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Abstract

The recent release of twenty-two new genome sequences has dramatically increased the data available for

mammalian comparative genomics, but twenty of these new sequences are currently limited to ∼2x cov-

erage. Here we examine the extent of sequencing error in these 2x assemblies, and its potential impact in

downstream analyses. By comparing 2x assemblies with high-quality sequences from the ENCODE regions,

we show that sequencing error, at 1–4 errors per kilobase, is sufficiently low for many purposes, yet still

can have surprising effects. For example, an apparent lineage-specific insertion in a coding region is more

likely to reflect sequencing error than a true biological event, and the length distribution of coding indels

is strongly distorted by error. We find that the vast majority of errors are contributed by a small fraction of

bases with low quality scores. Using a simple theoretical model, we show that error is strongly determined

by regions of single-read coverage in the assembly, and in particular, by the ends of reads. We explore

several approaches for automatic sequencing error mitigation (SEM), making use of the localized nature

of sequencing error, the fact that it is well predicted by quality scores, and alignments with other species.

While these methods cannot replace the need for additional sequencing, they allow substantial fractions of

errors to be masked or eliminated at the cost of modest amounts of over-correction, and they can reduce the

impact of error in downstream phylogenomic analyses.

[Error-mitigated alignments of 32 vertebrate genomes can be downloaded at http://compgen.bscb.cornell.

edu/projects/32way-masked/. The software used for SEM is available by request.]

http://compgen.bscb.cornell.edu/projects/32way-masked/
http://compgen.bscb.cornell.edu/projects/32way-masked/


Introduction

The field of comparative mammalian genomics has been given an enormous boost by the recent release of

twenty-two new genome assemblies (2x Mammals Consortium, in prep.). These new assemblies increase

the number of fully sequenced eutherian species nearly fourfold and open up many new opportunities for

functional and evolutionary insights about mammalian genomes. They are already widely in use and are

having broad impact in comparative and evolutionary genomics (Lin and Kellis; Lowe and Haussler; Parker

et al.; Clamp et al.; Rasmussen and Kellis; all papers in prep.).

Nevertheless, twenty of these twenty-two genome sequences, at present, are available only as low-

coverage (∼2x) assemblies (Table 1). Most of these twenty will eventually be sequenced to higher coverage

(see http://www.genome.gov/10002154), but even with advances in next-generation sequencing, the task

of “topping them up” remains daunting, and will probably require at least 1–2 years to complete. In the

meantime, the data available for mammalian comparative genomics will be heavily dominated by low-

coverage sequence. While these data are valuable for many purposes, reduced sequencing redundancy

has some inevitable costs. For example, it leads to decreased assembly contiguity and quality, and limits

usefulness in application requiring accurate identification of duplications, rearrangements, and repetitive

elements (Green, 2007). Several of these costs, including error in assembly, alignment, and conserved

element identification, were examined in a pilot study by Margulies et al. (2005). However, the seemingly

simpler question of sequencing error—that is, of increases in miscalled bases and erroneous insertions and

deletions owing to reduced redundancy of sequencing reads—has not been studied in detail.

During the short history of genomics, sequencing error has periodically emerged as a topic of primary

interest. Error was addressed only qualitatively in early sequencing studies (e.g., Sanger et al., 1977), but,

by the late 1980s and early 1990s, the need for a more rigorous, quantitative treatment became apparent.

At this time, efforts were undertaken to measure the overall error rates in the growing sequence databases

(Krawetz, 1989), to detect errors automatically in protein-coding sequences (Posfai and Roberts, 1992), and

to incorporate explicit models of sequencing error into algorithms for alignment and assembly (States and

Botstein, 1991; Churchill and Waterman, 1992). A major advance came in the form of phred quality scores

(Ewing and Green, 1998) (see also Lawrence and Solovyev, 1994), which gradually became established as

a standard, highly accurate method for quantifying the probability of error at each nucleotide in a sequence.
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A trend toward high-coverage sequencing led to reduced concern with sequencing error in the early 2000s,

and error has largely been ignored in large-scale comparative genomic studies in mammals (e.g., Mouse

Genome Sequencing Consortium, 2002; Rat Genome Sequencing Project Consortium, 2004; Lindblad-Toh

et al., 2005). More recently, however, error has re-emerged as an important concern in sequence analysis, in

many cases, due to applications in population genetics, in which care is required to distinguish errors from

polymorphisms (Marth et al., 1999; Irizarry et al., 2000; Li et al., 2004; Johnson and Slatkin, 2008). Error

is also an important factor to consider in mapping short read sequences to reference genomes (Li et al.,

2008), in de novo assembly from short reads (Chaisson et al., 2009), and in improving genome finishing

(Gajer et al., 2004). In addition, sequencing error has been shown to have important effects in comparative

genomics, particularly in genomic scans for positive selection (Mallick et al., 2009; Schneider et al., 2009).

In this article, we examine the impact of sequencing error in the newly released low-coverage mam-

malian genomes. First, we estimate the rates at which substitution, insertion, and deletion errors occur

in the current assemblies, by comparing them with high-coverage sequences from the ENCODE project

(ENCODE Project Consortium, 2007). We show that these assemblies exhibit modest but non-negligible

levels of sequencing error, which, if ignored, can produce biases in downstream phylogenomic analyses.

Using both empirical and theoretical methods, we show that the error present in these assemblies is strongly

concentrated in regions of single-read coverage, particularly at the ends of reads. Next, we explore the pos-

sibility of applying automatic methods for sequencing error mitigation (SEM), including masking of bases

likely to be miscalled and “correction” of indels likely to be spurious. We show that even quite simple strate-

gies are capable of eliminating fairly large fractions of sequencing errors at the cost of a modest amount of

“over-correction.” At least for some downstream analyses, the benefits of eliminating true errors appear to

outweigh the costs of obscuring a fraction of true genomic mutations.

Results

Assessment of sequencing error

We measured sequencing error in the newly available low-coverage (∼2x) genome by comparing them with

corresponding “comparative-grade” sequences from the ENCODE project (ENCODE Project Consortium,

2007; Margulies et al., 2007) (Table 1). The bacterial artificial chromosome (BAC)-based ENCODE se-
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quences exhibit high quality, with a sequencing error rate of ∼1 in 10,000 bases (Blakesley et al., 2004),

and high coverage, with representation from 31 mammalian species (see http://www.nisc.nih.gov/projects/

encode/) and 44 genomic regions spanning ∼30 Mbp (∼1%) of the human genome. We restricted our com-

parison to the fourteen 2x species that have been sequenced in the ENCODE regions, additionally including

the ∼7x guinea pig for comparison (Tables 1 and S1). To our knowledge, there is no comparable “gold

standard” available for the remaining six 2x species.

For each of the fifteen species of interest, we aligned the entire 2x assembly against the ENCODE

sequences for that species, then applied a series of filters to ensure that corresponding regions were aligned

with high confidence (see Methods). These alignments could then be examined for mismatching bases and

alignment gaps, with mismatches indicating potential miscalled bases, gaps in the ENCODE sequences

indicating potential insertion errors, and gaps in the 2x assemblies indicating potential deletion errors. After

filtering, the pairwise alignments for the 2x species contained 2.1–20.1 Mbp of aligned sequence, depending

in large part on the ENCODE sequencing coverage (Table S2). In most cases, half or more of the bases in

the available ENCODE sequences were in alignment with the 2x assemblies—with fractions ranging from

38–84%—indicating good coverage in the 2x assemblies and a reasonably sensitive alignment procedure,

despite the use of conservative filters. These fractions are probably influenced by various factors, including

the degree of contiguity of both the ENCODE and 2x genomes (which will affect alignability), the repetitive

content of the genomes, and differences in the DNA sources for the two sequencing projects (see below).

Error rates

The mismatch rates for aligned 2x and ENCODE bases ranged from 2.6 (elephant) to 25.1 (hedgehog)

mismatches per kb (Table 2), while the indel rates showed somewhat less variation, with insertion rates

from 0.22 (megabat) to 0.86 (hedgehog) per kb and deletion rates from 0.24 (tenrec) to 0.77 (microbat)

per kb. Both mismatch and indel rates generally decreased with increasing quality scores (Figure 1), as

expected, but the limiting rates—at the highest quality scores—differed considerably among species. This

is because the observed differences not only reflect sequencing errors, which are expected to occur at similar

rates across species, but they also reflect true genomic differences between the individuals sequenced for the

2x and ENCODE projects, which will depend on the diversity of the sampled populations, the relatedness

of the sampled individuals, and other factors. Indeed, the largest mismatch rates at high quality scores
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were observed with the hedgehog, for which separate (but closely related) species were sequenced in the

ENCODE (middle-African hedgehog) and 2x (European hedgehog) projects. The second largest mismatch

rates were observed with the microbat, for which some evidence of elevated levels of intraspecific genetic

variation has been reported (Zinck et al., 2004), while the smallest mismatch rates occurred with the African

savannah elephant, which has been reported to have low average genetic diversity (Nyakaana et al., 2002).

To disentangle the contributions of polymorphism and sequencing error, we used the observed difference

rates at the highest quality bases (quality score ≥ 45) as rough estimates of polymorphism rates, under the

assumption that error is negligible compared with polymorphism at these bases. We then subtracted these

estimates from the overall observed rates to obtain approximate polymorphism-corrected error rates. As a

side-benefit, this approach should at least partly correct for ENCODE sequencing errors and 2x/ENCODE

alignment errors, as long as these occur at similar rates in high quality and low quality regions of the 2x

assemblies. This method predicts nucleotide diversity levels ranging from ∼1–7 ×10−3 for most species

(with somewhat larger values of 1.2 and 2.4 ×10−2 for microbat and hedgehog, respectively; Table 2), in

reasonable agreement with an average diversity of π ≈ 5×10−3 for nuclear DNA in mammals (Bazin et al.,

2006). After this adjustment, the estimated base-call error rates are much more concordant across species,

at 0.72–3.43 per kb, and the indel error rates are slightly more concordant, at 0.16–0.46 per kb (insertions)

and 0.21–0.70 per kb (deletions). The 2x species with slightly higher coverage, such as megabat (2.6x)

and rock hyrax (2.2x), have the lowest error rates, as expected. In addition, both types of error rates are

in substantially better agreement with the nominal quality scores (Figure 1). The polymorphism-corrected

error rates are used throughout the remainder of this paper, unless otherwise noted.

Even with only ∼2x average genomic coverage, these assemblies predominantly consist of high-quality

bases. Roughly 82% of bases, across all of the assemblies, have quality scores ≥45 (the highest category

considered in our analysis; see Methods), and only ∼4% have scores <20 (Figure 2). Nevertheless, these

low-quality bases are sufficiently error-prone that they make a highly disproportionate contribution to the

overall error rates. Indeed, once polymorphisms are corrected for, 88.4% of basecall errors occur in bases

with quality scores <20. The situation with indels is similar, with 75.2% of erroneous insertions and 73.9%

of erroneous deletions being accounted for by the small fraction of bases having scores <20.

5



Model for coverage and error

We devised a simple theoretical model to explore the relationship between sequencing error and read cov-

erage as a function of the average coverage. The model assumes Poisson-distributed read depths, indepen-

dence of quality scores across reads, and quality scores that accurately predict error rates, and it relies on

an empirically determined distribution of quality scores from single reads (see Methods). Because it uses

quality scores as a proxy for true error rates, the model does not distinguish between basecall and indel

errors, but aggregates them together. This model indicates that the overall sequence quality, expressed in

phred units as −10 log10 p(error), should increase nearly linearly with the expected coverage over the range

of interest, such that the error rate will be approximately halved by each additional 1x of sequencing (Figure

3). Moreover, it predicts that this increase in quality will be almost completely driven by decreases in single

coverage regions in the assembly, which contribute the vast majority of the error. Indeed, the model predicts

that 98.9% of errors will come from single coverage regions in a 2x assembly. This fraction remains remark-

ably high as the average coverage (λ) grows larger, with values of 96.8% for λ = 6, 94.8% for λ = 10, and

92.2% for λ = 15. Interestingly, nearly all of the errors in these single-coverage regions can be attributed

to a relatively small fraction of bases with low quality scores. For example, the 13.7% of single-read bases

with q < 20 are expected to contribute 93.5% of the error in single coverage regions, or 92.5% of all errors

at λ = 2. Further, these low-quality bases occur preferentially at the ends of reads, with 90% occuring either

≤50 bp from the 5′ end or ≤300 bp from the 3′ end of a read (Figure S3). Thus, the model predicts that

the vast majority of sequencing errors will be contributed by bases at the ends of reads in single-coverage

regions of an assembly, even for large λ.

Implications for phylogenomics

To gain insight into the implications of sequencing error in phylogenomic applications, we performed a

series of simple, descriptive analyses. First, we asked what the average total number of errors would be in

a typical coding exon, allowing for different exon-specific error rates per species and the effects of miss-

ing data in the aligments (see Methods). We found that a protein-coding exon of 120 bp (approximately

the median length) will contain an average of 4.0 spurious indels and 5.8 miscalled bases, across all of the

low-coverage genomes present (for illustration, see Figure S4). Thus, while the error rate per low-coverage
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genome is modest, the aggregate error in a multiple alignment of twenty such genomes can be substantial.

Next, we examined how the probability of error changes when conditioning on properties of interest, focus-

ing on the case of indels that appear to be lineage-specific (LS)—that is, indels present in a 2x sequence but

not in the other sequences according to the multiple alignments (see Methods). We found overall, among ap-

parent LS indels, 11.1% of insertions and 6.5% of LS deletions are spurious (Figure 4A). However, in coding

regions, 75.4% of LS insertions and 60.1% of LS deletions are spurious, owing to the substantially reduced

rates of true indels in these regions. The error rates for LS indels in conserved noncoding regions are also

elevated, although less so than in coding regions, at 22.1% (insertions) and 14.0% (deletions). Third, we ex-

amined the length-distributions of LS indels in coding regions, considering (a) all LS indels in the ENCODE

regions and (b) only those that are supported by the comparative-grade ENCODE sequences. We found that

indels supported by high quality sequence display a clear preference for multiple-of-three lengths (which

preserve the reading frame), but this periodicity in the length distribution is almost completely erased by

sequencing error in the raw 2x assemblies (Figure 4B). Finally, we examined the impact of sequencing error

on inferred rates and patterns of insertion/deletion and substitution on the mammalian phylogeny. Using a

probabilistic model of insertion and deletion and an expectation-maximization (EM) algorithm (Supplemen-

tal section S1.2), we found that the raw 2x assemblies produce substantially inflated estimates of indel rates

compared with estimates based on high-quality sequences only, particularly for external branches of the

phylogeny (Figure 5). A similar analysis indicated that, overall, substitution rates are relatively unaffected

by sequencing error (data not shown), but that error can inflate the ratio of nonsynonymous to synonymous

substitution rates (dN/dS) in protein-coding genes by as much as ∼10% (Supplemental section S1.3; Table

S3).

Taken together, these descriptive analyses demonstrate that sequencing error has clear effects on the

apparent rates and patterns of both substitutions and indels, and that it has a particularly pronounced effect

for indels. Sequencing error may have important consequences not only on estimates of absolute rates of

mutations, but on phylogenomic analyses that depend on the relative rates of events, as in the identification

of novel functional elements and in predictions of positive selection (see Mallick et al., 2009; Schneider

et al., 2009).
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Sequencing error mitigation

The highly localized nature of sequencing error, with a large majority of errors coming from a small minor-

ity of bases, raises the possibility of using automatic methods to mitigate the effects of error in downstream

analyses. In this section, we explore several possible approaches to such automatic sequencing error miti-

gation (SEM).

Base-call error

Our general approach to base-call error is to mask erroneous bases by converting them to “N”s. We do

not attempt to revise the base-calls at positions predicted to be miscalled because only weak information

about their true identity is available. Our baseline strategy is simply to apply a threshold to the nominal

quality score for each base (as reported for the genome assembly), masking any base with a score below the

designated threshold. By considering no sources of data other than the sequence itself, this strategy has the

advantage of being easy to interpret and avoiding complex biases in downstream analyses.

We measure the false positive rates (FPRs) and true positive rates (TPRs) of base-masking decisions as

a function of the quality score threshold, where the FPR is defined as the fraction of correctly called bases

that are unnecessarily masked, and the TPR is defined as the fraction of miscalled bases that are masked.

We also measure the positive predictive value (PPV), or the fraction of masked bases that actually were

miscalled, and hence, were correctly masked. These quantities are measured with respect to the ENCODE

data in regions covered by high-confidence ENCODE/2x alignments, then corrected for polymorphisms

(Methods).

We find that this simple masking strategy allows large fractions of miscalled bases to be masked with

relatively low FPRs. For example, at a quality threshold of 10, roughly 80% of miscalled bases can be

eliminated at a FPR of ∼1%, with slight differences between genome assemblies (Figure 6). By choosing a

theshold of 20, a TPR of ∼90% and a FPR of 5% can be achieved. However, because error rates are fairly

low even for low quality scores, absolute FPRs of 1–5% may still result in large amounts of “over-masking.”

Indeed, at a threshold of 10, with a TPR of ∼80%, the PPV is ∼10%, meaning that 9 correct bases must

be unnecessarily masked for every miscalled base that is appropriately masked. At a threshold of 20 (TPR

90%) the PPV is only ∼4%.
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We attempted to improve these results by using a regression-based method to predict whether or not

to mask each base. Specifically, we trained a logistic regression classifier on a subset of the ENCODE

data, making use of several relevant covariates, including the aligned bases from other species, the local

G+C content and the quality scores of neighboring bases (see Methods), and then tested the method on a

separate portion of the ENCODE data. To summarize the information from aligned bases, we included as

one of the covariates a log-odds score based on a phylogenetic error model, which indicates how much more

likely an observed base is under a model of sequencing error vs. a model that allows for true nucleotide

substitutions only. This method did significantly improve performance (Figure 7). For example, in the case

of bushbaby, at a TPR of 50% the regression-based method roughly doubled the PPV, from∼20% to∼40%.

However, the improvement was more pronounced at midrange TPRs than at higher TPRs, which are of

greater practical interest. For example, at a TPR of 80% in bushbaby the PPV is increased only from ∼10%

to ∼15%. The degree of improvement also varied considerably among species (Supplement), depending

on the availability of cross-species alignments, branch lengths in the phylogenetic tree, and other factors.

Because such dependencies may lead to difficult-to-interpret biases in downstream analyses, and because

the regression-based method is computationally expensive, we selected the simpler method as our default

base-masking strategy.

Indel error

We address indel error using an imputation strategy rather than a masking strategy. Our general approach

is to identify indels likely to be spurious, based on the multiple alignments and quality scores, then to

“correct” these indels by filling in false deletions with “N”s, or excising false insertions. Specifically, we

identify indels that can only be parsimoniously explained by lineage-specific insertion or deletion events,

using an exact dynamic-programming algorithm (see Methods). If these apparent lineage-specific indels are

supported only by low-quality sequence, we conclude that they are more likely to result from sequencing

errors than from true evolutionary events, and we revert the sequence to the inferred ancestral indel state.

Only lineage-specific indels are corrected, because indels that are shared between species would require

multiple coinciding errors to explain, and therefore are much less likely to be erroneous.

As with our basecall error mitigation strategy, we evaluated the TPR, FPR, and PPV of this approach as

the threshold for low-quality sequence was varied. In this case, the TPR is the fraction of spurious indels
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that were properly “corrected,” the FPR is the fraction of true indels that were unnecessarily edited, and the

PPV is the fraction of corrections which improve the quality of the assembly. These measures consider only

“eligible” indels—that is, ones predicted to be lineage-specific by the parsimony algorithm—and therefore

can range from 0 to 1. We experimented with various measures for identifying “low-quality” sequence (see

Methods), but settled on the relatively simple measure of the minimum quality score observed within a 5

base pair distance of the indel.

In terms of absolute TPRs and FPRs, the indel algorithm appears to perform slightly worse than the base

masking algorithm Figure 6. For example, to obtain a TPR of 80%, a FPR of ∼6% must be tolerated for

either insertions or deletions. However, this difference is misleading because false positives are counted in

quite different ways in the two cases—for basecalls, they are counted as fractions of all correct bases (i.e., the

vast majority of bases), while for indels they are fractions of correct lineage-specific indels (a much smaller

collection). Indeed, when measured in terms of PPV, error mitigation is substantially better for indels than

for basecalls, with values of roughly 30–80% at a TPR of 80%. (Notably, there is considerable variation

across species, presumably because the algorithm depends on the position of each species in the phylogeny.)

For a typical genome, say tree shrew, it is possible to correct 80% of eligible indels by altering only slightly

more than twice as many cases as should be altered (i.e., with a PPV of ∼50%). The favorable PPV for

indels results from the fact that true indel rates are quite low (roughly 20-fold lower than substitution rates;

Cooper et al., 2004), yet indel error rates are comparable to those for basecalls, typically differing only by

a factor of 4–5 (Table 2). Similarly, the PPVs for insertions are somewhat better than those for deletions,

because the true deletion rate is larger than the true insertion rate (Cooper et al., 2004).

A limitation of this approach is that many indel errors are not eligible for correction. For example,

spurious indels in a human-specific Alu insertion will not be able to be corrected, because alignments to

orthologous sequences in other mammalian species will not be available. Other spurious indels will not

be inferred as lineage specific, due to alignment errors or failures of the parsimony algorithm. We find

that the fraction of spurious indels that are eligible for correction ranges from about 1/3 to more than half,

depending on the species in question (Figure S6). Of the ineligible indels, most are in the alignments but are

not inferred to be lineage-specific, although in some species, such as hedgehog, the situation is reversed—

possibly because of long branches in the phylogeny or large numbers of transposons. The aspect of the

approach may improve substantially as more species are sequenced and alignment algorithms improve.
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Consequences in phylogenomics

To shed light on the impact of SEM in downstream analyses, we examined four representative applications.

For this analysis, we used simple quality score thresholds of <20 for base-masking and <25 for indel

imputation (corresponding to TPRs of ∼88% and ∼96% in the experiments above).

We first considered the length distribution of indels, which was shown above to be strongly influenced by

indel error (Figure 4B). We found that SEM significantly improved the inferred length distribution, bringing

it nearly in line with the distribution estimated from the high-quality ENCODE data. In particular, SEM

eliminated a large number of non-multiple-of-three-length indels, including many of length one, and caused

the pronounced period-of-three signal, which was nearly lost in the raw 2x data, to re-appear. Second, we

re-estimated indel rates on the branches of the phylogenetic tree for these species, as described above, after

applying SEM to the alignments. We found that SEM substantially reduces the inflation in indel rates that

arises from sequencing error (Figure 5). In our third analysis, we examined the impact of SEM on estimates

of dN/dS ratios, which, as discussed above, can be inflated by error. Again, SEM was effective in elimi-

nating most of the upward bias in dN/dS estimates (Table S3). Finally, we examined the impact of SEM

in comparative functional element detection, using a recently developed comparative exon-finding method

called CONGO (Lin et al., 2007; Lin and Kellis, in prep.). After retraining the method with the SEM-

processed alignments, CONGO’s exon-level specificity with respect to genes from the RefSeq, ENSEMBL,

UCSC, and GENCODE gene sets increased significantly, from 89.9% to 90.5%, while the sensitivity in-

creased slightly, from 74.3% to 74.4% (see Supplemental section S1.4 and Table S4 for full details). While

these increases were modest in absolute value, the increase in specificity was significant and held for every

chromosome in the human genome except the Y chromosome (Table S5).

Discussion

Since the advent of large-scale DNA sequencing, sequencing error has periodically emerged as a research

topic of primary interest in genomics (Krawetz, 1989; Churchill and Waterman, 1992; Ewing and Green,

1998). Recently, interest in this topic has been revived by the rise of new sequencing technologies, new op-

portunities in population genetics, and concern about the effects of error in comparative genomics (Johnson

and Slatkin, 2008; Li et al., 2008; Mallick et al., 2009). Here we have examined the issue of sequencing
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error with respect to twenty newly available low-coverage (2x) mammalian genome assemblies. This data

set will ultimately be supplanted by draft genomes, and is therefore of transient interest. Nevertheless, it

is likely to dominate the field of mammalian comparative genomics for at least the next one to two years.

Our focus in this article has been to characterize the sequencing error in these data, to examine its implica-

tions for phylogenomic analysis, and to explore simple strategies for mitigating the effect of error in certain

applications of interest.

While these 2x genome assemblies are generally of high quality, they do display significant amounts

of error. Base-call errors occur at rates of ∼1–3 per kb, and indels at ∼0.5–1.0 per kb. The overall error

rate in these sequences, at an average of 2.5 errors per kb, is comparable to the average rate at which

nucleotide differences occur between individuals of a typical mammalian species (π). Importantly, these

errors are highly localized, with ∼4% of bases contributing roughly 90% of base-call errors and 75% of

indel errors. Sequencing error appears to come primarily from the ends of reads in single-coverage regions

of the assembly. The impact of this error in downstream analyses depends on the relative rates of error and

real events of interest. Some mutations—such as lineage-specific insertions in protein-coding sequences—

are sufficiently rare that apparent mutations in the 2x alignments are considerably more likely to be spurious

than to be real. Accordingly, certain patterns of interest in comparative genomics—such as the length

distributions of short indels in coding regions—can be strongly skewed by sequencing error. At the same

time, sequencing error does not severely impact all analyses of interest. It had only a minor effect on

inferred substitution rates, and its effects on dN/dS estimates and on a state-of-the-art comparative exon-

finding method were more pronounced but still fairly modest in magnitude.

Automatic methods for sequencing error mitigation (SEM) can reduce the effects of error to a degree.

Indel imputation, in particular, is effective at reducing the number of spurious lineage-specific indels, and

can substantially reduce the distortion of indel length distributions and numbers of lineage-specific indels

imposed by error. As a result, SEM could, in principle, produce significant improvements in downstream

phylogenomic analyses, especially ones dependent on indel rates and patterns. In our experiments, it did

significantly improve performance in comparative exon prediction. Performance improvements of ∼1%

in exon-prediction, while not dramatic, are difficult to achieve without major modeling or algorithmic in-

novations, and it is notable that they were achieved in this case simply by preprocessing the input to the

algorithm. At the same time, this example demonstrates that sophisticated machine-learning methods can
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effectively compensate for the effects of sequencing error in functional element prediction, and may only

benefit slightly from a separate SEM step. SEM may be of greater value in straightforward estimation of

mutation rates or with simpler prediction methods for functional element prediction.

Several general issues arise in deciding on an appropriate SEM strategy. We settled on quite simple

methods, based on thresholding of quality scores, for efficiency and ease of interpretation. However, our

experiments with regression-based methods suggested that the use of additional covariates can significantly

improve performance. It may be possible to improve performance further by making use of a richer set of

features in a more sophisticated classification framework, including, say, the primary traces for sequencing

reads and the full multiple alignment of reads used by the assembler (see Gajer et al., 2004). A second

question we faced was whether to mask bases that are predicted to be erroneous or to impute specific values

for them. In general, masking is preferable in that, when making unnecessary “corrections,” it simply

discards data rather than introducing new errors. For indels, however, we found masking impractical and

instead settled on an imputation strategy. The disadvantage of this approach is that it can produce biases of

its own, for example, by reducing the apparent indel rates on terminal branches of the phylogeny. A third

question is whether to make use of alignments with other species in SEM. Alignments are clearly informative

about error but their use has certain drawbacks: they cannot be used uniformly across the assembly (because

some regions do not align), they are not equally informative about all species (because of differences in

phylogenetic position), and their usefulness depends on the accuracy of the alignment methods. We have

used alignments for indel imputation, where they are particularly informative, but not for base masking.

However, many alternative approaches are possible.

Our theoretical model suggests that regions of single read coverage in the assembly are dominant in

determining overall error rates. Interestingly, this property is predicted to hold even at quite high coverage—

for example, more than 90% of errors are predicted to derive from regions of single read coverage at 15x

coverage (Figure 3). There are two major ways in which simplifying assumptions of the model could impact

our calculations. First, the model may underestimate the error rates at bases covered by multiple reads, by

assuming independence across reads in computing aggregate quality scores. Our empirical data suggests

some underestimation of error rates does occur at large quality scores (q ≥ 30) (Figure 1). However, because

smaller quality scores (q < 20) are dominant in determining error rates, we expect this underestimation to

have only a minor effect on our conclusions. Second, departures from the assumption of Poisson-distributed
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read depth may lead to an excess of single-read regions at high average coverage (see Figure S1). This

would reduce the rate of increase in expected sequence quality (Q∗) as average coverage (λ) increases,

making Q∗ sublinear in λ (see, for example, the point in Figure 3 at 6.8x coverage, representing guinea

pig). However, it should increase the fraction of errors coming from regions of single read coverage at large

λ, making them more like those for small λ. Thus, we expect the conclusion that regions of single read

coverage are dominant even at large λ to be robust to our modeling assumptions. This property should be

borne in mind when interpreting claims that the vast majority of bases in a genome assembly have high

quality—for example, that 98% of bases have quality scores of at least 40 (Chimpanzee Sequencing and

Analysis Consortium, 2005; Lindblad-Toh et al., 2005). While this “mostly very high quality” property is

undoubtedly useful in some respects, it may still be compatible with fairly high overall error rates, because

few bases with high error rates can make a strongly disproportional contribution to the overall average.

Mathematically, this can be understood by noting that the expected sequence quality Q∗ is determined not

by the arithmetic mean of the basewise quality scores, but by a generalized f -mean with f(q) = 10−q/10,

which gives large weight to small values of q.

While most of the genome sequences considered here will eventually be replaced by higher coverage

assemblies, other projects parallel this one in certain respects. For example, low-coverage sequencing is

underway for several fungi and unicellular eukaryotes and for three East African cichlid fishes (http://www.

genome.gov/10002154). Metagenomic projects also tend to produce low-coverage data for each organism

of interest, because of the diversity of source material, and some large-scale within-species sequencing

projects—including the 1000 Genomes Project—have used relatively low-coverage sequencing strategies

(say, 4x) for SNP discovery. These projects highlight the need for integrating better models of sequencing

error into a wide variety of sequence analysis methods, including alignment, assembly, gene finding, and

phylogenetic modeling.

Methods

2x Assemblies

The twenty-two new genome assemblies (Table 1) were assembled using a combination of the ARACHNE

assembler (Batzoglou et al., 2002; Jaffe et al., 2003) and a novel “assisted” assembly method that used
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alignments with the human, mouse, and dog genome assemblies to improve long-range contiguity. They

were then aligned with each other and with existing finished or draft-quality genome assemblies using the

multiz program (Blanchette et al., 2004b) and related tools from the UC Santa Cruz alignment pipeline (Kent

et al., 2003). The final multiple alignments, represented in Multiple Alignment Format (MAF), consisted of

29 eutherian mammals plus three non-eutherian outgroup species (opossum, chicken, and tetraodon), for a

total of 32 species. For convenience in analyzing sequence alignments and quality scores together, the MAF

files were augmented to include basewise quality scores, in a reduced representation. Specifically, each raw

quality score q was mapped to an integer q′ ∈ {0, . . . , 9} using the formula q′ = min(floor(q/5), 9) (see

http://genome.ucsc.edu/FAQ/FAQformat). Thus, the raw quality scores were captured with a resolution of 5

phred units, except that all scores ≥ 45 were considered equal. (Notably, the ARACHNE assembler sets a

maximum quality score of 50.) This reduced representation was used in our subsequent analyses.

Alignment with ENCODE sequences

BLASTZ (Schwartz et al., 2003) was used to align each scaffold of the 2x genomes to the correspond-

ing high-quality ENCODE sequence for that species, for every species for which ENCODE sequence was

available. This was followed by a step of chaining and netting to produce a single-coverage alignment for

each 2x assembly. After a close inspection of these alignments, we realigned the sequences using LASTZ

(http://www.bx.psu.edu/miller lab) to reduce alignment error. These alignments were then passed through a

final set of chaining, netting, synteny, and reciprocal best filters.

Polymorphism correction

Let desq be the rate at which differences suggesting events of type e occurred in the 2x/ENCODE alignments

for species s in regions having 2x quality score q. Let desQ represent the rates for the highest quality regions

(q ≥ 45). Polymorphism-adusted error rates were estimated, in a quality score-specific manner (for q < 45),

as resq = desq−desQ. When assessing the performance of sequencing error mitigation, a fraction desQ/desq

of differences were assumed to be polymorphisms for each q, s, and e. These fractions were used to compute

the expected number of masked sites that were polymorphic, which was added to the count of false positives

and subtracted from the count of true positives. Similarly it was used to compute the expected number of

unmasked sites that were polymorphic, which was added to the count of true negatives and subtracted from
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the count of false negatives.

Theoretical model

Our theoretical model for the relationship between read depth and sequencing error assumes (1) that the read

depth at each base is Poisson-distributed with mean λ equal to the average coverage (Lander and Waterman,

1988); (2) that true error rates are well predicted by nominal quality scores (see Figure 2); (3) that quality

scores are independent across aligned reads at each position in the assembly, so that the joint distribution

of quality scores at a position i with read depth x, p(qi,1, qi,2, . . . , qi,x), is equal to a product of marginal

distributions, p1(qi,1)p1(qi,2) · · · p1(qi,x), where p1(q) is the probability of observing a quality score q in

an individual read; and (4) that a quality score for an assembled base can be accurately expressed as a

sum of the quality scores in the individual reads (as assumed by ARACHNE). Under these assumptions,

several quantities of interest can be computed easily for a given distribution p1(q), which can be estimated

empirically using data from the public trace archives (see below). For example, the overall distribution of

quality scores for an assembly with average coverage λ is given by

p(q|λ) =
∞∑

x=1

λxe−λ

x!(1− e−λ)
px(q) ≈

xmax∑
x=1

λxe−λ

x!(1− e−λ)
px(q) (1)

where px is an x-wise convolution of p1, which can be computed by a simple recursive calculation, and xmax

is large relative to λ (say, the 0.999 quantile of the Poisson distribution with mean λ). The expected overall

error rate in the assembly, expressed in phred units, is: Q∗(λ) = −10 log10

(∑
q p(q|λ)10−q/10

)
. Further

details are given in Supplemental section S1.1.

To determine p1, we examined the empirical distributions of single-read quality scores for fourteen 2x

assemblies (as well as one 7x assembly), using random samples of reads from the NCBI Trace Archives http:

//www.ncbi.nlm.nih.gov/Traces/. For the most part, these distributions were similar across species (Figure

S2), and we selected one that was fairly typical of the group (tupBel1) for our analysis. In estimating p1, we

excluded reads and trimmed portions of reads that were not incorporated into the tupBel1 assembly.

Exonic error rates

To estimate the error rates per exon, we identified 2,668 nonoverlapping coding (CDS) exons within the

ENCODE regions from the UCSC Genes set, and counted differences between the aligned 2x and ENCODE
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sequences within these exons. These counts were corrected for polymorphisms in a quality score-specific

manner, as above, but using CDS-specific estimates of polymorphism rates. The counts were multiplied by

20/14 to adjust for the fact that ENCODE sequences were available for only fourteen of twenty species, and,

finally, converted to rates per 120 bp exon. Notably, this calculation allowed for some reduction in error due

to incomplete coverage of the 2x assemblies (we did not compensate for this reduction).

Base masking

In the simplest case, each base xi was masked (changed to an “N”) if, and only if, the corresponding quality

score qi < T , where T is a threshold (typically, T = 20). In the case of logistic regression, xi was masked

if, and only if, (1 + e−βT yi)−1 < T ′, where β is a vector of regression coefficients, yi is a vector of

local covariates (augmented with a 1, for the intercept), and T ′ is another threshold. We experimented with

various covariates, including the local G+C content, the quality scores of flanking bases, and a phylogenetic

log-odds score (see below), but found a combination of the local quality score qi and the log-odds score to

perform best. The regression coefficients β were estimated from half of the ENCODE data, and accuracy

was assessed on the remaining half. Parameter estimation was accomplished with the glm function in R.

The log-odds score for base xs from species s in alignment column X is defined as S(X, s) = log P (X|

erroneous xs) − log P (X| no error). The quantity P (X| no error) is computed by applying Felsenstein’s

(1981) algorithm to X , using a phylogenetic model estimated from fourfold degenerate sites (2x Mammals

Consortium, in prep.). To compute P (X|erroneous xs), we introduce a species-specific error transition

matrix M (s) = {m(s)
i,j }, such that m

(s)
i,j is the probability that the true base i is erroneously represented as a

j in the 2x sequence for species s (thus, m
(s)
i,i = 0 for all i, s). We then calculate:

P (X|erroneous xs) =
∑

i∈{A,C,G,T}

m
(s)
i,xs

P ({X : xs → i}| no error) (2)

where {X : xs → i} denotes a version of X in which xs is replaced with base i. This calculation assumes

that the probability of multiple errors in a single column X is negligible. The matrix M (s) is estimated

empirically from the 2x/ENCODE alignments, using separate data for training and testing. To accommodate

variation in substitution rates, we introduce a branch-length scaling factor and optimize it (separately) for

both the error and error-free models, using methods recently described elsewhere (Pollard et al., 2009). As

a result, an apparent substitution at a conserved site is considered more likely to be an error than a similar
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substitution at a less conserved site.

Indel imputation

To identify lineage-specific (LS) indels, we applied a Sankoff-like parsimony algorithm (Sankoff, 1975) to

a reduced representation of each indel region (IR) in the multiple alignments. An IR is a maximal sequence

of alignment columns having at least one gap character each and flanked by gapless columns. To simplify

these regions and focus on short indel events, we considered only gaps of ≤ 10 bp, allowing for gaps

between MAF blocks provided that they connected contiguous bases in a sequence. We represented the

IRs as matrices of 0s (gaps) and 1s (bases). Because all indel events were given equal cost regardless of

length, the starting matrix could be compressed by replacing each sequence of identical columns with a

single representative (e.g., Blanchette et al., 2004a). Associated with a matrix of width n were 2n possible

indel states. To find parsimonious labelings of ancestral nodes by indel states, we defined a 2n × 2n matrix,

W = {wi,j}, of state-transition costs, such that wi,j equaled the minimum number of indel events for a

transition from state i to state j. Using W as a cost matrix for each branch, we applied the max-product

algorithm (e.g., Bishop, 2006) to the phylogeny and enumerated all states at each node that were consistent

with parsimonious labelings. Cases in which a leaf was represented by a 0 but its parent was only allowed

a 1 by parsimony wer inferred to be LS deletions. Similarly, cases in which a leaf was represented by a 1

but its parent was only allowed a 0 by parsimony were inferred to be LS insertions. LS events were inferred

column-by-column, so it was possible that only part of an IR would be considered lineage-specific. For

reasons of computational efficiency, IRs with n > 10 (0.36% of all IRs) were ignored. As discussed in the

text, once a LS indel was identified in a sequence s, it was “corrected” (reverted to the ancestral state) if,

and only if, it corresponded to low-quality bases in s. As a measure of indel quality, we used the minimum

quality score in the five flanking bases on either side of the indel and in any inserted bases. We experimented

with several alternative measures of quality but none performed better than this simple measure.

Details concerning indel rates, dN/dS ratios, and the CONGO exon predictions are provided in Supplemental

sections S1.2–S1.4.
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Table 1: Species and genome assemblies considered in this study

Speciesa Assemblyb Coveragec ENCODEd

human hg18 complete –
chimp panTro2 6.0x –
rhesus rheMac2 5.1x –
tarsier tarSyr1 2.0x –
mouse lemur micMur1 1.9x 43
bushbaby otoGar1 1.9x 44
tree shrew tupBel1 1.9x 4
mouse mm9 completee –
rat rn4 completed –
kangaroo rat dipOrd1 2.0x –
guinea pig cavPor3 6.8x 41
squirrel speTri1 1.9x 44
rabbit oryCun1 2.0x 43
pika ochPri2 1.9x –
alpaca vicPac1 2.0x –
dolphin turTru1 2.0x –
cow bosTau4 7.1x –
horse equCab2 6.8x –
cat felCat3 1.9x 43
dog canFam2 7.6x –
microbat myoLuc1 1.8x 41
megabat pteVam1 2.6x 5
hedgehog eriEur1 1.9x 39
shrew sorAra1 1.9x 41
elephant loxAfr2 1.9x 44
rock hyrax proCap1 2.2x 6
tenrec echTel1 1.9x 42
armadillo dasNov2 2.0x 44
sloth choHof1 2.0x –
opossum monDom4 6.8x –
chicken galGal3 6.6x –
tetraodon tetNig1 7.9x –

aAbbreviated common names used by the 2x Mammals Consortium are listed here. In
some cases, different names have been used for the ENCODE project (see Table S1).

bUCSC designation.
cReported average coverage.
dNumber of ENCODE regions for which high-quality sequence is available, or “–” if

ENCODE sequence is unavailable.
eThe mouse and rat assemblies are considered “essentially complete” but some

improvements are still underway (see http://www.ncbi.nlm.nih.gov/genome/assembly/
grc/mouse/ and http://www.hgsc.bcm.tmc.edu/project-species-m-Rat.hgsc?pageLocation=
Rat)
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Table 2: Error rates per kilobase, raw and corrected

Species Basecalls Insertions Deletions
Rawa Poly.b Corr.c Rawa Poly.b Corr.c Rawa Poly.b Corr.c

armadillo 3.06 1.48 1.58 0.40 0.03 0.37 0.33 0.03 0.30
tenrec 3.19 1.08 2.11 0.47 0.02 0.45 0.24 0.02 0.22
hedgehog 25.10 23.71 1.39 0.86 0.43 0.43 0.76 0.44 0.32
cat 3.72 2.53 1.19 0.33 0.06 0.27 0.28 0.07 0.21
elephant 2.61 0.91 1.70 0.41 0.02 0.39 0.42 0.02 0.40
mouse lemur 3.00 1.92 1.08 0.26 0.03 0.23 0.46 0.05 0.41
microbat 15.04 11.61 3.43 0.57 0.16 0.41 0.77 0.30 0.47
rabbit 5.63 4.08 1.55 0.44 0.06 0.38 0.30 0.09 0.21
bushbaby 4.94 2.59 2.35 0.43 0.04 0.39 0.75 0.05 0.70
rock hyrax 3.72 2.68 1.04 0.25 0.04 0.21 0.42 0.06 0.36
megabat 3.73 3.01 0.72 0.22 0.06 0.16 0.37 0.08 0.29
shrew 8.04 6.62 1.42 0.35 0.13 0.22 0.39 0.15 0.24
squirrel 5.64 3.16 2.48 0.51 0.05 0.46 0.63 0.08 0.55
tree shrew 4.43 2.01 2.42 0.37 0.04 0.33 0.56 0.06 0.50
guinea pigd 0.35 0.14 0.21 0.04 0.00 0.04 0.04 0.00 0.04

aBased on observed differences between aligned 2x and ENCODE sequences.
bEstimate of polymorphism rate (based on highest quality bases).
cCorrected error rate, equal to raw difference rate minus estimated polymorphism rate.
dThe guinea pig is shown for comparison. The genome assembly reflects ∼7x coverage. The low estimated polymorphism rate

may result from the use of the same inbred line in the 2x and ENCODE projects (unconfirmed).
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Figure 1: Quality scores vs. error rates in selected 2x genomes, as estimated from alignments with high-
quality ENCODE sequences. Separate plots are shown for basecall (top) and indel (bottom) errors, before
(left) and after (right) correcting for polymorphisms (see text). The quality score of an insertion is taken
to be the minimum score of the inserted bases and the 10 nearest neighboring bases, while the score of a
deletion is the minimum score of just the 10 neighboring bases. The dashed line shows the rates implied
by nominal quality scores (i.e., error rates of 10−q/10 for each score q). Note that these predicted rates
include both base-call and indel errors (see Ewing and Green, 1998), so they are expected to be slightly
larger than the true rates for the individual error types. The excess of errors at large quality scores could
result from an underestimation of polymorphism (perhaps because the high quality regions used to estimate
polymorphism are depleted for segregating sites), or from an overestimation of quality scores (perhaps
because the assembler assumes independence of reads in estimating aggregate scores).
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Figure 2: Cumulative distribution functions (CDFs) of quality scores (dashed lines) and basecall errors
(solid lines), for four representative 2x assemblies. At each quality score threshold q, shown on the x axis,
the dashed lines indicate the fraction of all bases having quality score ≤ q, and the solid lines indicate the
fraction of all basecall errors that are associated with bases having quality score ≤ q. Observe that most
bases have high quality scores, but most errors derive from bases with low quality scores.
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Figure 3: Expected coverage (λ) versus expected sequence quality (Q∗(λ); solid curves, labels on left)
and expected fraction of error contributed by single-coverage regions of an assembly (F1; dashed curves,
labels on right), according to our theoretical model. Sequence quality is expressed in phred units, as
Q∗(λ) = −10 log10 err(λ), where err(λ) is the error probability per base. The solid black curve shows
that expected sequence quality increases nearly linearly with expected coverage, at a rate of ∼3.62 phred
units per additional 1x of coverage, corresponding to a 10−3.62/10 ≈ 43% decrease in the error rate. The
nearly identical solid gray curve considers only errors from single-coverage (x = 1) portions of the assem-
bly, demonstrating that average error rates are almost completely determined by single-coverage regions of
the assembly, and increases in quality are almost completely attributable to decreases in single-read cover-
age. The dashed black curve shows the fraction of all errors that come from single-coverage bases (F1), and
the dashed gray curve shows the fraction that come from low quality (q < 20) single-coverage bases, which
occur predominantly at the ends of reads. Notice that, even at quite high levels of average coverage, the vast
majority of errors are predicted to come from the ends of reads in single-coverage regions of an assembly.
These calculations are based on a distribution of single-read quality scores estimated empirically from the
tupBel1 (Northern Tree Shrew) assembly (see Methods). For comparison, points corresponding to the error
rates in Table 2 are shown (plus symbols), with tupBel1 in black. Departures from the theoretical predictions
are partially explained by departures from the assumption of Poisson-distributed read depths (Table S1).
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Figure 4: (A) Fractions of apparent lineage-specific indels that are spurious, as estimated from ENCODE/2x
alignments. Shown are median values over all 2x species after the polymorphism correction, for all sites and
for only those sites within coding (CDS) or conserved noncoding (CNS) regions. Notice that insertions are
substantially more likely than deletions to be spurious, because true deletions occur at higher rates than true
insertions (e.g., Cooper et al., 2004), while insertion and deletion error rates are comparable. LQ categories
are the subset of indels with low quality (< 25). (B) Distribution of indel lengths in coding regions for mouse
lemur as compared to human, using dog as an outgroup. The red line (all) represents all indels inferred from
the 2x assemblies, while the blue lines (supported) represents a subset of indels that could be validated by
comparison with the ENCODE mouse lemur sequence. The green line (corrected) show the distribution
for the 2x assembly after automatic sequencing error mitigation (SEM) was applied using a quality score
threshold of < 25. Notice that the pronounced period-of-three pattern in the supported indels is nearly lost
in the unprocessed data due to sequencing error, but is mostly recovered by the SEM procedure.
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Figure 5: Estimated percent error in indel rates for the raw and error-mitigated (SEM) data sets. Indel rates
were inferred using a probabilistic indel model and an expectation maximization algorithm (Supplementary
section S1.2), and percent error was estimated by comparing the rates for each data set with ones based
on the highest quality sites only (q ≥ 45). The median across the branches within each group is shown,
with error bars indicating upper and lower quartiles. Results are shown for three groups of branches from
the 32-species phylogeny: external branches corresponding to 2x species (red), all other external branches
(blue), and internal branches (green). The indel rates fir the external 2x branches are overestimated by
nearly 8% with the raw data, but that the SEM procedure eliminates most of this effect. There is also
a substantial amount of overestimation associated with non-2x external branches stemming from lower-
quality draft assemblies, such as the chimpanzee, and the SEM procedure effectively reduces this error as
well.
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Figure 6: Receiver operating characteristic (ROC) curves for sequencing error mitigation (SEM). On the left,
false positive rates (fractions of non-errors incorrectly masked or imputed) are plotted versus true positive
rates (fractions of errors correctly masked or imputed) as the quality threshold is varied (see text). On
the right is a similar plot with 1 minus the positive predictive value (indicating the fraction of masking or
imputation decisions incorrectly undertaken) in place of the false positive rate. Results are shown for five
representative 2x assemblies, with separate plots for basecall (top), insertion (middle), and deletion (bottom)
errors. The results shown here reflect simple thresholding of quality scores (see also Figure 7).
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Figure 7: ROC-like plot (as in Figure 6) for logistic regression-based SEM. Results are shown for one
species, the bushbaby (see Figure S5 for additional results). The solid curve represents simple thresholding
on quality score and the dashed line represents the use of logistic regression with both quality scores and
phylogenetic log-odds scores as covariates (see Methods).

30


