~r).

UR(~φ) = e−
i~φ·~L
h̄ (19)

We find unsurprisingly that the set of all rotation operators UR also form a closed

group, we call it SU(2), or the special unitary group most simply represented by 2x2

matrices. This SU(2) group is related to the SO(3) rotation group by a homomorphism

[6], indicative of identical group structure. SU(2) has the same number of generators

as, and doubly covers SO(3). Each two element of the cover maps onto to exactly one

element of the rotation group.

From ~L = ~r × ~p, we can decompose the angular momentum vector along its

components and find more explicit expressions for each operator,

Lx = ypz − zpy Ly = zpx − xpz Lz = xpy − ypx (20)

These are the three generators of the rotation group discussed above, in the sense

that they ”generate” infinitesimal rotations about their respective axes. Their com-

mutators can be calculated easily in this form, and the commutation relations that
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follow are consistent with the closed algebra of the generators of the SO(3) or SU(2)

group. An algebra is said to be closed if the commutator of any pair of generators is

a linear combination of the generators.

[Lx, Ly] = ih̄Lz [Ly, Lz] = ih̄Lx [Lz, Lx] = ih̄Ly (21)

All others are zero. This is equivalent to,

[Li, Lj] = ih̄εijkLk, for i, j, k = 1, 2, 3 (22)

Considering that,

[Li, H ] = 0, for i, j, k = 1, 2, 3 (23)

the angular momentum operators can be diagonalized simultaneously with the Hamil-

tonian and their eigenvalues conserved. The SO(3) group, and similarly the SU(2)

group, is of rank 1, due to the fact that no two of its generators commute. Therefore,

it has one independent Casimir operator, or, one operator that commutes with all gen-

erators of this group. This operator, a bilinear combination of the three generators,

is,

~L2 = L2

x + L2

y + L2

z (24)

with eigenvalues,

~L2ψl = l(l + 1)h̄2ψl (25)

where in general l can be any integer or half integer. In the known case of hydrogen,

they take on only integral values.

Cast in the framework of group theory, we can think of angular momentum con-

servation and energy degeneracy in m as due to the invariance or symmetry of the

potential under rotations by the SO(3) group. We will soon see that dynamical sym-

metry is associated with rotations under the SO(4) group. These operations take

place in a higher dimension and allow for quantum mechanical mixing of states of

different angular momenta without change in energy.

4.3 The Algebra of the M, L Generators

The three components of ~M , like the three components of ~L, can be treated as

generators of some infinitesimal transformations. With the goal of exploring the
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algebraic structure of these new generators, we work out their commutation relations.

There are 36 in all,

Some are known: [Li, Lj ] are given above in Equation 22. The rest, for i, j, k =

1, 2, 3 are:

[Mi, Li] = 0 [Mi, Lj ] = ih̄εijkMk (26)

and,

[Mi,Mj ] = −2ih̄

µ
εijkHLk (27)

The first set of these commutators (26) shows ~M to be a vector. Mi commutes

with Li since Li generates rotation about the i axis, which intuitively should have no

effect on a vector pointed along that axis. On the other hand, if j is perpendicular

to i, Lj induces a change in the direction of Mi. This is characterized by the second

commutation relation in 26, which tells that the direction of this change in Mj should

be orthogonal to both Mj and Li, in this case, along −Mk.

The relation in Equation 27 breaks the closed algebra of the ~L and ~M opera-

tors together, since H is introduced. To go on with our analysis, we make a useful

substitution. First, we consider a degenerate subspace of H with energy eigenvalue

E. We can replace the Hamiltonian with the resulting energy eigenvalue. It is now

illuminating to define ~M ′, such that,

~M ′ ≡
(

− µ

2E

)1/2
~M (28)

The commutation relations remain unchanged with M everywhere replaced by M ′,

with the exception of 27, which now becomes, quite simply,

[M ′
i ,M

′
j ] = ih̄εijkLk (29)

We realize we’re dealing with a closed algebraic system. Though the fog is certainly

clearing up, we still remain on the lookout for some physical insight to help us solve

this system.

4.4 Identifying the Closed Algebra of L and M’ with the

SO(4) Group

Returning to our definition, in 20, for the angular momentum operator, L, we can

relabel Lx, Ly, and Lz in terms of orbital plane as opposed to vector orientation. Sub-

stituting 1,2,3 for x, y, and z allows us to naturally extend beyond three dimensions.
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Armed with the commutators of [ri, pj], which is only zero when i 6= j, we claim

the ~M ′ matrices are merely generalized angular momentum operators in the fourth

dimension. In four dimensions we predict

(

4

2

)

= 6 orthogonal angular momentum

generators. We make the following associations,

M ′
x = L14 M ′

y = L24 M ′
z = L34

Lx = L23 Ly = L31 Lz = L12 (30)

It’s then easy to verify that the commutation relations in Section 4.3 still hold. With

four dimensions, a degree of decoupling emerges that we have yet to observe: the

maximal commuting set of operators includes two angular momentum operators at

the same time: L12 with L34, etc. We expect this decoupling since the two opera-

tors generate rotations in orthogonal, non-intersecting planes, defined by completely

disjoint sets of vectors. This fact alludes to the structure of the group generated by

the operators in 30: the rotational group in four-dimensions, SO(4), of rank 2, which

contains as a subgroup the rank 1 SO(3) rotational group.

We’ve succeeded in generalizing the closed algebra of ~L and ~M ′ operators. The

remarkable insight here is that dynamical symmetry in a system (as physically evi-

denced by eccentricities in closed orbits) is a mere artifact of rotational symmetry in

a higher dimension!

5 Energy Levels of the Hydrogenic Atom

The rest is a matter of algebra. The partial decoupling of angular momentum opera-

tors in four dimensions hints at a possible decomposition of the SO(4) group generated

by the operators ~L and ~M . In fact, this is exactly the case. Rank 2 SO(4) groups

by rule can be broken down into two completely decoupled rank 1 SU(2) groups with

three noncommuting generators each.

SO(4) → SU(2) × SU(2)

6 → 3 + 3 (31)

We make a careful, judicious choice of basis,

~I =
1

2
(~L+ ~M ′) ~K =

1

2
(~L− ~M ′) (32)
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with,

[Ii, Ij] = ih̄εijkIk [Ki, Kj] = ih̄εijkKk

[~I, ~K] = 0

[~I,H ] = [ ~K,H ] = 0 (33)

Since it’s clear that both ~I and ~K constitute an SU(2) known algebra, it is iso-

morphic to the group generated by angular momentum in three dimensions. We use

our findings in Section 4.2, and immediately arrive at their possible eigenvalues.

~I 2ψ = i(i+ 1)h̄2ψ ~K2ψ = k(k + 1)h̄2ψ (34)

for i, k = 0, 1/2, 1, ...

The corresponding Casimir operators, ~I 2 and ~K2, are,

~I 2 =
1

4
(~L+ ~M ′)2 ~K2 =

1

4
(~L− ~M ′)2 (35)

It’s important to remember that Casimir operators are in a category distinct from

generators. They are functions of generators and though they commute with all the

generators of a group, are not considered to be in the set of commuting generators

itself. A linear combination of these operators is automatically diagonal in the basis of

their common eigenvectors. We construct operators C1 = ~I 2− ~K2 and C2 = ~I 2 + ~K2

in this way and derive a constraint on our eigenvalues,

C1 = ~I 2 − ~K2

=
1

4
(~L2 + ~M ′

2

+ ~L · ~M ′ + ~M ′ · ~L) − 1

4
(~L2 + ~M ′

2 − ~L · ~M ′ − ~L · ~M ′)

= ~L · ~M ′

= 0

The last two lines used the relation from Equation 18. This implies ~I 2 = ~K2. We

find the eigenvalues for operator C2 with ease using equation 34.

C2 = ~I 2 + ~K2 = 2 ~K2

C2ψ = 2k(k + 1)h̄2ψ (36)
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Combining equations 35, 28, and 18, we derive a constant expression for C2.

C2 = ~I 2 + ~K2

=
1

2
(~L2 + ~M ′

2

)

=
1

2
(~L2 − µ

2E
~M2)

=
1

2

(

~L2 − µ

2E

(

2E

µ
(~L2 + h̄2) + κ2

))

= −1

2
h̄2 − µκ2

4E
(37)

Equating 36 and 37 we obtain our permissible energy levels for a hydrogenic atom:

2k(k + 1)h̄2 = −1

2
h̄2 − µκ2

4E

⇒ Ek = − µκ2

2h̄2(2k + 1)2
, for k = 0, 1/2, 1,... (38)

Recalling that κ = Ze2 and setting 2k + 1 = n, for n = 1, 2, 3..., we recover the wave

equation result given at the very beginning of this paper,

En = −µZ
2e4

2h̄2n2
, for n = 1, 2, 3... (39)

5.1 Discussion

As further proof of the elegance of this method, not only have we reproduced the

hydrogen energy spectrum, the relevant constraints on various quantum numbers

have emerged quite naturally as well. For instance, consider ~L = ~I + ~K from the

initial definition of ~I and ~K. Since ~I = ~K, we see that by the triangular rule of

vector addition, L can be at most k+ k = n− 1, and its values extend to |k− k| = 0

in integer steps, as expected. In addition, following the algebra of SU(2) groups, Iz

nad Kz, analogous to Lz would each have 2k + 1 = n independent eigenvalues and

eigenstates. The total degeneracy of an energy level, n× n = n2, is also recovered.

6 Conclusions

Historically, the method outlined in this paper actually preceded any others in the

derivation of the energy levels of the hydrogen atom. It was originally established by
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Pauli prior to the proposal of the Schrödinger wave equation. Since then, it has faded

out of use in the general quantum mechanics curriculum. However, the incredible

physical insights gained en route makes this approach anything but outdated. Not

only have we arrived at the desired quantities and constraints, we’ve additionally

discovered and characterized a hidden symmetry specific to the 1/r coulomb potential,

and deepened our understanding of this physical system, and in turn, many others.
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