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Abstract 

Dynamic modeling of regulatory networks that control gene expression requires temporal 

information on the activation/repression latencies of regulator and target pairs, which have been 

experimentally inaccessible at the genome scale. We developed a new discretization method 

using multi-step functions, to systematically infer latency information for individual edges of a 

large-scale regulatory network from whole-genome time-course expression profiles. Our method 

has wider applicability and shows increased accuracy relative to previous approaches such as 

Pearson or Spearman correlation. It also exhibits good predictive power of expression co-

localization for regulator/target pairs benchmarked against the ImaGO annotation for Drosophila 

melanogaster.  

Application of this method to D. melanogaster led to several new insights on its network 

dynamics. First, the measured delays are significantly longer than expected by chance, and are 

specific to D. melanogaster. They are not found in yeast, suggesting that they are likely relevant 

to animal genomes and developmental processes.  Second, we found that regulator binding site 

multiplicity on the target promoter region is related to an increased latency, which is consistent 

with a slower activation associated with protein accumulation. Third, regulators of the same 

functional category were more likely to show similar delay distributions, suggesting different 

time-scales may be at play for different biological processes. Fourth, the combinatorial sum of 

multiple regulators is able to better explain the target expression profile than expected. Lastly, 

network motifs such as transcription cascades and feed-forward loops showed characteristic 

time delay distributions, suggesting both connectivity and dynamics contribute to the function of 

networks motifs. 

Overall, temporal information has the potential to fundamentally change the way we think about 

gene regulatory networks, and the dynamic network of 21,231 temporally-decorated edges 
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provided here enables the study of information flow and developmental dynamics at the 

systems-level. 

Author Summary 

Embryonic development is an extremely time-dependent process requiring a high level of 

synchronization and accuracy. A complex mixture of several mechanisms, including a network 

of regulators that interact with and control the expression of target genes, is responsible for this. 

Several models exist for small subsets of these processes based on precise experimental 

measurements but no large-scale analysis has been possible given the experimental 

intractability of directly measuring dynamics across a complete network. Using a new 

discretization procedure that fits multi-step functions to genome-wide time-course expression 

data during embryogenesis, we were able to discover temporal delays of the edges of the 

Drosophila regulatory network. Less complex species that are typically used for dynamic 

modeling did not display such latencies. We found that temporal delays were longer for 

promoters with multiple weak DNA binding sites, consistent with a mechanistic model of 

transcription factor protein accumulation in promoter regions of target genes that we propose, 

providing a possible mechanism to fine-tune the time until expression of a given gene. 

Using the inferred edge delays, we measured the time until expression of the most downstream 

target gene for two common network motifs, the transcription cascade and the feed-forward 

loop. We found that different activation/repression subtypes of these motifs show different delay 

distributions, suggesting that dynamics likely play an important part in determining network motif 

function that has not been systematically studied before. 

Introduction 

Gene expression induction by a transcription factor is a complex stochastic interplay of multiple 

players at different time-scales. Variable delays might exist between the induction of a 

transcription factor and the eventual expression change of its target genes, arising from a 

number of mechanisms, including: different affinity of regulatory motifs to the promoter region of 

the target gene (1), cooperative and antagonistic effects between multiple transcription factors 

(2), chromatin accessibility of promoter regions (3) and other effects. While several approaches 

for network inference have been developed using expression data from time-course microarray 

experiments (4-6), chromatin IP data for several transcription factors (7) or computational 

prediction of regulator targets based on regulatory motif instances (8), these networks have 



3 
 

typically remained static and devoid of any temporal information on the latency of individual 

edges.  

In contrast, dynamic models for network motifs (9) have been extensively developed to explain 

both their properties and their function, similar to the dynamics of electronic circuits. For 

example, a negative feedback loop can lead to oscillatory or damping behavior, depending on 

the relative latencies of forward-pointing and backward-pointing edges. Similarly, a feed-forward 

loop can lead to amplification or damping depending on the relative delays of its edges (9). 

These properties have been largely unexplored in regulatory networks, due to the lack of edge-

level temporal delay information at the full network scale, and the lack of genome-wide network 

connectivity information in animal genomes. In addition, most dynamic models rely on the basic 

assumption that a time-scale separation exists between the dynamics the of transcription factor 

binding to a promoter region of a target and are dramatically faster than subsequent 

transcription and translation, and thus edge-specific delays in a regulatory network would not be 

observable. Furthermore, some methods of predicting network interactions from gene 

expression profiles do not incorporate temporal information directly, and instead assign 

causality between a regulator and its target only if they are co-expressed at a given 

developmental stage, while temporal latencies admit lack of co-expression despite causality. 

In this paper, we seek to systematically study the properties and function of temporal delays in 

regulatory networks. We take advantage of the combination of datasets available for model 

organism Drosophila melanogaster, consisting of both high-quality genome-wide inference of 

regulatory connections (8), and high-density temporal gene expression information during 

embryo development (10), for a system where temporal dynamics play a key role. We present a 

new method for inferring delays on regulatory edges based on a two-state discretization of gene 

expression changes for both regulators and targets, and minimum delay causality inference. We 

use this method to infer delays for 31,500 regulatory edges in Drosophila melanogaster using 

28 time-points between 1,5 and 24 hours during embryogenesis (11), a temporal resolution 

which allows identification of sharp transitions between high and low transcription levels. 

Notably, the edge delays were not found in yeast time-course expression datasets using the 

same methods, suggesting that edge delays have been previously overlooked because they are 

not as striking in organisms more typically amenable to systems biology studies. 

Overall, we believe this work provides a new dynamical view of transcription regulatory 

networks in animal genomes that will enable more precise modeling of the embryo development 

and other dynamic processes in the cell and perhaps in disease progression. 
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Results  

Discretization with Multi-Step Functions 

We first sought a robust method for estimating the temporal delay between a regulator and its 

downstream targets during development. Previous methods have used time-lagged correlations 

like the cross-correlation function (CCF) which assumes expression profiles have near identical 

curves and variance (12), or fitting single-step functions assuming a single state-transition for 

every regulator and target protein (13). However, neither assumption holds for the 

developmental regulatory network of Drosophila. On one hand, many regulators are only active 

during a finite stage during development and thus their expression profiles will not fit a single 

step function. On the other hand, different regulators may be responsible for multiple state 

transitions of the target gene at different times, and thus the expression profiles of a target and 

its regulators will not necessarily correlate over their entire length. 

To account for these particularities of developmental regulatory networks, we developed a new 

method for inferring temporal edge latencies of a regulatory network based on time-course 

expression profiles of regulators and target genes. Our method makes two key assumptions: (a) 

different genes have different expression levels for active (ON, high expression level) or inactive 

(OFF, low expression level) states, and (b) that multiple transitions between these states are 

possible for a target gene, in response to discrete transition events in the expression levels of its 

multiple regulators. In addition, we assume that state transitions are sharp, that intermediate 

levels of expression are due to stochastic noise but not biologically relevant. Given these 

assumptions, we developed a discretization procedure that maps the continuous expression 

profile of each gene (for targets and regulators alike) into a pulse function whose parameters 

are the average values of high and low expression states and the indices of transition times 

between high and low states. As the number of possible transition-sequences is finite (though 

exponential in the number of time-points), and the best-fit values for high and low can be 

uniquely determined once a transition path is given, it is possible to exhaustively enumerate all 

parameter assignments, evaluate their fit, and select the scoring pulse function that minimizes 

the root square error (see Methods). To avoid overfitting however, we apply a regularization 

term that limits the number of transitions by imposing an Akaike Information Criterion (AIC).  

All of the unique 11.990 genes mapping to a valid Flybase identifier in the time-course 

microarray dataset GSE6186 available in the Gene Expression Ommibus (11), were discretized 

into ON and OFF states using our multi-step functions method after normalization, allowing for 

up to 7 state changes (Smax parameter) in each expression profile. We found 257 expression 
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profiles with no state changes (2.14%), 6655 with exactly one (55.5%), 3202 with two (26.7%), 

1649 with three (13.8%) and finally, 227 with four state changes (1.9%). There were no 

expression profiles with more than four state changes, attesting that the chosen Smax parameter 

is high enough not to constrain model selection (Figure S1). Interestingly, expression profiles 

with exactly two state transitions were biased to start in a low expression state (low: 27.1%, 

high: 72.9%), while profiles with one and three state changes exhibited no bias (50.4% / 49.6% 

and 50.9% / 49.1% respectively), consistent with a bias for a single finite time of activity for two-

transition profiles. The 257 expression profiles where the best-fitted model holds no state 

changes should correspond to genes that have either basal expression or may not be required 

to become active during embryogenesis.  

To validate whether our assumption of discrete state transitions holds, we explicitly searched for 

genes that would violate it. For all the genes in the regulatory network, only 44 (0.16%) showed 

linearly increasing or decreasing profiles (linear regression coefficient of determination higher 

that 0.9), and for 43% of those the procedure finds an expression state change in the middle of 

the expression profile. All of these genes were target nodes in the network, not corresponding 

regulators, and thus should not hinder our subsequent analysis. 

The expression profiles of engrailed, Kruppel and couch potato are presented as an example of 

the discretization procedure (Figure 1). In each case, the ON/OFF state assignment seems to 

display robustness to outlier points in the expression profile that may come from experimental 

error. The multi-step functions procedure predicts all these profiles to have exactly two state 

changes, corresponding to a single fixed interval where they are in the ON state. The sequence-

derived regulatory network predicts a feed-forward loop regulatory motif with both transcription 

factors engrailed and Kruppel regulating couch potato. While the delay estimation procedure for 

a particular edge is independent of other connections of those two nodes, there is a coherent 

timing between the engrailed and couch potato edges and the sum of the delays of the other 

two edges. 

Specific Network Delay Distribution Shift in Embryogenesis 

As embryonic development is highly dependent on the correct timing of events, we postulate 

that the distribution of edge delays found in the true network should be different from the one 

found in a random network. We compared the delays found in the regulatory network predicted 

from motif occurrences, the experimentally-derived network of ChIP-chip protein-DNA 

interactions (8) and a randomized network with similar degree distribution, and assessed if the 

distribution of delays were significantly different (Figure 2). 
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The distribution of delays differs significantly between the true network and the randomized 

networks. The experimentally-determined regulatory network and the computationally predicted 

regulatory network exhibited similar distributions, which given their independence confirms the 

high quality of both the predicted network and the delay estimation method. The two real 

network distributions displayed an enrichment of delays from 2 to 6 hours and a depletion of 

edges having 0 to 2 and 8 to 10 hours compared to the randomized network, consistent with 

biologically relevant activation delays during development. 

Multi-step functions were able to measure a delay for 21231 out of 27682 interactions for which 

there is an expression profile for both genes in the microarray. This corresponds to 76.70% of 

edges in the network, which is estimated to have 60% accuracy, and the measured expression 

profiles, implying that this method could further be useful to refine network predictions. The 

experimentally determined subset exhibits a similar recall of 76.55%, testament to the similar 

quality of computationally-predicted edges and experimentally-determined edges. 

Applying the same methods to the yeast cell cycle data showed no difference between the 

experimentally determined regulatory network (14) and a randomized network, suggesting that 

temporal delays may be a feature specific to the developmental process found in animal 

genomes. We believe this hypothesis is worth testing in the networks of additional metazoan 

species as they become available. It also suggests that these delays may have been a 

previously overlooked feature of regulatory networks, as these are not as prevalent in species 

traditionally amenable to systems-level analysis. 

Comparison to Other Methods 

We compared the multi-step functions method to other procedures that could be used to 

estimate a delay between expression profiles, including CCF and sliding Pearson and 

Spearman correlations (Figure 3). These alternative methods always attribute a causal delay for 

an edge, while multi-step functions have the ability to either classify an edge as having or not 

having a causal effect. Sliding Pearson and Spearman correlations also suffer from a small 

count over-estimation of delays as the number of time-points decreases. Using the correlation 

coefficients and the model score of the fitted multi-step functions, we performed a Kolmogorov-

Smirnov test for the distribution of true edges in the network against random pairs of expression 

profiles. It should be noted that for each edge in the multi-step functions both genes model 

scores (Mscore) were averaged. Multi-step functions displayed the smallest p-value and highest 

Kolmogorov-Smirnov distance of all other methods.  Additionally, the real network distribution is 

shifted to lower values, which in this case means that the expression profiles of the real network 
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were better fitted. A p-value several orders of magnitude lower than other methods provides a 

reliable statistical measurement of the performance of the discretization procedure. 

Regulator Binding Site Multiplicity in the Target Promoter Region 

Given that this work uses a regulatory network derived from transcription factor binding site 

motifs, and that their location and number in the genome is known, we sought a mechanistic 

relationship between the two. Specifically, we investigated a model that would explain the 

delays that were found from different rates of accumulation of a transcription factor in a 

promoter region based on the strength and number of motifs for that factor.  

On one hand, we found a striking linear relationship correlating motif instance numbers with the 

inferred delay of a target gene (Figure 4). This relationship disappeared in a control experiment 

done by taking randomized regulator profiles and estimating the delay using the multi-step 

functions method, while keeping the true target and the same number of binding sites. This is 

consistent with a mechanistic model of activation dependent on the rate of accumulation of a 

transcription factor on the promoter region of a target gene. The control suggests that the 

multiplicity of binding sites of a particular regulator may be responsible for the increased delay.  

On the other hand, we observed an inverse relationship between the information content, 

computed by correcting for background frequencies (15), of a sequence motif and the number of 

instances of that motif in promoter regions of its target genes (Figure 4). Indeed, a motif with 

higher information content is going to be, by definition, more rare and have fewer occurrences in 

the genome by chance. Therefore, a weaker promoter, defined here as a transcription factor 

that needs a higher level of concentration to be able to activate the target gene, should have 

lower information content and a higher number of binding sites.  

Taken together, as regulators with a higher number of binding sites tend to have motifs with 

smaller information content, our results indicate that weaker promoters exhibit longer delays, 

consistent with a mechanistic model of protein accumulation dependent on binding site number 

and degeneracy. 

Intrinsic Regulator and Target Functional Delay 

For all GO terms associated with the regulators of the network, we determined the average 

target delay for the genes that are regulated by that given transcription factor and share the 

same annotation term (Figure 5). Genes with specific biological functions seem to exhibit 

characteristic average delays. We investigated if a given transcription factor has a characteristic 

delay distribution, as would be expected if the strength of a promoter is correlated with the delay 
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of its target genes. Assuming that the distribution of delays for each regulator is an exponential 

distribution, supported by the fact that the time until induction of each edge is a stochastic 

process, independent of each other and continuous in time, we fitted an exponential distribution 

function (parameter λ) to each. A z-score is computed using 1000 random degree preserving 

networks. The list of transcription factors with a z-score more than 5 standard deviations away 

(fastest and slowest) from the mean distribution is shown (Figure 5). For both sets we 

performed GO term enrichment analysis for their target genes using GOrilla (16). 

Both sets have unique enriched GO terms (Table S1 and S2), supporting a distinct functional 

classification, but also share some more general terms. Regulation of a given process appears 

to be achieved by combining different transcription factors taking into account their particular 

dynamics. Nevertheless, there are obvious functional differences between both sets of 

transcription factors. 

Edge Type Estimation Validation and Regulation Co-localization 

It has been surprisingly difficult to infer computationally whether a regulator is an activator or 

repressor, perhaps due to the dual nature and context-dependent activity of many regulators. 

The approach presented here enables classification of each regulator’s activity in a target-

specific way based on the pairs of transitions in their expression profiles. In order to assess the 

quality of our predictions we performed a computational validation using the ImaGO annotation 

database (17), which contains tissue-specific expression annotation during the first 12 hours of 

the embryonic development for 5979 Drosophila genes, overlapping with 2934 genes in the true 

regulatory network. We compared the interaction types predicted by multi-step functions to 

those predicted by ImaGO, assuming activators would be physically co-localized with the target 

gene and that repressors would not. We assessed the predictive power of multi-step functions 

against the Pearson correlation using ImaGO co-localization for the true regulatory network and 

also for randomized pairs of genes (Figure 6). We found that for pairs of genes that displayed 

higher than 0.7 correlation in their expression profiles, the Pearson correlation was a slightest 

better predictor of co-localization. However, for genes that showed between 0.0 and 0.5 multi-

step functions strongly outperformed the Pearson correlation method. 

Overall, multi-step functions displayed similar accuracy to the Pearson correlation (Table S3) in 

the true network and an increase compared to the random network (3% higher). Thus, 

compressing the information contained in the expression profiles to a much smaller number of 

parameters describing the discretization still holds high co-localization predictive power, as the 



9 
 

discretization approach can pick up subtle regulatory relationships even when the entire 

expression profiles are not correlated. 

Multiple Regulators and Their Combined Effect on Target Expression 

While we have thus far focused on pair-wise regulatory relationships, the typical target gene has 

multiple regulators controlling its expression, whose interplay is ultimately responsible for the 

target’s expression. Moreover, the relationship between multiple regulators can include complex 

combinatorial effects such as changing the behavior of a given regulator’s sign depending on 

the context of other regulators, as has been reported for multiple regulators (18). 

We addressed this issue by testing whether multiple regulators have coherent profiles that 

would explain the target expression profile. We present an example target gene with a high 

number of regulators (Figure 7). The target gene has an ON state consistent with the concurrent 

expression of its activating targets. As the activating regulators are turned off, repressors start 

being expressed and eventually the target gene expression is suppressed. In this example, the 

target’s expression profile seems to be the sum of the regulators’ expression states, accounting 

the type of interaction. It should also be noted that Hr46, en, run, repo and snail display faster 

target induction independent of the activating or repressor role while ap and retn show slower 

induction, consistent with reported results (Figure 5). 

Taking advantage of the multi-step functions discretization nature we quantified the 

independence of the targets and the sum of the regulators expression profiles using the mutual 

information metric for discrete random variables (see Methods). Lower mutual information 

values indicate independent variables, which in this context imply that known regulators do not 

perfectly describe the expression of the target gene. The distribution of the mutual information 

metric for all the targets, which are not themselves regulators, shows a shift to higher values 

than randomized degree preserving networks (Figure 7). Given that regulators can better 

explain overall target expression profiles this suggests that in this dataset there is a lower 

degree of complexity attributed to the multiple regulators interactions implying that in this 

dataset the effect of multiple regulators have a tendency to be linearly additive nature. It also 

makes an argument for the quality of the regulatory network, as the true regulators are able to 

better explain the targets expression profiles.  

Dynamic Network Motif Analysis 

Network topology motifs have been proposed as the building blocks responsible for controlling 

biological functions(19). The possible dynamics of simple network motifs have been worked out, 
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and demonstrated to perform these roles both theoretically and experimentally (20; 21), at least 

on a small scale. To further test whether such motifs may play temporal roles in assuring 

expression of target genes at precise intervals perhaps by filtering biological noise, we studied 

the temporal dynamics of two of the simplest network motifs, the transcriptional cascade (TC) 

and the feed-forward loop (FFL).  

Instances of the Transcriptional Cascade motif can be separated in activators (types TCa and 

TCd) and repressors (type TCb and TCc) of the downstream target gene.  We studied the 

overall dynamic properties of transcription cascades using the delay estimates for each edge 

and found temporally distinct classes averaging a different time until activation or repression of 

the downstream target gene (Figure 8). Transcription cascade instances where the first edge 

acts as a repressor show a longer overall delay than when the first edge is an activator (Table 

S4). Surprisingly, both types appear to have two different temporal forms as type TCb exhibits a 

faster repression than type TCc and type TCa has a faster activation than TCd. One would 

expect the overall delay of this motif to be the sum of the average delay of the two types of 

edges, activators and repressors, giving rise to three particular response times, (assuming 

different average delays for both types of edges) where TCb and TCc should exhibit the same 

delay distribution. Instead, we observed an empirical coupling of delays which produces only 

two different overall dynamics for each type of transcription cascade. The ratio of both delays in 

each type of transcriptional cascade explains this behavior. Both TCb and TCc activating edges 

are faster than the corresponding repressing edge. However, the TCc motif has a higher log-

ratio between edges that increases the total delay of the motif. These two different populations 

of motifs, both repressing the downstream target gene, can be chosen to achieve a required 

time until expression. In addition, for the activating motifs, the second edge is slower regardless 

of its type, thus allowing this motif to possibly filter out noisy expression of the first regulator (X), 

while still achieving an even longer difference in the time until expression compared to the 

repressing motif types. This behavior hints at the possibility that evolution may select the overall 

temporal timing of regulation even while maintaining the same function. 

The feed-forward loop has eight types that can be classified in two major subtypes, coherent 

and incoherent, based on whether the sign of the direct path is the same as the sign of the 

overall indirect path (9). In E. coli and yeast the coherent type-1 FFL (C1-FFL) and the 

incoherent type-1 FFL (I1-FLL) occur much more frequently. We enumerated all instances of the 

feed-forward loops in the Drosophila regulatory network and estimated the overall delay of the 

motif, from the first node (X) to the downstream target gene (Z). Taking a conservative approach 

we only analyzed instances where the delay of the direct path is equal to the indirect path, 
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serving as an additional check for meaningful biological motif instances (Figure 8). One striking 

observation is that in Drosophila there is an overwhelming enrichment of the number of 

coherent-type feed-forward loops and depletion of all incoherent types, including the I1-FFL. 

The overall dynamic of coherent-type feed-forward loops, in light of the time to full expression of 

the target gene (Z) can be summarized by a Poisson distribution, which arises from the sum of 

exponential distributions of the two edges on the indirect path. Using the mean parameter (λ) 

the overall timing of each type of motif can be compared. 

Coherent feed-forward loops will regulate the target gene in an analogous way to the 

transcriptional cascades as the indirect path does not contradict the direct path logic, but these 

motifs will have a shorter time until expression than that of transcriptional cascades, as has 

been previously described (9). For example, C1-FFL and TCa are composed of only activating 

edges but the feed-forward loop is approximately 2 hours faster than the transcription cascade 

in our data. The most abundant feed-forward loop in the Drosophila network is the C2-FFL, the 

absolute opposite of the I1-FFL in terms of edge type, which exhibits a longer delay and also 

shows the biggest difference in delay distributions over the random model. This motif can be 

paired with C3-FFL, as both of them will ultimately repress the transcription of the target gene 

upon the activation of the first node. They have a statistically significant different mean time until 

expression (Kolmogorov-Smirnov test, p < 0.05, Table S5 and S6) of about one hour. The 

activating pair C1-FFL/C4-FFL shows different times until expression of about 2 hours. Target 

GO term enrichment analysis (Table S7) revealed an enrichment of both faster and slower 

motifs to the general function of organ development, as there are some biological processes 

that require a mixture of these effects. Faster types were involved in signal transduction and cell 

communication, and slower types appear to be associated with metabolic processes. 

Discussion  

In this paper, we propose a novel unsupervised method to discretize time-course expression 

profiles that we show to be scalable, robust and does not assume a particular distribution or 

patterning of the data. Combined with a simple procedure of estimating causal effects for pairs 

of regulators and targets, it is able to determine a delay between expression profiles displaying 

an higher accuracy then other methods. In addition, the discretization procedure could be 

further adjusted by increasing penalties for adding state changes, but in this work, we used a 

linear penalty model. 

Furthermore, using both the predicted regulatory network and the time-course expression 

profiles we predict that engrailed and Kruppel will regulate couch potato expression. This is 
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supported by the fact that couch potato changes to an ON state during the ON state of both 

these regulators, showing that an offset between the activation of the regulator and its target 

gene occurs. Nevertheless this offset could have been bigger, especially if the regulator had a 

small interval of activation or if the target had a high activating threshold for the concentration of 

the regulator. In this case, the activation of the target could happen after the deactivation of the 

regulators.  

Drosophila displays a specific non-random delay distribution not present in yeast. The similarity 

between the predicted network and the Chip IP experimental determined network delay 

distribution is remarkable, attesting to the accuracy of both the predicted network and the delay 

estimation method. We argue that the fundamental aspect of temporal regulation at a single 

edge has been overlooked, since the main model organisms were regulation is studied at the 

network motif level, yeast and E. coli, do not seem to exhibit it. This result clearly shows that a 

given species may be able to fine-tune its overall response rates by selective changes in the 

temporal dynamics of any given regulatory interaction, either by adjusting the production rates 

of a given gene or by tweaking other regulatory mechanisms. 

An intuitive explanation for the increased overall delay comes from classical approaches of 

modeling regulator and target gene interactions in both E. coli and yeast. Describing the 

concentration of the target gene over time with two parameters, production and destruction 

rates respectively, where destruction is the sum of the dilution and degradation rates, will hold a 

concentration that will approximate asymptotically the ratio of production and destruction at 

steady state. In this scenario, the half-life of the target gene will be equal to the response time, 

defined as the time to reach halfway between initial and final concentration levels. For proteins 

not actively degraded, the dilution rate governs the destruction rate, which for yeast is one cell-

generation, resulting from cell growth and ultimately determining a uniform response time for 

most genes by dampening changes in promoter strength. In Drosophila on the contrary, 

although there are cellular divisions, the volume of the embryo increases orders of magnitude 

more slowly so it is not possible to control response time by dilution. In order to avoid producing 

excess quantities of a given Drosophila gene, promoters have to be generally weaker than in 

yeast, leading to increased response times that manifest as delays. Furthermore, several other 

factors may play a role in genetic regulation in higher organisms, as discussed above. 

We find a correlation between the number of regulator binding site motifs on the promoter 

region of a given target and its induction delay, suggesting that weaker promoters lead to 

increased delays. However, we did not find a correlation with motif information content or an 

increased correlation incorporating both the multiplicity of binding sites and information content. 
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A possible mechanism that would explain this behavior is the requirement of a large fraction of 

occupied binding sites until expression is activated or repressed. Such a mechanism would 

compensate noisy regulators for genes that require increased delays. In addition, this would 

provide a fast evolutionary mechanism to control expression latency by tuning the number of 

motif binding sites. From the regulator point of view, we showed that there is an intrinsic 

dynamic behavior for each transcription factor with some regulators acting mostly with fast or 

slow dynamics, and there is a different functional enrichment for the targets of fast and slow 

regulators. 

Although there is currently no standard for assigning the type of interaction a regulator has with 

its target, we could derive an intuitive classification from our method and validate it against the 

ImaGO annotation. Expression profiles do not show extremely strong predictive power of co-

localization in the ImaGO gold standard (Table S3), as only profiles with high correlation exhibit 

high accuracy. However, given that the probability of finding two co-localized tissues in ImaGO 

is low, the accuracy of the Pearson method for negative correlations is high, though not 

informative. Multi-step functions performed approximately as well as Pearson correlation 

predicting co-localization. 

ImaGO has several caveats, as it only has annotations for a small set of genes expressed in the 

first 12 hours of embryo development, which may lead to ascertainment bias if most of the 

repressing interactions take place after this. In addition, this annotation does not intrinsically 

define time so it is possible that, although there exists a true regulatory activating interaction 

between a regulator and a target expressed with a true delay, the target gene will be annotated 

with a child tissue, developed from the ancestor where the regulator was expressed, thus being 

wrongly classified as not co-localized. Furthermore, this annotation does not contain information 

on expression gradients. 

For instance, one example of this behavior is the expression of bicoid and hunchback gradients 

(22). bicoid is expressed at the anterior tip of the oocyte during early embryonic stages 

producing a gradient in the anterior-posterior axis and is known to activate the expression of 

hunchback although they only exhibit a small physical overlap. Our method classifies bicoid as 

an activator of hunchback while ImaGO does not. For repressing interactions, it is also possible 

that expression of regulator and target overlap in the same tissue for a small time interval, as 

the concentration of the regulator increases to repress the transcription of the target. Thus, 

comparing expression profiles to ImaGO annotation might hold a reduced accuracy for both co-

localized and not co-localized genes. 
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Our approach does not take into consideration the complex combinatorial effects that a 

particularly high number of regulators might exert on a single target. Nevertheless, we showed 

that this dataset exhibits a lower overall combinatorial nature. A large percentage of the targets 

in the network only have one known regulator. This leads to biased distribution estimation, as 

there is a smaller chance that the regulator expression profile will be able to completely explain 

all the time points of the target profile. Thus, the mutual information distribution of the true 

complete network should be higher than the estimated. Decreased complexity does indeed 

mitigate errors on the edge type estimation in this work. However, our approach does not take 

into account other sources of regulatory complexity as the typical latency that a combination of 

transcription factors might exhibit, nor any other post-transcriptional regulatory mechanism 

Surprisingly both the transcriptional cascade and the feed-forward loop exhibit two different 

distributions of time until expression of the last target gene for both activating and repressing 

motifs. This implies that particular motif types may be used because of not only the robustness 

and noise filtering properties already described but also to meet a particular delay during 

development or even in adult life. This might explain why some biological modules are 

composed of what could be classified as non-optimal topologies in light of network structure 

alone, but may be optimal when one considers temporal aspects. other criteria. 
Taken together, these results seem to suggest that the Drosophila regulatory network possess a 

different underlying architecture that accounts for the delay in each individual edge, either by 

tuning each edge distribution to stay in comparable intervals of time to achieve synchronization, 

or by choosing from a plethora of network motifs that will hold particular temporal dynamics.  

Materials and Methods 

Microarray Data Normalization 

For both Drosophila and yeast, time-course expression profiles where normalized by subtracting 

the mean and dividing by the standard deviation across all time-points of the gene-wise 

expression profile. Technical replicated expression profiles were merged by averaging each 

time-point. Any incomplete expression profile was discarded from the analysis. 

Multi-step Functions 

We developed a robust method to find gene expression states from microarray time-course 

data. Assuming that a given gene has only two types of states, ON and OFF, and that each 

state has a minimum length of two time-points, we define all the possible models (Mi) by 



enumerating all combinations of the two types of states up to a maximum number of state 

changes between these state types (Smax). Every time-point is then effectively assigned to a 

state and there will be at most Smax state changes in the time course classification. Each model 

is built from a number of parameters (k) proportional to the number of state changes. In order to 

chose the gene model that best discretizes the expression profile we score each of them using 

the following equation: 
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where S is the state list of the gene model, x is the time-course expression profile, n is the 

length of x and k is the number of parameters used to construct the gene model. This score 

represents the root mean square deviation for each time-point (xi) to the average expression of 

the state where it has been classified (j), balanced by the number of model parameters using a 

corrected Akaike information criterion (23). Choosing the model with the minimum Mscore holds 

the one that best describes the expression profile of that particular gene without overfitting the 

data. Additionally, a gene model without state changes is also scored, allowing for basal 

expression profiles. 

We set the maximum number of state changes (Smax) high enough to capture the real gene 

state changes and still being computationally feasible, as the number of the possible models for 

a given expression profile increases with the number of time-points and state changes.  

True Predicted Network and ChIP-chip Experimental Network 

In this work, the predicted Drosophila regulatory network by sequence conservation from closely 

related species was used at a 60% confidence as the de facto network (8). For a subset of this 

network, validation from chromatin immunoprecipitation was also published and analyzed and is 

used in the paper as the experimental validated network. For yeast, the experimental derived 

regulatory network from Lee at al. (14) was used at a p-value of 0.005. 

Computing Delay and Type of Interaction between Genes 

From the discretization of the gene expression profiles, we assumed that a state change in the 

regulator gene would be responsible for the next state change in the target gene. We find all the 

pairs of related state changes, compute the average delay between state changes and assign it 
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as the delay for a pair of expression profiles. The regulator state change is always paired with 

the closest downstream target gene state change. If no state change is found in the target after 

the regulator state change the edge is discarded. 

This pairing of state changes also allows us to evaluate if a given regulator is an activator or a 

repressor of the target gene. For each interaction pair we determine if the state change is 

consistent with an activator or repressor behavior. The results are very consistent but whenever 

there is a conflict, we use a majority rule to compute the overall type of interaction, and discard 

any tied result. 

Cross-Correlation Function and Sliding Pearson and Spearman correlations 

Correlations were computed only for a sliding target expression profile that represent a true 

causal relationship to the regulator up to a cut-off number of time-points, meaning that a delay 

between a regulator and a target will always be computed having a positive value. The number 

of time-points used decreases while increasing the offset. The offset with the highest absolute 

correlation value for a given regulator/target expression profile is used and the delay is 

computed by the difference between the first time-point label of the regulator and the target 

offset label. 

Gene Ontology Term Enrichment 

The GO term enrichment analysis was done using the GOrilla website tool (16). Comparison 

were always performed with a query set of interest against all the genes in the microarray, using 

the two unranked list of genes options for Drosophila and a p-value threshold of 0.001. 

ImaGO 

ImaGO is a Drosophila anatomy ontology organized in a direct acyclic graph (DAG) and 

modeled according to GO. Manual curators annotated in situ expression patterns of a large set 

of genes (n=5979) during embryonic development using this controlled vocabulary. The 

vocabulary includes definitions that have a temporal component linked to the developmental 

stages, but does not possess an implicit way of accurately relating ontology terms with 

developmental time. Furthermore, each gene is annotated with a set of broad terms 

corresponding to six bins of the embryonic developmental stages. 

Certain ImaGO terms were handled specially given that they are too general and do not 

describe a particular tissue. A example is the term ‘ubiquitous’. Whenever at least one of the 

genes in the pair is annotated with this term then they are always assigned to be spatially co-
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localized. We found that about 38% of the 17.87 x 106 possible pairs are spatially co-localized in 

at least one tissue. We defined a pair of genes to be spatially co-localized if both of them are 

annotated in ImaGO and they share at least one non-general term. 

Mutual Information 

For a given target, all the binary discretized regulator profiles were added into a vector. Gene-

wise activating regulators were described with 0 and 1 and repressing regulators with 0 and -1 

for OFF and ON states respectively. The final regulator vector varies between –n an n (n is the 

number of target’s regulators). Mutual information is computed using the regulators vector sum 

and the target discretized profile using a discrete joint probability distribution function. 

Random Networks and Network Motifs 

Degree preserving networks were constructed by switching node labels by any gene present in 

the time-course microarray dataset while maintaining the original network topology. For the 

binding site multiplicity control random network, only regulator expression profiles where 

switched, while the target expression profile and the number of a given original regulator binding 

sites were maintained. 

Network motifs were extracted from the network using the igraph python library 

(http://cneurocvs.rmki.kfki.hu/igraph/index.html) 

Acknowledgements 

We thank all the members of the Kellis lab for helpful discussions and feedback on the work, 

and Joshua Grochow for comments on the manuscript. 

Funding. This work was supported by the Portuguese Foundation for Science and Technology 

Fellowship SFRH / BD / 32967 / 2006 in the context of the PhD Program in Computational 

Biology of Instituto Gulbenkian de Ciência, sponsored by Fundação Calouste Gulbenkian, 

Siemens SA, and Fundação para a Ciência e a Tecnologia, Portugal 

Competing interests. The authors have declared that no competing interests exist. 
 

References 

1. Hallikas O, Palin K, Sinjushina N, Rautiainen R, Partanen J, Ukkonen E, et al. Genome-
wide Prediction of Mammalian Enhancers Based on Analysis of Transcription-Factor 
Binding Affinity. Cell. 2006 Jan ;124(1):47-59. 

 



18 
 

2. Choi CY, Lee YM, Kim YH, Park T, Jeon BH, Schulz RA, et al. The Homeodomain 
Transcription Factor NK-4 Acts as either a Transcriptional Activator or Repressor and 
Interacts with the p300 Coactivator and the Groucho Corepressor. J. Biol. Chem. 1999 Oct 
29;274(44):31543-31552. 

 
3. Lam FH, Steger DJ, O/'Shea EK. Chromatin decouples promoter threshold from dynamic 

range. Nature. 2008 May 8;453(7192):246-250. 
 
4. Baugh LR, Hill AA, Slonim DK, Brown EL, Hunter CP. Composition and dynamics of the 

Caenorhabditis elegans early embryonic transcriptome. Development. 2003 Mar 
1;130(5):889-900. 

 
5. Li T, White KP. Tissue-Specific Gene Expression and Ecdysone-Regulated Genomic 

Networks in Drosophila. Developmental Cell. 2003 Jul ;5(1):59-72. 
 
6. Stolc V, Gauhar Z, Mason C, Halasz G, van Batenburg MF, Rifkin SA, et al. A Gene 

Expression Map for the Euchromatic Genome of Drosophila melanogaster. Science. 2004 
Oct 22;306(5696):655-660. 

 
7. Zhu C, Byers KJRP, McCord RP, Shi Z, Berger MF, Newburger DE, et al. High-resolution 

DNA-binding specificity analysis of yeast transcription factors. Genome Res. 2009 Apr 
;19(4):556-566. 

 
8. Kheradpour P, Stark A, Roy S, Kellis M. Reliable prediction of regulator targets using 12 

Drosophila genomes. Genome Res. 2007 Dec ;17(12):1919-31. 
 
9. Alon U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 2007 Jun 

;8(6):450-61. 
 
10. Hooper SD, Boue S, Krause R, Jensen LJ, Mason CE, Ghanim M, et al. Identification of 

tightly regulated groups of genes during Drosophila melanogaster embryogenesis [Internet]. 
Mol Syst Biol. 2007 Jan 16;3[cited 2009 Jan 21] Available from: 
http://dx.doi.org/10.1038/msb4100112 

 
11. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, et al. NCBI GEO: 

mining tens of millions of expression profiles--database and tools update. Nucl. Acids Res. 
2007 Jan 12;35(suppl_1):D760-765. 

 
12. Agrawal A, Mittal A. A Dynamic Time-Lagged Correlation based Method to Learn Multi-Time 

Delay Gene Networks. Proceedings of World Academy of Science, Engineering and 
Technology. 2005 ;9167–174. 

 
13. Sahoo D, Dill DL, Tibshirani R, Plevritis SK. Extracting binary signals from microarray time-

course data. Nucleic Acids Res. 2007 ;35(11):3705-12. 
 
14. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, et al. Transcriptional 

Regulatory Networks in Saccharomyces cerevisiae. Science. 2002 Oct 25;298(5594):799-
804. 

 
15. D'haeseleer P. What are DNA sequence motifs? Nat Biotech. 2006 Apr ;24(4):423-425. 
 



19 
 

16. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and 
visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009 
;10(1):48. 

 
17. Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, Lewis SE, et al. Systematic 

determination of patterns of gene expression during Drosophila embryogenesis. Genome 
Biol. 2002 ;3(12):RESEARCH0088. 

 
18. Georlette D, Ahn S, MacAlpine DM, Cheung E, Lewis PW, Beall EL, et al. Genomic profiling 

and expression studies reveal both positive and negative activities for the Drosophila Myb 
MuvB/dREAM complex in proliferating cells. Genes Dev. 2007 Nov 15;21(22):2880-2896. 

 
19. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network Motifs: Simple 

Building Blocks of Complex Networks. Science. 2002 Oct 25;298(5594):824-827. 
 
20. Kalir S, Mangan S, Alon U. A coherent feed-forward loop with a SUM input function prolongs 

flagella expression in Escherichia coli [Internet]. Mol Syst Biol. 2005 Mar 29;1[cited 2009 
Sep 28] Available from: http://dx.doi.org/10.1038/msb4100010 

 
21. Mangan S, Itzkovitz S, Zaslaver A, Alon U. The Incoherent Feed-forward Loop Accelerates 

the Response-time of the gal System of Escherichia coli. Journal of Molecular Biology. 2006 
Mar 10;356(5):1073-1081. 

 
22. Ochoa-Espinosa A, Yucel G, Kaplan L, Pare A, Pura N, Oberstein A, et al. The role of 

binding site cluster strength in Bicoid-dependent patterning in Drosophila. Proceedings of 
the National Academy of Sciences of the United States of America. 2005 Apr 
5;102(14):4960-4965. 

 
23. McQuarrie A, Shumway R, Tsai C. The model selection criterion AICu. Statistics & 

Probability Letters. 1997 Jun 16;34(3):285-292. 
  



20 
 

Figure Legends 

Figure 1 – engrailed, Kruppel and couch potato discretized profiles. A, B and C) Blue lines 

represent the gene expression profile, red lines the boundaries between different ON/OFF 

states and green lines the average expression of the gene two states. The expression profiles 

were normalized to zero mean and one standard deviation. D) engrailed regulates Kruppel and 

together both regulate couch potato, exhibiting a coherent timing of activation. Numbers 

represent average state change delays. 

 

Figure 2 – Drosophila and yeast network delay distribution. A) Regulatory network (blue), 

experimentally determined network (green) and 100 degree preserving randomized network 

(red) delays distributions of Drosophila using multi-step functions. B) Yeast experimental 

determined regulatory network (blue) and 100 degree preserving randomized networks (red). 

Random networks were binned using the same intervals as the true networks and error bars 

represent the standard deviation of the delay counts of the particular bin. Drosophila exhibits a 

delay distribution slower than expected, whereas yeast does not. 

 

Figure 3 – Method comparison. A) True network delay distribution (solid lines) and degree 

preserving randomized network (dashed lines), obtained using several methods. Multi-step 

functions show a larger difference from the randomized network, while both sliding Pearson and 

Spearman correlations classify a large fraction of edges with the maximum allowed delay. B) 

Fitted score (multi-step functions) and correlation coefficients distribution (other methods) for 

true and randomized networks. For multi-step functions, a left shifted distribution means a better 

fit, while for the other methods a right shifted distribution corresponds to a higher absolute 

correlation. C) Kolmogorov-Smirnov test for every method using the regulatory network and 

randomized networks. Multi-step functions have the lowest p-value and highest Kolmogorov-

Smirnov D.  

 

Figure 4 – Regulators information content and target’s regulator binding site multiplicity. 

A) Regulator’s sequence motif information content binned by the number of identified instances 

in the target’s 2kb promoter region. Regulators with more binding sites have reduced 

information content. B) Average delay for all targets, binned by the number of binding sites of 
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their regulators, the blue line represents the linear regression of the average target delay with 

the number of regulator binding sites (r2 = 0.868) and the red line the random regulator (r2 = 

0.002), showing that the average target delay increases with the number of regulator’s binding 

sites. The random regulator network was obtained by keeping the true target and corresponding 

regulator binding site distribution but computing the delay between a randomized regulator and 

the target with 30 fold oversampling.  

 

Figure 5 – Target delay by regulator annotated function and intrinsic regulator delay. A) 

Averaged target genes delay grouped by any shared regulator’s GO term (for groups with more 

than five target members). The same regulators may control process with distinct time scales. 

B) and C) Faster and slower regulators with more (or less) then 5 standard deviations from the 

estimated z-score. Z-scores were computed using 300 different degree preserving random 

networks, taking the estimated exponential parameter λ and its standard deviation. 

 
Figure 6 - Regulation and co-localization in the ImaGO annotation. For the true (blue and 

cyan) and random network (red and salmon) we present the Pearson correlation distribution 

(top) and the fraction of correctly predicted co-localized genes in ImaGO (bottom, two genes are 

considered co-localized if they share at least one non-general ImaGO annotated tissue), binned 

by Pearson correlation. The multi-step functions discretization method exhibits a higher 

predicted power for small absolute Pearson correlations for the two types of networks. 

 

Figure 7 – Multiple regulators profiles describe a target profile. A) Discretized expression 

profile of CG3225 and all its regulators state changes. Activating regulators are colored green 

when in the ON state and repressors red. The yellow profile corresponds to a regulator that has 

no state changes. Although Dfd is predicted to regulate this gene its state changes do not 

display a causal relationship with the target and is thus not considered a true regulator by the 

multi-step functions method (ON state is colored dark green and OFF state dark red). CG3225 

expression profile seem to be explained by all its regulators profiles. B) All target genes (blue) 

that are not themselves regulators mutual information distribution against 300 degree preserving 

randomized networks (red). The true distribution is shifted to higher values of mutual 

information, meaning that target profiles seem to be less independent of the regulator profiles 

than expected. 

 



22 
 

Figure 8 – Transcription cascade and feed-forward loops dynamic behavior. A) Average 

delay until induction of the last gene (Z) in all the instances of three node transcriptional 

cascades in the regulatory network (left) with mean log-ratio of both delays (right). Positive 

ratios represent a slower first edge. All distributions are statistically significantly distinct (Table 

S5 and 6). B)  Estimated λ for each type of feed-forward loop when more than 50 instances 

were found. An instance is only included in the analysis if the sum of the delays of the indirect 

path is equal to the direct path. Gray bars correspond to the expected λ in an Erdős–Rényi 

network with the same inclusion criteria. The distributions of all the types of motifs are 

statistically distinct for the random network and from the other motif types (all Kolmogorov-

Smirnov tests, p < 0.05). 
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Supplemental Figure 1 – Fitted multi-step functions state change histogram. Setting 

S<sub>max</sub>=7 we found that none of the profiles had more than our state changes, 

attesting that a high enough threshold was chosen, about 45% of the expression profiles have 

at least 2 state changes meaning previous step function methods would fail to correctly 

discretize this dataset. 

 

Supplemental Table 1 – GO term enrichment of all the fast regulators target genes using all 

annotated genes in the microarray as a background group. 

  

Supplemental Table 2 – GO term enrichment of all the slow regulators target genes using all 

annotated genes in the microarray as a background group. 

  

Supplemental Table 3 – Pearson correlation and multi-step functions predictions versus 

ImaGO contingency tables, for both the true regulatory network and for a random pairs of edges 

we present the contingency table of both the Pearson correlation and multi-step functions co-

localization predictions against the ImaGO annotation, as well as several statistical 

measurements. Random pairs were pooled at about 5 times the number of true edges. 

  

Supplemental Table 4 – Transcription cascade Kolmogorov-Smirnov test, all types of 

transcription cascade, a two-sample Kolmogorov-Smirnov test was performed to check if they 

have different delay distributions.  

 

Supplemental Table 5 – Feed-forward loop Kolmogorov-Smirnov test, the four types of feed-

forward loops with more than 50 indentified instances a two-sample Kolmogorov-Smirnov test 

verified that they do exhibit different λ distributions. 
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Supplemental Table 6 – Feed-forward loop Kolmogorov-Smirnov test against instances in a 

random network, the four types of feed-forward loops with more than 50 indentified instances a 

two-sample Kolmogorov-Smirnov test verified that they exhibit different distribution compared to 

random instances. 

  

Supplemental Table 7 – Feed-forward loop target GO term enrichment. Enrichment was 

computed using Gorilla for a given set of genes using a background set of all the genes in the 

microarray. Only the top 15 most enriched GO terms for each motif type are shown.  
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GO Term Description P-value 
GO:0016192 vesicle-mediated transport 1.25E-06 
GO:0007264 small GTPase mediated signal transduction 1.65E-05 
GO:0006333 chromatin assembly or disassembly 3.57E-05 
GO:0048193 Golgi vesicle transport 3.77E-05 
GO:0051234 establishment of localization 9.20E-05 
GO:0006810 transport 2.09E-04 
GO:0045167 asymmetric protein localization during cell fate commitment 4.90E-04 
GO:0045184 establishment of protein localization 5.48E-04 
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GO Term Description P-value 
GO:0006333 chromatin assembly or disassembly 1.23E-10 
GO:0009408 response to heat 7.08E-07 
GO:0009266 response to temperature stimulus 1.02E-06 
GO:0034605 cellular response to heat 1.75E-06 
GO:0035080 heat shock-mediated polytene chromosome puffing 1.75E-06 
GO:0035079 polytene chromosome puffing 1.75E-06 
GO:0006325 establishment or maintenance of chromatin architecture 3.28E-06 
GO:0006950 response to stress 1.14E-05 
GO:0051276 chromosome organization 1.74E-05 
GO:0050896 response to stimulus 1.09E-04 
GO:0005975 carbohydrate metabolic process 5.48E-04 
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True Network Pearson Correlation  True Network Multi-Step Functions 

 
ImaGO  

Co-Localized 
ImaGO not 

Co-Localized   
ImaGO  

Co-Localized 
ImaGO not 

Co-Localized
Enhancer 1909 1923  Enhancer 1717 1852 
Repressor 993 1871  Repressor 1185 1942 
Total 6696   Total 6696  
       
Sensitivity 0.657822   Sensitivity 0.591661  
Specificity 0.493147   Specificity 0.511861  
Precision 0.498173   Precision 0.481087  
Recall 0.66655   Recall 0.549089  
f-score 0.570191   f-score 0.512843  
Accuracy 0.564516   Accuracy 0.546446  
       
       

Random Pairs Pearson Correlation  Random Pairs Multi-Step Functions 

 
ImaGO 

Co-Localized 
ImaGO not 

Co-Localized   
ImaGO 

Co-Localized 
ImaGO not 

Co-Localized
Enhancer 21058 38253  Enhancer 13941 23197 
Repressor 13189 27267  Repressor 10869 21414 
Total 99767   Total 69421  
       
Sensitivity 0.614886   Sensitivity 0.561911  
Specificity 0.416163   Specificity 0.480016  
Precision 0.355044   Precision 0.375384  
Recall 0.520516   Recall 0.431837  
f-score 0.422144   f-score 0.401636  
Accuracy 0.484379   Accuracy 0.509284  
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 TCa TCb TCc TCd 

 KS D p-Value KS D p-Value KS D p-Value KS D p-Value 

TCa n = 18972 0 1 0.105847 6.98E-91 0.097797 3.73E-85 0.042773 2.51E-16 

TCb n = 18135   0 1 0.190345 1.186E-313 0.117048 1.11E-116 

TCc n = 21943     0 1 0.11245 9.45E-119 

TCd n = 21067       0 1 
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 C1-FFL C2-FFL C3-FFL C4-FFL 

 KS D p-Value KS D p-Value KS D p-Value KS D p-Value 

C1-FFL n=1730 0 1 0.429128 1.90E-196 0.291981 3.67E-75 0.290301 3.72E-81 

C2-FFL n=4103   0 1 0.252081 4.80E-84 0.202094 4.89E-62 

C3-FFL n=2378     0 1 0.103028 1.05E-12 

C4-FFL n=2981       0 1 
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 KS D p-Value 
C1-FFL n=1730 0.201539 3.14E-39
C2-FFL n=4103 0.238388 3.27E-78
C3-FFL n=2378 0.167843 1.01E-31
C4-FFL n=2981 0.132613 6.33E-23
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A) C1-FFL 
GO Term Description P-value 

GO:0032502 developmental process 2.30E-20 
GO:0048856 anatomical structure development 2.10E-19 
GO:0050794 regulation of cellular process 2.00E-18 
GO:0009653 anatomical structure morphogenesis 2.14E-18 
GO:0050789 regulation of biological process 8.48E-17 
GO:0048513 organ development 1.41E-16 
GO:0065007 biological regulation 1.62E-15 
GO:0045449 regulation of transcription 2.99E-13 
GO:0010556 regulation of macromolecule biosynthetic process 7.22E-13 
GO:0009889 regulation of biosynthetic process 7.28E-13 
GO:0031326 regulation of cellular biosynthetic process 7.28E-13 
GO:0031323 regulation of cellular metabolic process 2.38E-12 
GO:0006355 regulation of transcription, DNA-dependent 2.51E-12 
GO:0019219 regulation of nucleobase, nucleoside, nucleotide and nucleic acid 

metabolic process 
3.05E-12 

GO:0007389 pattern specification process 4.60E-12 
 

B) C2-FFL 
GO Term Description P-value 

GO:0006030 chitin metabolic process 1.10E-05 
GO:0007186 G-protein coupled receptor protein signaling pathway 4.02E-05 
GO:0005976 polysaccharide metabolic process 4.30E-05 
GO:0044264 cellular polysaccharide metabolic process 4.30E-05 
GO:0006040 amino sugar metabolic process 5.52E-05 
GO:0006041 glucosamine metabolic process 5.52E-05 
GO:0006044 N-acetylglucosamine metabolic process 5.52E-05 
GO:0006538 glutamate catabolic process 8.73E-04 
GO:0007155 cell adhesion 8.89E-04 
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C) C3-FFL 
GO Term Description P-value 

GO:0001709 cell fate determination 4.01E-06 
GO:0007600 sensory perception 5.49E-06 
GO:0001700 embryonic development via the syncytial blastoderm 6.23E-06 
GO:0009792 embryonic development ending in birth or egg hatching 6.65E-06 
GO:0048856 anatomical structure development 1.12E-05 
GO:0007606 sensory perception of chemical stimulus 2.41E-05 
GO:0009653 anatomical structure morphogenesis 3.43E-05 
GO:0048513 organ development 4.39E-05 
GO:0006355 regulation of transcription, DNA-dependent 6.88E-05 
GO:0051252 regulation of RNA metabolic process 9.37E-05 
GO:0007419 ventral cord development 1.34E-04 
GO:0032502 developmental process 2.05E-04 
GO:0035287 head segmentation 2.65E-04 
GO:0035288 anterior head segmentation 3.45E-04 
GO:0050877 neurological system process 3.75E-04 

 

C) C4-FFL 
GO Term Description P-value 

GO:0005976 polysaccharide metabolic process 2.88E-06 
GO:0044264 cellular polysaccharide metabolic process 2.88E-06 
GO:0006030 chitin metabolic process 3.42E-06 
GO:0006040 amino sugar metabolic process 5.02E-06 
GO:0006041 glucosamine metabolic process 5.02E-06 
GO:0006044 N-acetylglucosamine metabolic process 5.02E-06 
GO:0007186 G-protein coupled receptor protein signaling pathway 3.19E-05 
GO:0007218 neuropeptide signaling pathway 2.13E-04 
GO:0019236 response to pheromone 3.66E-04 
GO:0032501 multicellular organismal process 4.89E-04 
GO:0042221 response to chemical stimulus 7.38E-04 
GO:0050896 response to stimulus 7.44E-04 
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