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Abstract— We study robust stability of Biological Interaction
Networks (BINs) by constructing stability certificates in the
form of Robust Lyapunov Functions (RLFs) using graphical
methods. Previous works have mainly constructed RLFs by
utilizing linear programs or iterative algorithms. Such algo-
rithms become tedious or computationally infeasible for large
networks. In addition, they do not identify motifs or graph
modifications that maintain stability. In this work, we provide
several graphical criteria for constructing stability certificates.
We characterize a set of stability-preserving graph modifi-
cations which include, in particular, the enzymatic catalysis
motif. Hence, stability of a class of arbitrarily large networks
can be examined by simple visual inspection. We present
applications of this technique to Post-Translational Modification
(PTM) cycles, Ribosome Flow Model (RFM), and T -cell kinetic
proofreading. Index Terms— Nonlinear Systems, Systems Biol-
ogy, Petri-nets, Lyapunov Functions, Robust Stability, Reaction
Networks.

I. INTRODUCTION

Biomolecular Interaction Networks (BINs) function under
severe forms of external and internal uncertainty. Never-
theless, they operate robustly and consistently to maintain
homeostasis, which is understood as the maintenance of a
desired steady-state against environmental factors, external
signals, and in-vivo fluctuations in the concentrations of bio-
chemical species. In fact, robustness has been proposed as a
key defining property of biological networks [1, 2]. However,
mathematical analysis of such networks has been lagging
as the dynamical system descriptions of such networks
suffer from nonlinearity and uncertainty. General nonlinear
dynamical systems are already difficult to analyze due to
their unpredictability and instability. Small fluctuations in
concentrations, or tiny changes in kinetic parameters, can
have radical effects causing the observable phenotype to
be driven to a different region of the state space, and/or
to lose stability altogether and transform into a sustained
oscillation or chaotic behavior. This may make the biological
network lose its function and cause key species to reach
undesirable or even unsafe levels. In fact, disease can be
often characterized mathematically as the loss of stability of
a certain phenotype [3, 4]. A second complicating factor is
the fact that the exact form of kinetics (determining the speed
of interactions) are difficult to measure and are subject to
environmental changes. Therefore, verifying the stability of
a given nonlinear BIN without reference to its kinetics has
been a challenging long-standing goal in systems biology
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Fig. 1. Computational RLF construction is tedious for large networks.
The figure depicts a Petri-net representation of the PTM star: a substrate that
is a target of an arbitrary finite number of distinct competing PTM cycles
(e.g, phosphorylation, methylation, ubiquitination, etc). The subnetwork
inside the dotted triangle depicts a single PTM cycle. A rectangle denotes
a reaction, while a circle denotes a species.

research [5]. Nevertheless, partial success has been achieved
in this endeavor. Examples include the theory of complex
balance [6], [7], [8], and the theory of monotone BINs [9].
More recently, stability certificates have been constructed
via Robust Lyapunov Functions (RLFs) in reaction [10–12],
and concentration coordinates [12–16]. Except for a small
subclass of BINs (see §III.C), such methods mainly utilize
computational algorithms to construct RLFs via either itera-
tive algorithms or linear programs. However, such algorithms
act as “black-boxes” and are not interpretable in terms of the
structural properties of the network’s graph. This has several
drawbacks. First, computational algorithms become tedious
for larger networks as the number of species and reactions
grow. Consider the PTM star depicted in Figure 1 whose
size grows considerably for large n. Second, “stability-
preserving” graph modifications are not well characterized.
A simple modification of the BIN graph mandates a re-run
of the computational algorithm from scratch. For instance,
Is the stability of the PTM star preserved if we added
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inflow/outflow reactions for the substrate (∅ 
 Substrate)?.
Third, fundamental “motifs” have been described as the
building blocks of BINs [17]. However, a corresponding
“modular” theory for RLF construction that utilizes the sta-
bility properties of its subnetworks is lacking. For example,
the difference between the PTM star (Fig. 1) with n and n+1
products is in the addition of an extra PTM cycle. How does
the addition of the extra motif affect stability?.

The above questions are hard to answer using computa-
tional algorithms. In this work, we identify a set of stability
preserving graph modifications. In particular, we show that
the stability of many large networks in systems biology such
as the PTM cycle, the Ribosome Flow Model, and others
can be understood modularly. For the specific network in
Figure 1, we will show that it can be “reduced” to a simple
linear network (See Figure 2). Hence, it admits a stability
certificate for every n ≥ 1, a result which is not readily
achievable using previous results [6–9, 12, 14]. We will show
that the addition of an inflow/outflow reaction to the substrate
preserves stability, and that the PTM cycle is a fundamental
“stable” motif in a precise manner to be defined.

The paper proceeds as follows. Section II reviews notation
and definitions. Section III reviews relevant results on linear
(mono-molecular) networks. The main results are stated in
section IV. Applications are discussed in section V. Finally,
we discuss future directions in section VI.

II. BACKGROUND AND NOTATION

A. Biological Interaction Networks

Any collection of chemical reactions can be written math-
ematically using the formalism of of Biological Interaction
Networks (BINs). Hence, we review the standard definitions
and notation [7, 8, 12, 18, 19].

A BIN (also known as a Chemical Reaction Network
(CRN)) is a pair N = (S ,R), where S = {X1, .., Xn}
is the set of species, and R = {R1, ...,Rν} is the set of
reactions. A species is the entity that partakes in or is formed
in a chemical interaction. Within the realm of biomolecular
networks, a species can be a substrate, a complex, an enzyme,
an mRNA molecular, a gene promoter state, etc. A reaction is
the transformation of reacting species into product species.
Examples include complex formation, binding, unbinding,
decay, production, complex formation, etc.

The mathematical structure of BINs can be described by
two mathematical substructures: the stoichiometry and the
kinetics.

a) The Stoichiometry: The relative gain or loss of
molecules of species Xi between the sides of each reaction
is the stoichiometry of Xi. This is represented by writing a
reaction as:

Rj :

n∑
i=1

αijXi −→
n∑
i=1

βijXi, j = 1, .., ν, (1)

where αij , βij ≥ 0 are integers known as the stoichiometry
coefficients. If a transformation can happen also in the reverse
direction, then Rj is said to be reversible and its reverse
is denoted by R−j . A reaction can have no reactants or

no products (though not simultaneously). The empty side
is denoted by ∅.

If a reaction has a species both as a reactant and as a
product (for example, X+Y → X) then it is called catalytic.

The stoichiometry matrix Γ of a given network is an n×ν
matrix whose (i, j)th entry describes the net gain/loss of
the ith species at the jth reaction. Hence, it can be written
element wise as: [Γ]ij = βij − αij .

b) Kinetics.: The set of relationships that determine
the speed of transformation of reactant species into product
species are known as kinetics. In order to describe such
relations, the species need to be quantified. A species Xi

is quantified by assigning it a non-negative real number
known as the concentration xi. A reaction Rj is assigned
a single-valued mapping Rj : R̄n+ → R̄+ known as the
reaction rate. The reaction rate vector is written as R(x) =
[R1(x), ..., Rν(x)]T .

The most common form of kinetics is known as Mass-
Action and it can be written as: Rj(x) = kj

∏n
i=1 x

αij

i ,
where kj > 0, j = 1, .., ν are the kinetic constants. How-
ever, this form “is not based on fundamental laws” and is
merely “good phenomenology” justified by imagining the
reactants as colliding molecules [20]. In biological systems,
in particular, other forms of kinetics usually arise when
modeling networks involving multiple time-scales. This in-
cludes Michaelis-Menten, Hill kinetics, etc. Therefore, we do
not assume a specific functional form of kinetics. We only
assume that the kinetics are monotone. More precisely, the
reaction rates Rj(x), j = 1, .., ν satisfy:

AK1. each reaction varies smoothly with respects to its
reactants, i.e R(x) is C1;

AK2. a reaction requires all its reactants to occur, i.e., if
αij > 0, then xi = 0 implies Rj(x) = 0;

AK3. if a reactant increases, then the reaction rate increase,
i.e ∂Rj/∂xi(x) ≥ 0 if αij > 0 and ∂Rj/∂xi(x) ≡ 0
if αij = 0. Furthermore, the aforementioned inequality
is strict whenever the reactants are strictly positive.

For a given network N , the set of a reaction rates satisfying
the assumptions above is called the admissible kinetics and
is denoted by KN .

c) Dynamics.: We view the concentrations as trajecto-
ries in time and write them as x(t) = [x1(t), ..., xn(t)]T . The
temporal evolution of the network is given by the following
Ordinary Differential Equation (ODE):

ẋ = ΓR(x), x(0) = x◦. (2)

The positive orthant is forward-invariant for (2), i.e. if
x◦ is positive, then the trajectory stays positive for all time
t ≥ 0.

In the biomolecular context, there are usually conserved
quantities which do not get created or annihilated during the
course of the reaction. This can include total amounts of
DNA, enzymes, substrates, ribosomes, etc. Mathematically,
a stoichiometric conservation law is a nonnegative vector
d ∈ Rn≥0 satisfying dTΓ = 0. If d is positive then the network
is called conservative.

The existence of a conservation law implies that dTx(t) ≡
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dTx(0). Hence, the positive orthant is partitioned into a
foliage of subsets known as stoichiometric classes. For a
state vector x◦, the corresponding class is written as Cx◦ :=
({x◦}+ Im(Γ))∩ R̄n+, and it is forward invariant. Therefore,
all Lyapunov functions and claims of stability are relative
to a stoichiometric class. For a conservative network, all
stoichiometric classes are compact polyhedral sets, and hence
all trajectories are bounded.

A vector v is called a flux if Γv = 0. In order to
simplify the treatment, we assume the following about the
stoichiometry of the network:
AS1. There exists a positive flux, i.e., ∃v ∈ ker Γ such that

v � 0.
AS2. The network has no catalytic reactions.
Assumption AS1 is necessary for the existence of positive
steady states for the corresponding dynamical system (2).

B. Graphical representation: Petri-Nets

BINs can be represented graphical in several ways. We
adopt the Petri-net formalism [21] (also known as the
species-reaction graph [22]). A Petri-net is a weighted di-
rected bipartite graph. The vertices consists of the set of the
species S (represented by circles) and the set of reactions
R (represented by rectangles). An edge with a weight w
from Xi ∈ S to Rj ∈ R means that Xi is a reactant
of Rj with stoichiometric coefficient w, while the reverse
edge means that Xi is a product of Rj with a stoichiometric
coefficient w. For a more compact representation, if two
reactions are the reverse of each other (e.g, Rj ,R−j) then
they are represented as a single reaction in the Petri-net
with reversible edges. In the formalism of Petri-nets [23],
the stoichiometric matrix Γ is the incidence matrix of the
Petri-net.

For example, the PTM star in Fig. 1 corresponds to the
following network:

S + Ei 
 Ci −→ Pi + Ei, (3)
Pi + Fi 
 Di −→ S + Fi, (4)

i = 1, .., n, where S denotes the substrate and Pi denotes
the ith product.

C. Robust Lyapunov Functions

Following our previous work [11–13], a locally Lipschitz
function V : Rn → R≥0 is a Robust Lyapunov Function
(RLF) for a given network N with kinetics KN iff:

1) it is positive-definite, i.e., V (x) ≥ 0 for all x, and
V (x) = 0 iff ΓR(x) = 0, and

2) it is non-increasing, i.e., V̇ (x) ≤ 0 for all x and all
R ∈ KN .

Since V is not assumed to be continuously differentiable,
the derivative above is defined in the sense of Dini as
V̇ (x) := lim suph→0+(V (x + hΓR(x)) − V (x))/h [24].
Existence of an RLF guarantees that the steady state set
is Lyapunov stable, and that all V ’s level sets are trapping
[11, 12, 24]. Global stability can be verified by a LaSalle
argument or by establishing robust non-degeneracy of the
Jacobian [11, 12, 15].

III. LINEAR (MONO-MOLECULAR) NETWORKS

A. Definition

Studying general nonlinear BINs is, predictably, a diffi-
cult and open problem. In comparison, assuming linearity
simplifies the analysis considerably. In order to get a linear
ODE with Mass-Action kinetics, all the reactions have to
be monomolecular. In other words, there is only a unique
reactant with stoichiometry coefficient 1 for each reaction.
The resulting ODE can be studied via standard analysis
methods for positive linear systems [25, 26], or as a special
case of complex-balanced networks [7]. Nevertheless, it has
been long-observed that the linearity of the kinetics is not
needed for stability analysis. Instead, similar analysis can
be performed for general monomolecular networks with
monotone kinetics [27]. This generalized class of networks is
often known as compartmental networks [28]. In this paper,
we call them linear networks since the corresponding Petri-
net is linear [29], which means that each reaction has a
unique reactant and a unique product with the stoichiometry
coefficients equal to one. Hence, we use a graphical notion
of linearity and not a kinetic one. Therefore, a linear network
can have nonlinear kinetic rates. The definition is stated
formally below:

Definition 1: A given BIN (S ,R) is said to be linear if
each reaction can be written as either Xi

Rij−→Xj , ∅
ui−→Xi,

or Xi
Ri−→∅ for some i, j where Rij , Ri : R≥0 → R≥0, ui ≥

0 are the reaction rates.
Applying the assumptions AK1-AK3, we note that Rij can
be any single-valued strictly increasing C1 function that
vanishes at the origin.

Remark 1: Many of the subsequent results can be gener-
alized to networks with reactions of the form: nXi

Rij−→mXj ,
where n,m are positive integers. However, we do not explic-
itly consider this case to simplify the notation and analysis.

B. Existence of Lyapunov functions: Sum-of-Currents (SoC)
RLF

One of the advantages of studying linear networks is that
their stability is well-characterized. Indeed, it has been long-
known [27, 28] that linear networks can be studied using a
Lyapunov function of the form:

V (x) = ‖ẋ‖1 =

n∑
i=1

∣∣∣∣∣∣
∑
j 6=i

(Rji(xj)−Rij(xi)) + ui −Ri(xi)

∣∣∣∣∣∣ .
(5)

We state the following theorem:
Theorem 1: Let N be a linear BIN be given with any set

of admissible reaction rates {Rij(xi), Ri(xi), ui}ni,j=1. Let
(2) be the associated ODE. Let V be defined as in (5). Then,
V is an RLF for (N ,KN ).

We provide a new proof of Theorem 1 in the Appendix
based on the techniques used in [11, 12, 30]. The same
techniques will be generalized to prove Theorem 4. In [12],
we have called (5) a Sum-of-Currents (SoC) RLF, since it is a
sum of the absolute values of the currents dxi/dt, i = 1, .., n,
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which is analogous to the electric current I = dq/dt, where
q is the electric charge.

C. Existence of Lyapunov functions: Max-Min RLF

For a subclass of linear BINs, another Lyapunov function
can be used to used to establish stability, which is the Max-
Min RLF [10, 11]. Define the set-valued function: R(x) =
{Rij(x), Ri(x), ui | i, j = 1, .., n, i 6= j}. Then, consider
the following function:

V (x) = maxR(x)−minR(x), (6)
The existence of an RLF of the form (6) can be characterized
graphically for general BINs [10, 11]. In order to minimize
the notational inconvenience, we assume that 1 is a flux for
the network N . Hence, the result can be stated as follows:

Theorem 2: Let a BIN N satisfying AS1-AS2 be given.
Assume that it has a unique positive flux equal to 1 and
every species Xi is a reactant to a unique reaction. Then, V
as defined in (6) is an RLF for (N ,KN ).

Remark 2: In order to generalize Theorem 2 to accommo-
date BINs with general positive fluxes v � 0, the reactions
in R(x) can be weighted by the corresponding entry in v
[11].

IV. STABILITY-PRESERVING GRAPH MODIFICATIONS

A. Definitions

Consider a BIN (S ,R) that admits an RLF V . Assume
that the network is modified to a new network (S̃ , R̃). We
are interested in the existence of an RLF for the new network.
To be more concrete, we focus on graph modifications listed
in Table I. As can be noticed, some of these modification can
change a linear network into a nonlinear network. First, we
formalize the concept of adding an extra product or reactant
to a reaction.

Definition 2: Consider a BIN (S ,R). We say that a
reaction R̃j is an extension of a reaction Rj ∈ R if the
following holds for each Xi ∈ S : if Xi ∈ S is a reactant
of Rj ∈ R, then Xi is a reactant of R̃j ∈ R̃ with the same
stoichiometric coefficient. Similarly, if Xi ∈ S is a product
of Rj ∈ R, the Xi is a product of R̃j ∈ R̃ with the same
stoichiometric coefficient.
We next provide a formal definition of the elementary
modifications in Table I.

Definition 3: Let N = (S ,R) be a given BIN. We say
that Ñ := (S̃ , R̃) is an elementary modification of N if
it satisfies one of the following statements:

1) (Reversal of a reaction) S̃ = S , and ∃Rj ∈ R such
that R̃ = R ∪ {R−j}.

2) (Adding an intermediate) S̃ = S ∪{X∗}, and ∃Rj ∈
R such that R̃ = (R/{Rj}) ∪ {R̃j , R̃

∗} where R̃j

has the reactants of Rj and X∗ as a product, and R̃∗

has X∗ as the reactant and has the products of Rj as
its products.

3) (External Regulation) S̃ = S , and ∃Xk ∈ S such
that R̃ = R ∪ {Xk � ∅}.

4) (Adding a feedback species) S̃ = S ∪ {X∗}, and
∃Rj ,Rk ∈ R such that R̃ = (R/{Rj ,Rk}) ∪

TABLE I
A LIST OF ELEMENTARY GRAPH MODIFICATIONS STUDIED IN THIS

PAPER. FORMAL DEFINITIONS ARE PROVIDED IN DEFINITION 3.

{R̃j , R̃k} where R̃j is an extension of Rj with X∗ as
an extra product, and R̃k is an extension of Rk with
X∗ as an extra reactant. If Rj has no products and Rk

has no reactants then we call it adding a conserving
feedback species.

5) (Adding a catalyst) ∃Xi ∈ S such that S̃ = S ∪
{X−i }, |R| = |R̃|, and every reaction R̃j ∈ R̃ is
an extension of a corresponding reaction Rj ∈ R.
Furthermore, X−i is a product of a reaction Rj iff
Xi is a reactant of Rj with the same stoichiometry
coefficient, and X−i is a reactant of a reaction Rj iff
Xi is a product of Rj with the same stoichiometry
coefficient.

6) (Adding a hetero-dimer) ∃Xi ∈ S such that S̃ =
S ∪ {X+

i }, |R| = |R̃|, and every reaction R̃j ∈ R̃
is an extension of a corresponding reaction Rj ∈ R.
Furthermore, ∃Xi ∈ S such that X+

i is a reactant
of a reaction Rj iff X+

i is a reactant of Rj with the
same stoichiometry coefficient, and X+

i is a product
of a reaction Rj iff Xi is a product of Rj with the
same stoichiometry coefficient.

Finally, a network Ñ is a modification of N if it is a
result of several elementary modifications. More formally:

Definition 4: A network Ñ is a modification of N if
there exists a finite sequence of networks N0,N1, ..,Nq ,
with N0 := N ,Nq := Ñ , and for each i ∈ 1, .., q, Ni is
an elementary modification of Ni−1.
In the subsequent sections, we provide results on modifica-
tions that preserve the stability of a given BIN.

Remark 3: The standard enzymatic catalysis reaction is
a combination of three elementary modifications which are
adding an intermediate, reversal, and then adding a catalyst.
In other words, the reaction S → P is modified into S →
C → P , then to S 
 C → P , then to S+E � C → P+E.
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B. Linear networks with a Sum-of-Currents RLF

It is easy to see that the first few modifications in Table
I are stability preserving when applied to a linear BIN. This
is stated below.

Theorem 3: Let N be a given linear BIN, and let Ñ be
its modification generated by a finite sequence of elementary
modifications that are limited to reversal of a reaction, adding
an intermediate, external regulation of a species, and adding
a conserving feedback species. Then, V (5) is an RLF for
Ñ .

Proof: The resulting network Ñ after the application
of the elementary modifications mentioned in the statement
of the theorem is linear. Hence, the statement follows by
Theorem 1.

The last two modifications in Table I are more interesting
since they can modify a linear network into a nonlinear
one. Nevertheless, we show that the resulting modified BIN
continues to have an SoC RLF. The proof is provided in the
appendix.

Theorem 4: Let N = (S ,R) be a given linear BIN,
and let Ñ = (S̃ , R̃) be its modification generated by a
finite sequence of elementary modifications that are limited
to adding a catalyst and adding a hetero-dimer. Then, V =∑|S |
i=1 |ẋi| is an RLF for (Ñ ,KÑ ).
Several modifications can be combined to yield enzymatic

catalysis reactions (see Remark 3). Therefore, we can state
the following corollary:

Corollary 5: Let N be a given linear BIN, and let Ñ
be its modification generated replacing linear reactions of
the form Xi → Xj , by nonlinear reactions of the form
Xi + Eij 
 Cij → Xj + Eij . Let S2 be set of all
the extra intermediates written as Cij . Then, the function
V =

∑|S |
i=1 |ẋi|+

∑
Cij∈S2

|ċij | is an RLF for (Ñ ,KÑ ).
Proof: The proof follows by using Theorem 3 for

adding an intermediate and then reversal, i.e., modifying
Xi → Xj to Xi � C → Xj . Then, Theorem 4 to get
the reaction Xi + Eij � Cij → Xj + Eij .

C. Networks with a Max-Min RLF

Networks that have a Max-Min RLF admit a different set
of stability-preserving modifications as we show next. Note
that the original BIN does not need to be linear as is stated
in the following result.

Theorem 6: Let N be a BIN that admits a Max-Min
RLF, and let Ñ be its modification generated by a finite
sequence of elementary modifications that are limited to
adding an intermediate, adding a feedback species, and
adding a catalyst. Then, (6) is an RLF for Ñ .

Proof: Using the characterization in Theorem 2, any
combination of the graph modifications mentioned in the
statement of theorem do not create new independent vectors
in the kernel of the stoichiometry matrix (i.e., it does not
create new fluxes), and they do not make a single species a
reactant in multiple reactions. Therefore, Theorem 2 applies
to Ñ .

We study next the case of reversal. Since our formalism
treats a reversible reaction as two reactions Rj ,R−j , then

reversal of a reaction increases the number of fluxes, and
hence violates the conditions required by Theorem 2. Nev-
ertheless, as shown in [11], the result can be extended. We
state the result here in the language of graph modifications:

Theorem 7: ([11]) Let N = (S ,R) be a given a network
that satisfies the conditions of Theorem 2. Let Rr ⊂ R be
defined as follows: R∗ ∈ Rr iff for each Xi ∈ S that is a
product of R∗, Xi is not a product of another reaction. Then,
let Ñ be a modification of N generated by the reversal of
the reactions in Rr. Then, (6) is an RLF for Ñ = (S̃ , R̃)
where R(x) = {Rj(x) − R−j(x) | j = 1, .., |R|}, where
R−j :≡ 0 if R−j 6∈ R̃.

In addition, we can strengthen Corollary 5 to include
modifications by processive enzymatic cycles [31]:

Corollary 8: Let N be a given BIN satisfying the condi-
tions of Theorem 2, and let Ñ be its modification generated
by replacing reactions of the form

∑
i αijXi →

∑
i βijXi,

by reactions of the form
∑
i αijXi + E∗ 
 C∗0 
 C∗1 


.... 
 C∗m →
∑
i βijXi + E∗ for some positive integer m.

Then, Ñ admits a Max-Min RLF.

V. APPLICATIONS

A. Post-translational Modification (PTM) cycles

The PTM cycle model is standard in systems biology
[32]. The long-term dynamics of the PTM cycle have been
a subject of extensive study using several methods. This
includes monotonicity [9, 33], and RLFs [11, 12, 14]. In
this paper, we show that the stability properties of the PTM
cycle can be interpreted graphically in terms of the basic
reversible reaction:

S 
 P, (7)

where S denotes the substrate, and P denotes the product.
This simple motif admits both an SoC RLF and a Max-Min
RLF.

1) The single PTM: We consider the single PTM cycle:
S + E � C −→P + E,P + F � D−→S + E. (8)

As noted in Remark 3, the reaction S → P can be modified
into an enzymatic catalysis reaction. Using Corollary 5
we get that the PTM cycle above admits an SoC RLF.
Furthermore, using Corollary 8 we get that it also admits
a Max-Min RLF.

2) The PTM star: We can consider other modifications to
(7). By adding a finite number of external regulations on S
and then conserving feedback species, we get the following
network which we call the linear star (depicted in Fig. 2):

S 
 P1, S 
 P2, ..., S 
 Pn. (9)
Then, using Corollary 5, we get that (3)-(4) admits an SoC
RLF since it is formed by enzymatic catalysis modifications.
Furthermore, to answer the question posed in the introduc-
tion. We can add the external regulation ∅ � S to (9), and
then apply enzymatic catalysis to all other reactions to certify
the existence of an SoC RLF.
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Fig. 2. The linear star. Using Corollary 5, existence of an RLF for the
linear star implies the existence of an RLF for the PTM star depicted in
Fig. 1.

3) The Processive Multi-PTM cycle.: Modifying (7) by
adding intermediates gives the following network which we
call the linear cycle (depicted in Fig. 3-a):

S0 → S1 → ...→ Sn → S0,

where S0 := S, Sn := P . Theorem 2 guarantees that the
modified network has a Max-Min RLF. Corollary 8 implies
that the following network admits a Max-Min RLF:
Si−1 + Ei 
 Ci1 
 Ci2 
 ....
 Cim −→ Si + Ei,

Sn + En 
 Cn1 
 Cn2 
 ....
 Cnm −→ S1 + En,

i = 1, .., n − 1. The above network has been called the
“all-encompassing” processive cycle, and its stability has
been studied in [34] using more elaborate techniques. Using
our method, we show that the existence of an RLF follows
by modifying the linear cycle (Fig. 3-a) using processive
enzymatic reactions to get the network depicted in Fig. 3-b.

4) The PTM chain: Consider now modifying (7) by a
finite number of intermediates and reversals, we get the
following network:

S0 
 S1 
 S2...
 Sn, (10)
where S0 := S, Sn := P . Corollary 5 implies that the
following PTM chain admits an SoC RLF:

Si−1 + Ei 
 Ci −→ Si + Ei, (11)
Si−1 + Fi 
 Di −→ Si + Fi, i = 1, .., n. (12)

The existence of an SoC RLF of the PTM chain can be shown
computationally for each given n by linear programming
[12]. Nevertheless, Fig. 3-c,d shows that the existence of an
SoC RLF for each n follows from modifying a linear chain
via enzymatic catalysis reactions.

B. T -cell kinetic proofreading

McKeithan [35] proposed a nonlinear BIN to explain T -
cell’s ability to distinguish between different types of ligands.
It is given as follows:

R+ L
 C0 → C1 → ...→ Cn

C1 → R+ L,C2 → R+ L, ..., Cn → R+ L.

Sontag [8] has studied the stability of the network using
the theory of complex balance, while we have studied the
network using computational RLF construction [12]. Here,
we show that a stability certificate can be constructed by
considering the network as a modification of a linear net-
work. By noting that the species L is a hetero-dimer in the
language of Table I, we can see that (13) is a modification

Fig. 3. Constructing an RLF for a nonlinear network from a linear one.
(a) The linear cycle. (b) The processive multi-PTM cycle. The existence of
an RLF follows from the existence of one for the linear cycle using Corollary
8. (c) The linear chain. (d) The PTM chain. The existence of an RLF follows
from the existence of one for the linear chain using Corollary 5.

Fig. 4. Additional examples for graphical RLF construction. (a) A
linear BIN. (b) The McKeithan network. The existence of an RLF follows
from the existence of one for the linear BIN in panel (a) using Corollary 5.
(c) A one-directional linear chain. (d) The RFM. The existence of an RLF
follows from the existence of one for the unidirectional linear chain using
Corollary 5.

of the following network by the addition of a hetero-dimer:
RL
 C0 → C1 → ...→ Cn (13)
C1 → RL,C2 → RL, ..., Cn → RL.

which is in turn a modification of RL 
 Cn. Hence,
existence of SoC RLF for (13) follows from Theorems 3 and
4. Fig. 4-a shows the linear network, while Fig. 4-b shows
the corresponding modified network.

C. The Ribosome Flow Model

The Ribosome Flow Model (RFM) is a nonlinear system
model of the process of translation initiation and elongation
where it describes Ribosome binding to codons on an mRNA
that is being translated [36]. It has been shown [12] that the
corresponding ODE can be written as a BIN with species
Xi, Yi where Xi is occupancy of the ith codon, while Yi is
the vacancy of the ith codon. Hence, we get the following
BIN (depicted in Fig. 4-d):

Y1 → X1, Xn → Yn,

Xi + Yi+1 → Xi+1 + Yi, i = 1, .., n− 1.

The stability of the above network has been studied via
monotonicity methods [37]. For a given n, the existence of
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Fig. 5. Graphical construction of an RLF for the RFM with a pool [38].
(a) The linear network. (b) The corresponding modified nonlinear network.
Stability follows via Corollary 5.

an SoC RLF can be verified via linear programming [12].
Nevertheless, Fig. 4-c,d shows that an SoC RLF can be con-
structed by merely noticing that the RFM is a modification
generated by adding catalysts to the following unidirectional
linear chain network: (depicted in Fig. 4-c)

∅ → X1 → X2 → ...→ Xn → ∅.
The same graphical technique can be applied to RFMs

interconnected via a pool [38] (as Figure 5 shows), or via
multiple pools [30].

VI. DISCUSSION

In this work, we have proposed a graphical method to
certify the existence of an RLF for a given network by
reducing it via a certain set of admissible modification to
a network that is known to admit an RLF. Furthermore, our
method can directly show that the stability of a given network
is preserved under certain graph modifications. Future direc-
tions includes certifying global stability graphically. Previous
works [11, 12, 15] have verified global stability via a LaSalle-
like algorithm or via establishing robust non-degeneracy
of the Jacobian. An extension of this manuscript is under
preparation where we will provide a graphical criteria for
global stability.

APPENDIX: PROOFS

Proof: [Proof of Theorem 1] The function V (x) =

Ṽ (R(x)) is piecewise linear in terms of the rates, therefore
there exists a positive integer m such that the space Rν≥0 can
be partitioned into non-empty-interior regions {Wk}mk=1 ⊂
Rν≥0 for which Ṽ is linear on each of them and each region
corresponds to a specific sign pattern for ẋ. The geometry
of such partition is discussed more thoroughly in [11].

Fix k. There exists c(k)ij , c
(k)
i , δ(k) such that:

V (x) =
∑
i,j
i 6=j

c
(k)
ij Rij(xi) +

∑
i

c
(k)
i Ri(xi) + c

(k)
0 (14)

=: c(k)
T

R(x), R(x) ∈ Wk.

Since V is defined as the `1 norm of ẋ, then the sign of
ẋ is constant and non-zero on W◦k . Therefore, we denote
σi := sgn(ẋi) ∈ {±1} on W◦k , where the superscript “◦”
denotes the interior of a set.

We claim that each term in the expression (14) has a
nonpositive Lie derivative on W◦k . In order to show that, we
first examine terms of the form c

(k)
ij Rij(xi) where c(k)ij 6= 0

for some i, j. We will show that c(k)ij Ṙij(xi) ≤ 0 for
R(x) ∈ W◦k . As evident by examining (5), the reaction rate
Rij appears only in ẋi with coefficient −1 and in ẋj with
coefficient +1. W.l.o.g, assume that c(k)ij > 0. There are four
possible combinations σ(k)

i , σ
(k)
j > 0, σ(k)

i , σ
(k)
j < 0, σ(k)

i >

0, σ
(k)
j < 0, and σ(k)

i < 0, σ
(k)
j > 0. The first two give c(k)ij =

0 and the third gives c(k)ij = −2 < 0. Hence, we conclude
that σ(k)

i < 0, σ
(k)
j > 0. Therefore, sgn(c

(k)
ij Ṙij(xi)) =

sgn(c
(k)
ij (∂Rij(xi)/∂xi)ẋi) = sgn(c

(k)
ij σ

(k)
i ) ≤ 0 for R(x) ∈

W◦k , where the last equality follows by the monotonicity of
Rij .

Next, we examine c
(k)
i Ri(xi) for some i

where c
(k)
i 6= 0. W.l.o.g, assume that c

(k)
i > 0.

Since Ri appears only in ẋi with coefficient
−1, then σ

(k)
i < 0. Therefore, sgn(ciṘi(xi)) =

sgn(c
(k)
i (∂Ri(xi)/∂xi)ẋi) = sgn(c

(k)
i σi) ≤ 0 for

R(x) ∈ W◦k .
Since k, i, j have been chosen arbitrarily, we conclude that

V̇ (x) ≤ 0 whenever R(x) ∈ W◦k for some k. It remains
to show that V̇ (x) ≤ 0 when R(x) ∈ ∂Wk for some
k where “∂” denotes the boundary of a set. To that end,
similar to [11][Proof of Theorem 2], the Dini’s derivative
can be written as V̇ (x) = maxk∈Kx(t)

c(k)
T
Ṙ(x) ≤ 0 where

Kx(t) = {k|R(x) ∈ Wk}.
Proof: [Proof of Theorem 4] Let Γ be the stoichiometry

matrix for (S ,R). Since the modifications are limited to
adding a catalysis or adding a hetero-dimer, then every
reaction in R̃ is an extension of a corresponding reaction in
R. Hence, we can write Γ̃ = [ΓT ,ΓT2 ]T as the stoichiometry
matrix for (S̃ , R̃). Let ẋ = ΓR(x), ˙̃x = Γ̃R̃(x̃) be the
corresponding ODEs. Hence, we can write x̃ = [xT , xT2 ]T ,
where x2 corresponds to the concentrations of the species in
S̃ /S .

Note that all the species in S̃ /S are either catalysts
or hetero-dimers. We include an additional assumption to
simplify the notation: For each species Xi ∈ S , we assume
that there exists at most one corresponding catalyst species
in S̃ /S , and it is denoted by X−i . Similarly, we assume
that there exists at most one corresponding hetero-dimer
species, and the corresponding species is denoted as X+

i .
The corresponding concentrations are xi, x−i , x

+
i . The proof

can be generalized easily without the last assumption .
Our construction implies that ẋi = ẋ+i = −ẋ−i . Hence,

V (x) = 0 iff ẋ = 0. Therefore, V is positive-definite. We
next show that it is non-increasing.

Similar to the proof of Theorem 1, we consider a region
Wk for which V is linear and has a fixed sign pattern for ẋ.
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Fix k, There exists c(k)ij , c
(k)
i , δ(k) such that:

V (x) =
∑
i,j
i 6=j

c
(k)
ij Rij(xi) +

∑
i

c
(k)
i Ri(xi) + c

(k)
0 (15)

=: c(k)
T

R(x), R(x) ∈ Wk.

We claim that each term in the expression (14) has a
nonpositive Lie derivative on W◦k . In order to show that,
we first examine c(k)ij Rij(xi) where c(k)ij 6= 0 for some i, j.
We will show that c(k)ij Ṙij(xi) ≤ 0 for R(x) ∈ W◦k . Since
the candidate RLF sums only the species in S , the reaction
rate Rij appears only in ẋi with coefficient −1 and in ẋj
with coefficient +1. W.l.o.g, assume c(k)ij > 0. Similar to the
proof of Theorem 1, we get that σ(k)

i < 0, σ
(k)
j > 0. Since

σ
+(k)
i = σ

(k)
i , and σ−(k)j = −σ(k)

j we get

sgn(c
(k)
ij Ṙij(xi, x

+
i , x

−
i ))

= sgn

(
c
(k)
ij

(
∂Rij
∂xi

ẋi +
∂Rij

∂x+i
ẋ+i +

∂Rij

∂x−j
ẋ−j

))
= sgn(c

(k)
ij (σ

(k)
i + σ

+(k)
i + σ

−(k)
j )) ≤ 0

for R(x) ∈ W◦k , where the last equality follows by the
monotonicity of Rij .

Since k, i, j have been chosen arbitrarily, we can use the
same arguments used in the proof of Theorem 1 to conclude
that V̇ (x) ≤ 0 for all x.
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