Influence of Substrates on the Nucleation of Se-Te Films

Lorenzo X. Van Munoz

Co-Mentors: Nathan Lewis and Ethan Simonoff

Lewis Group 10/19/2019

Overview

- Structures
- Inorganic phototropic growth of semiconductor films
- Selenium-Tellurium (Se-Te) films
- Substrate effects on pattern morphology
- Higher nucleation densities improve pattern morphology

Structures

- Benefits
 - Maximize light absorption
 - Maximize surface area
 - Improve catalyst placement
- Manufacturing Goals
 - Spontaneous/Self-assembling
 - Wide area structures

Structures

- Benefits
 - Maximize light absorption
 - Maximize surface area
 - Improve catalyst placement
- Manufacturing Goals
 - Spontaneous/Self-assembling
 - Wide area structures
 - Inspired by phototropic growth

Semiconductors

- Their electronic structure allows them to store (light) energy
- Their optical properties make them candidates for structures

Se-Te film morphology responds to polarization of illumination source

Sadtler et al. PNAS 2013, 110 (49), 19707-19712

Se-Te film morphology responds to angle of illumination source

Sadtler et al. PNAS 2013, 110 (49), 19707-19712

Inorganic analogue to phototropic growth

Sadtler et al. PNAS 2013, 110 (49), 19707-19712

Experimental Setup

Simonoff et al. Nano Letters 2019, 19 (2), 1295-1300

How to understand and analyze Fourier transforms (FT) of these structures 20 µm⁻¹

20 µm

SEM image obtained at 6500X, 4096px wide

2DFT performed in Gwyddion

How to understand and analyze Fourier transforms (FT) of these structures

20 µm

SEM image obtained at 6500X, 4096px wide

20 µm⁻¹

2DFT performed in Gwyddion

Horizontal width of FT band gives spectral width (frequency space) of pattern period

VS.

Narrow

20 µm⁻¹

2DFT performed in Gwyddion

Vertical width of FT band gives degree of angular-spread of a pattern of given period

Narrow

20 µm⁻¹

2DFT performed in Gwyddion

Vertical cross-section converted to polar coordinates and FWHM reported in angular units

Films grown potentiostatically under identical illumination conditions are observed to be less defective on p⁺-Si vs. n⁺-Si.

Radially integrated FT spectra measure nucleation density (particle spacing)

Lorentzian fit to observed particle-to-particle spacings of 200 nm to 10 nm

Higher nucleation density is observed on n⁺-Si substrates at more negative applied potentials.

4 μm

-3.75 mC cm⁻² charge passed on n⁺-Si

-300 mV vs Ag/AgCl

-200 mV vs Ag/AgCl

Higher frequency intensity is observed in 2D FTs of Se-Te nucleation on n⁺-Si substrates at more negative applied potentials.

2D FT (-3.75 mC cm⁻² charge passed on n⁺-Si)

-200 mV vs Ag/AgCl

80 µm⁻¹

-300 mV vs Ag/AgCl

Similar nucleation density trend is observed on p⁺-Si substrates across working potential range.

Nucleation density measurements

- Nucleation density is larger on p+-Si vs. n+-Si
- Both substrates demonstrate larger nucleation densities at more negative potentials

Pattern period and fidelity measurements

- p⁺-Si displays lower period and higher fidelity than n⁺-Si
- n+-Si shows improved packing and fidelity at more negative potentials

- Potential trend is less pronounced in p+-Si
- This follows nucleation density

High nucleation density of Se-Te on p⁺-Si results in more direct crossover between thin film and lamellar pattern.

-80 mV vs Ag/AgCl on p⁺-Si

Pattern analysis for Se-Te films deposited on Au substrates

4 µm

Se-Te film morphology on Au responds to potential unlike on p⁺-Si and on n⁺-Si

At more negative potentials:

- Nucleating structures have fewer high frequencies
- Pattern packing worsens (period increases relative to optical simulations)

Nucleation density influences pattern period and fidelity independent of substrate

Nucleation density influences pattern period and fidelity independent of substrate

Higher nucleation density gives better pattern packing and fidelity independent of potential-dependent substrate behavior

Striking potential for initial 0.5% deposition influences pattern

Step 1: -3.75 mC cm⁻² @ XXX mV vs. Ag/AgCl

Step 2: -746.25 mC cm⁻² @ -200 mV vs. Ag/AgCl

Total: -750 mC cm⁻²

Increasing nucleation density, pattern packing, fidelity

Conclusions

- Inorganic phototropic growth creates a wide array of structures
- Nucleation density is negatively correlated with pattern period and angular FWHM

 Larger nucleation density makes better patterns
- This is despite the substrate-dependent potential response of Se-Te films
- Nucleation density can be induced

Next Steps

- Understand how nucleation morphology changes final pattern via optical pathway
 - Simulate the scattering intensity with Lumerical model for nucleation densities and polarizations
- Design and build an optical device with Se-Te films

Acknowledgements

- Ethan
- Lewis Group
- SURF Program
- SFP Office
- Richard H. Cox

Electrochemical Set-up

- Se-Te solution
 - $-1MH_2SO_4$
 - -20 mM SeO₂
 - 10mM TeO₂
- Selenious Acid
 - − $H_2SeO_3 + 4H^+ + 4e^- \rightarrow Se(s) + 3H_2O; E = .739$
- Tellurious Acid
 - TeO₃²⁻ + 3H₂O + 4e⁻ → Te(s) + 6OH⁻; E = -.47

P Si films

 Hypothetically denser nucleation due to deposition by photoactive substrate led to high fidelity pattern

Se-Te Stoichiometry

 Similar film stoichiometry on different substrates determines similar Se-Te work function

Se-Te films deposited on Ti display oscillatory behaviors

Fidelity artefacting

Carim et al. Nano Letters 2016, 16 (5), 2963-2968

Patterns grown under unpolarized light

Unpolarized pattern period varies less with applied potential

Geometrically, the scattering interference with neighboring particles is twice as likely

Unpolarized structures

Defected patterns show grain boundary transitions across the potential range

Novel morphology

 $4 \ \mu m$

-3000 mC/cm2 deposited on p+-Si at -80 mV vs Ag/AgCl with unpolarized illumination. Its 2D FFT is isotropic.

Solar Squiggle

- Created this summer
- Deposited on p+ Si
- Wafer ~ 33 cm²
- Illumination: the Sun

Solar Squiggle

 $4 \ \mu m^{-1}$

Background: 2D FFT Analysis

Nucleation: Density

Lamellar Pattern: Period, Fidelity

4 µm

Background: 2D FFT converts periodic spacings to frequencies

• Mention light growth phase Frequency = 1/Period

Background: Horizontal

Mention light growth phase

Background: Vertical

30 µm⁻¹

Mention light growth phase

Background: Radially integrated FT measures isotropic nucleation morphology

. . .

30 µm⁻¹

4 μm

