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ABSTRACT 
Background. Transcriptional regulation in eukaryotes is often 
multifactorial, involving multiple transcription factors binding to 
the same transcription control region (e.g., upstream activating 
sequences and enhancers), and to understand the regulatory 
content of eukaryotic genomes it is necessary to consider the co-
occurrence and spatial relationships of individual binding sites. 
The identification of sequences conserved among related species 
(often known as phylogenetic footprinting) has been successfully 
used to identify individual transcription factor binding sites. Here, 
we extend this concept of functional conservation to higher-order 
features of transcription control regions involved in the 
multifactorial control of gene expression. 

Results. We used the genome sequences of four yeast species of 
the genus Saccharomyces to identify sequences potentially 
involved in multifactorial control of gene expression. We found 
1,117 potential regulatory “templates”: pairs of hexameric 
sequences that are jointly conserved in transcription regulatory 
regions and also exhibit non-random relative spacing. Many of 
the individual sequences in these templates correspond to known 
transcription factor binding sites, and the sets of genes containing 
a particular template in their transcription control regions tend to 
be differentially expressed in conditions where the corresponding 
transcription factors are known to be active. 

Conclusions. The incorporation of both joint conservation and 
spacing constraints of sequence pairs predicts groups of target 
genes that were specific for common patterns of gene expression. 
Our work suggests that positional information, especially the 
relative spacing between transcription factor binding sites, may 
represent a common organizing principle of transcription control 
regions. 

Categories and Subject Descriptors 
J.3 [Life and Medical Sciences]: Biology and genetics 

General Terms 
Algorithms 

Keywords 
Phylogenetic footprinting, comparative genomics, multifactorial 
regulation, transcription regulation, promoter structure 

1. INTRODUCTION 
All organisms have evolved intricate signaling networks that 

sense and respond to their environment. At a cellular level, the 
activation of one or more signaling networks often leads to 
coordinated changes in gene expression, via the regulated activity 
and binding of transcription factors to transcription control 
regions (TCR’s) of genes (e.g. enhancers and upstream activating 
sequences). In yeast and most other eukaryotes, the transcriptional 
regulation of individual genes is often multifactorial, as multiple 
transcription factors may bind to a single TCR [1] [2] [3]. In some 
cases, multiple transcription factors bind to a TCR and act 
independently of one another to alter gene expression in response 
to distinct cellular cues [4]; in other examples, multiple factors 
bind and/or act cooperatively to modulate gene expression via 
direct or indirect physical interactions with each other [5] [6] [7]. 

The challenges in understanding how regulatory information 
is encoded in genomes include both the identification of 
regulatory sequences in TCR’s, and the elucidation of the 
constraints on productive multifactorial regulation. Many 
experiments have shown that specific pairs of factors must be 
bound near each other in order to act cooperatively [8] [9] [10], 
and it is on these spatial constraints that we focus here.  

Previous computational work has been devoted to identifying 
putative transcription factor binding sites. A plethora of 
computational methods has been developed to find over-
represented sequences in a subset of genes believed to contain a 
common transcription factor binding site (reviewed in [11]). The 
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rapid pace of genome sequencing has enabled a complementary 
approach – phylogenetic footprinting (reviewed in [12] [13]) – 
that recognizes that the conservation of sequences across related 
organisms often reflects evolutionary selection for their presence 
in TCR’s. Several algorithms have been developed to perform 
phylogenetic footprinting analyses systematically [14] [15] [16]. 

  After compiling a collection of putative binding sites, 
associations can be made between various binding site 
assortments and gene expression. Some recent approaches include 
Boolean logic [17], regression methods [18] [19] [20], spatial 
clustering [21], and multiple binding site matrix classifiers [22] 
[23] [24]. Spatial information on the relative locations of binding 
sites is ignored in all but the last two classes of approaches. Yet 
even these methods, which often search for fixed arrangements 
among the individual binding sites, may miss permutations of 
binding sites within TCR’s that may still be bound and regulated 
by their corresponding transcription factors. 

  The primary aim of this work was to incorporate positional 
information and phylogenetic footprinting to identify sequence 
motifs that may regulate gene expression. Consequently, we 
expanded the focus of phylogenetic footprinting from the 
conservation of contiguous sequences to higher-order features of 
TCR’s, namely the spatial organization of individual binding 
sites. Since transcription factors participating in multifactorial 
regulation may require physical proximity among their binding 
sites, we searched for groups of conserved sequences that were 
more closely spaced in TCR’s than expected. We refer to these 
spatially organized sequences as conserved word templates. As a 
proof of principle, we started with the simplest example of such 
templates: pairs of conserved 6-bp words. Conservation was 
assessed using the genome sequences of three additional 
Saccharomyces species, which were chosen to be sequenced in 
order to elucidate regulatory sequences conserved among these 
closely related species [25]. To exploit this comparative genome 
data, we have devised a method that systematically tested 
sequence pairs for joint conservation across genomes and close 
spacing within individual TCR’s. Since genes regulated by the 
same set of transcription factors often display similar gene 
expression patterns in certain experimental conditions, we 
identified conserved word pair templates whose gene targets were 
associated with common changes in gene expression. We adopted 
a group-by-sequence approach to first identify genes that 
contained the word pair templates and then to test for significant 
associations with expression levels of the identified genes [26]. 
Significant associations between conserved word pair templates 
and specific gene expression changes, the prevalence of known 
transcription factor binding sites, and the enrichment for common 
functional roles among gene groups, suggest that conserved word 
pair templates comprise sequences important for multifactorial 
regulation in yeast. 

2. CONSERVED WORD PAIR TEMPLATE 
ALGORITHM 
2.1 Overview 
We present a method to find conserved higher-order sequence 
templates from related Saccharomyces genomes. Our method 
incorporates sequential statistical tests, with each step focusing on 
a distinct property of conserved sequence templates. The simplest 

instances of sequence templates involve word pairs and their 
relative spacing. First, word pairs that show enriched conservation 
as a unit were identified using a chi-square test for independence. 
Next, the relative spacing of conserved word pairs was assessed 
using a permutation test. Finally, those conserved word pairs with 
close spacing were verified for functional importance by testing 
for gene expression differences between matching genes and the 
rest of the genome. The output for this algorithm is a P × C data 
matrix, whose entries correspond to the strength of association 
with differential gene expression, i.e. the K-S significance level 
(see §2.5). Note that P is the number of significant conserved 
word pairs, and C is the number of gene expression conditions. 

2.2 Datasets 
Whole-genome shotgun sequencing of Saccharomyces 

bayanus, Saccharomyces mikatae, and Saccharomyces paradoxus 
has been previously described [25]. All of these organisms are 
highly related to Saccharomyces cerevisiae, as they are grouped 
within the sensu stricto branch of the Saccharomyces genus [47]. 
Intergenic regions were aligned using CLUSTALW as described 
[25] and are available from the Saccharomyces Genome Database 
[43]. A total of 4101 CLUSTALW alignments were analyzed. 
These alignments were filtered for orthologs in at least 3 
genomes. 

Gene expression measurements were obtained from the 
Stanford Microarray Database [48] and Rosetta [34]. The main 
experimental types among the 342 conditions examined include 
diauxic shift [27], cell cycle [29] [30], environmental stress 
response [28], DNA damage [31] [32], low phosphate [33], 
cadmium (N. Ogawa and P. O. Brown, unpublished data), and 
inhibition of ergosterol biosynthesis [34]. This data has been log-
transformed (base 2), and each experimental condition has been 
median normalized. 

2.3 Dependent Conservation of Word Pairs 
To assess whether two words were co-conserved in the same 

intergenic regions, a chi-square test of independence was 
systematically conducted for all possible words of length six. We 
defined a word to include a 6-bp sequence and its reverse 
complement. Define a transcription control region (TCR) for a 
gene as the 600 base pairs upstream of its translation start site. 
TCR’s shared between divergently transcribed genes less than 
600 bp long were only counted once. A word was labeled 
conserved in a TCR if all six bases were identical among three or 
more genomes in the CLUSTALW alignment. For each word pair 
(W, V) whose overlap was less than 4, a contingency table Cwv 
was constructed. In this table, Cwv =  # TCR( Iw  ∩  Iv ), where Iw, 
Iv are indicator variables for the presence of each conserved word 
in a TCR. TCR’s shared between divergently transcribed genes 
less than 600 bp long were only counted once. The expected 
counts Ewv were obtained from an independence assumption, i.e. 
the product of the individual word conservation probabilities, 
multiplied by the total number of TCR’s. Thus the chi-square 
statistic with Yates continuity correction was computed according 
to the definition: 
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2.4 Spatial Proximity of Word Pairs 
The second requirement for a conserved sequence template 

involved constraints on spatial arrangements between individual 
words. Any method that evaluates spacing distributions between 
word pairs must take into account positional biases that may be 
present for individual words (A. M. Moses, unpublished results). 
We used a permutation test to evaluate the significance of the 
average minimum distance, excluding overlaps, between 
conserved word pairs. By permuting the TCR labels for one of the 
words, but not the word positions themselves, we retained the 
positional biases of individual words within intergenic regions. 
Within any given TCR t, define pt(W) = {pt

1(W), …, pt 
j(W)} as a 

vector of positions in S. cerevisiae  where word W is conserved. 
Suppose that words W and V were jointly conserved in TCR’s 
T1 … TN. Then the average minimum distance, D , can be 
computed as: 

 
We used a permutation test to generate an empirical null 

distribution of D  for all word pairs with N ≥ 10. After randomly 
permuting the labels t for the position vectors of word V, a 
permutation test statistic, D *, can be calculated as above. By 
repeating this resampling procedure R times, an empirical null 
distribution D null = { D *1, …, D *R } can be obtained. The 
significance of the observed average minimum distance, D , in 
the N promoters was calculated as its quantile in the empirical 
null distribution D null. We set an upper bound of R = 106, but 
stopped permutations early if 20 or more values in D null were 
found less than D . 

Correction for multiple testing involved control of the 
proportion of false positives using a False Discovery Rate method 
[1]. This method has increased power over Bonferroni-type 
methods. Permutation quantiles for all N word pairs tested were 
sorted in non-decreasing order: q1 ≤ … ≤ qN. Let 







 <=

N
iqik i

05.0:max
. Then the first k word pairs in the 

ordering had a corrected significance level of q < 0.05, i.e. the 
rate of false positives is approximately 5%. 
 

2.5 Association between Template-Specified 
Gene Groups and Gene Expression Changes 

So far we have identified word pairs with two properties: 
dependent conservation and spatial proximity among all TCR’s in 
the whole genome. These word pairs can be viewed as sequence-
based rules for selecting a subset of genes based on the 
conservation of an element of TCR architecture. In this stage, we 
would like to evaluate the transcriptional information associated 
with these rules by assaying for gene expression changes among 
genes that match these sequence constraints. 

For each gene expression condition c in our dataset, c ∈ {1, 
…, 342}, we tested the null hypothesis that a gene subset Gwv ⊆ G 
selected by a conserved word pair (w, v) had the same distribution 

of gene expression ratios (Ewv
c) as the entire genome (Ec). The 

alternate hypothesis stated that the two gene expression 
distributions were significantly different. Any gene was an 
element of Go if its corresponding TCR conserved both sequences 
in the word pair. Since the size No of gene subsets may be small 
and the distributions may not be normally distributed, we used the 
nonparametric Kolmogorov-Smirnov (K-S) test. The test statistic 
K compares the cumulative distribution functions Fwv

c and Fc 
corresponding to Ewv

c and Ec by the formula 

)()(max xFxFK ccwv
x

−=
. The significance level of an 

observed value K* can be obtained using a numerical 
approximation [51]. 

A gene subset determined by a word pair was deemed to 
have significantly different expression if its K-S p-value was less 
than a certain threshold. To correct for multiple testing, this 
threshold was established by controlling the False Discovery 
Rate. The significance levels pi from each K-S test were ordered 
in ascending order. Let N represent the total number of K-S tests 
performed, i.e. the number of jointly conserved, closely spaced 
word pairs times the number of gene expression experiments). If k 
was the largest i such that pi < iα / N, then the first k word pairs in 
the ordering were deemed to have a significance level of p < α. 

We ensured that the K-S p-value for the conserved word pair 
subset Go was more significant than subsets Gw or Gv comprised 
of only one conserved word by computing K for Ew

c vs. Ev
c, as 

well as for Ew
c vs. Ec. The marginal improvement of the joint 

word pair was defined as: K (Fo
c vs. Fc ) – max( K (Fw

c vs. Fc ), K 
(Fv

c vs. Fc ) ). 
  

3. RESULTS 
3.1 Identification of conserved word pair 
templates 

We initialized our word list using all 2080 words of length 
six, treating a given word and its reverse complement as identical. 
For each TCR (consisting up to 600 bp upstream of an open 
reading frame), a word was labeled conserved if all six bases were 
identical in at least three of the four Saccharomyces genomes, 
based on the CLUSTALW alignment of that TCR. To 
systematically test whether words were conserved more often in 
the same intergenic regions of the Saccharomyces genomes than 
expected by independent conservation, a chi-square test was 
performed on all possible pairwise combinations of words (see 
§2.3). Pairs of words that overlapped each other by more than 
three nucleotides were excluded. A significant proportion of word 
pairs showed dependent conservation: among the 2.16 million 
word pairs tested, 8452 of them (~0.4%) had conservation c2 
scores greater than 31.1. This threshold corresponds to a 
probability of 0.05 for obtaining one or more false positives after 
a Bonferroni correction for multiple testing. 

Next, we selected word pairs that displayed closer physical 
spacing in intergenic regions than expected by chance. As a 
metric for the closeness in relative spacing between word pairs, 
the average minimum distance between two words in S. 
cerevisiae, , was calculated based on the genes whose TCR’s 
conserved both words. If two non-overlapping words were closely 
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spaced in all TCR’s, we should find D  to be smaller than 
expected by chance. This spacing was assessed using a 
permutation test by selecting the set of genes that contained a 
conserved word pair and then randomizing the assignment of one 
of the words to the genes containing that word (see §2.4). By 
permuting the TCR labels for one of the words, but not the word 
positions themselves, we retained the positional biases of 
individual words within intergenic regions. 

After correcting for multiple testing, a total of 1117 out of 
8452 word pairs (~13%) had significantly small values (FDR q < 
0.05) for D  (Figure 1). As a negative control, we also assayed a 
sample of word pairs that did not show dependent conservation 
(conservation χ2 < 1), yet were jointly conserved in at least 10 
TCR’s. Only 161 out of 42801 (~0.4%) random word pairs with 
non-dependent conservation (χ2  < 1) showed significantly small 
values for D . Figure 2 illustrates the distributions of D  for 
conserved word pair templates, jointly conserved word pairs, and 
randomly conserved word pairs. The medians of these distance 
distributions were 100 nucleotides, 116.5 nucleotides and 132 
nucleotides, respectively. Notably, the median D  for template 
pairs was significantly smaller (p < 0.05) than the median D  for 
randomly conserved pairs. These results indicate that many of the 
word pairs that were conserved in the same intergenic regions of 
multiple Saccharomyces genomes also exhibited closer spacing in 
TCR’s. 

 
Figure 1) Word pairs in conserved word pair templates are 

closely spaced in S. cerevisiae 
Template denotes closely spaced and jointly conserved word pairs 
(χ2 > 31.1, spacing q < 0.05, N = 1117). Depend denotes 
dependently conserved word pairs (χ2 > 31.1, N = 8452) and 
includes all of the word pairs in the template category. Random 
denotes a sample of randomly conserved word pairs (χ2 < 1, N = 
4667). For each category, the distribution of average minimum 
distances is represented by a box-and-whisker plot. 

3.2 Conserved word pair templates were 
significantly associated with gene expression 

Our method identified conserved word pair templates that 
were statistically significant with respect to both co-conservation 
in multiple genomes and close spacing in S. cerevisiae TCR’s. To 
evaluate the regulatory information in these templates, we 
assessed the statistical association between gene groups that 
shared a template and changes in gene expression. Similar to 
other group-by-sequence approaches for finding regulatory 
sequences, we expect that gene subsets defined by common TCR 
sequence rules should have gene expression patterns that are 
similar under conditions where the transcription factors are active, 
yet are different from the average expression of genes in the 
genome [26]. 

To assess the association between conserved word pair 
templates and differentially expressed genes, we identified gene 
subsets that contain both conserved words in the template within 
their TCR’s and observed their expression patterns in S. 
cerevisiae in publicly available datasets ([27] to [34], see §2.5). 
We then conducted Kolmogorov-Smirnov (K-S) tests to evaluate 
for differential gene expression between each gene subset and the 
whole genome. A P × C matrix was computed: each conserved 
word pair in P was assigned a K-S p-value for each experimental 
condition observed in C. (see §2.5). Entries in this matrix (K-S p-
values) were filtered out if the K-S p-value: (1) did not meet the 
threshold for multiple testing; or (2) was less than 10 times more 
significant than the K-S p-value for a gene subset associated with 
either word alone (see §2.5). The latter criterion discounts gene 
expression changes that are due predominantly to the action of a 
single transcription factor. 

 

 
Figure 2) Total number of conserved word pair template 

associations at different K-S significance values 
The horizontal axis shows different multiple testing-corrected 
significance levels for the K-S test (see §2.5). The number of 
closely spaced word pairs meeting this cutoff for different 
minimum numbers of expression conditions is shown on the 
vertical axis. Word pairs were also filtered for an improvement of 
10× over the K-S significance from any single word. 
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Figure 2 displays the number of conserved word pair 
templates that were significantly associated with gene expression 
changes, for varying significance levels of the K-S test, which 
have been corrected for multiple testing (see §2.5). Each line 
indicates the number of gene subsets that were significant in a 
different minimum number of experimental conditions. Several 
hundred closely spaced word pairs were significantly associated 
with differential gene expression. For example, 293 word pairs 
met an FDR-corrected significance threshold of p < 10-3 for 5 or 
more experimental conditions. 

 

3.3 Many identified sequences represent 
known transcription factor binding sites 

Conserved word pair templates that were most strongly 
associated with gene expression changes also agreed with prior 
experiments on transcription factors [35]. In all analyses 
described below, we used a set of 339 word pairs that had 
significant associations with gene expression changes at an FDR-
corrected multiple testing threshold of 0.005 for 10 or more 
experiments. For visualization purposes, we organized the P × C 
matrix by hierarchically clustering the K-S p-values for the 339 
word pairs.  

Hierarchical clustering of this output matrix identified 
groups of word pairs with similar K-S p-values in specific subsets 
of experimental conditions (Figure 4). In many cases, the word 
pairs that clustered together also comprised overlapping hexamer 
sequences, suggesting that some of the hexamers in different pairs 
may represent a larger, somewhat variable sequence (Table 1). 
For example, group #13 in Figure 4 includes 8 word pairs. In each 
of these word pairs, one of the component words – such as 
TCACGT, GCACGT or CACGTG – matched part of the Cbf1p or 
Pho4p binding sites. The other component word in each pair – 
such as AACTGT, ACTGTG, CTGTGG, TGTGGC or GTGGCT 
– represented part of the known Met31/32p binding site 
(AAACTGTGG). Therefore, genes whose TCR’s contained any 
word pair within this group likely contained a conserved Cbf1p or 
Pho4p binding site, along with a conserved Met31/32p binding 
site, and the distances between the conserved sites in these genes 
were also smaller than expected by chance. These results agree 
with the known interaction of Cbf1p and Met31/32p for the 
regulation of genes involved in sulfur utilization (see Discussion). 

Table 1 shows a partial list of the 13 most significant groups 
of consensus sequences, which were assembled by joining 
adjacent word pairs in the clustered output matrix with 
overlapping sequences. Many of these consensus sequences 
matched transcription factor binding sites that had been 
biochemically verified. Several pairs of transcription factors, 
denoted by boldface in Table 1, were not previously known to 
participate in multifactorial regulation. Three of these pairs 
included new putative transcription factor binding sites. In group 
8, the word ACAGCC is found in a template with the GATA 
motif. In group 9, the word CGGGCC is found in a template with 
the binding site for the stress-induced transcription factor, 
Msn2/4p. In group 2, one of the words in each word pair was the 
binding site for Swi4/6p, which regulates the expression of cell-
cycle dependent genes. The other word in each pair was an 
invariant CGCCAA, which is highly similar to, though distinct 
from, the characterized Swi4/6 binding site CRCGAAA [35]. 

  

Figure 3) Multifactorial regulation of Hap1p target genes 
Gene expression patterns are shown for genes whose TCR’s 
contain binding sites for: (A) Hap1p (CCGATA) and Hap2/3/4/5p 
(CCAATC); or (B) Hap1p (CCGATA) and Ecm22p/Upc2p 
(TCGTTT).  The genes are listed in ascending order of minimum 
distance between the two conserved words in the corresponding 
TCR of S. cerevisiae.  Each row represents a given gene’s 
expression pattern under the conditions shown in each column: 
progression into stationary phase (2 h, 4 h, 8 h, 12 h, 1 day, 2 
days, 3 days, 5 days, 7 days, 13 days, 22 days, 28 days of growth) 
[28]; steady-state growth on different carbon sources: ethanol (E), 
fructose (F), galactose (C), glucose (G), mannose (M), raffinose 
(R) and sucrose (S) [28]; and growth in the presence of drugs that 
inhibit ergosterol biosynthesis: itraconazole (I), lovastatin (L) and 
terbinafine (T) [34].  A red color indicates that the gene’s 
expression was induced under those conditions, while a green 
color indicates that the gene was repressed under those 
conditions; black indicates no detectible change in expression, 
and grey indicates missing data.  Gene names highlighted in 
orange (A) or in purple (B) correspond to genes whose products 
are involved in respiration and ergosterol biosynthesis, 
respectively.  Arrows above the columns indicate conditions in 
which the displayed gene groups show significant gene expression 
changes according to the Kolmogorov-Smirnov test, after False 
Discovery Rate correction for multiple testing at a p-value of 
0.005 (blue) or 0.01 (grey). 
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Figure 4) Specific patterns of gene expression changes associated with templates 
The P × C matrix of K-S p-values was hierarchically clustered by rows and visualized with TreeView (http://rana.lbl.gov).  Each row 
corresponds to a conserved word pair template, and each column represents a single gene expression experiment.  The experimental 
conditions are indicated by the color bar above and below the figure, according to the key shown below.  The value in each cell 
corresponds to the K-S p-value of gene expression changes in each condition (column) for a group of genes that contain the conserved 
word pair template (row) in their TCR’s.  An orange color denotes a K-S p-value below the FDR critical value of 0.005 for multiple 
testing, while grey represents values that were not significant.  Word pairs that failed to meet a False Discovery Rate critical value of 0.005 
for multiple testing in 10 or more experiments are not shown.  Some of the most significant conserved word pair associations are labeled 
and annotated in Tables 1 and 2.  Abbreviations for experimental conditions include: ND (nitrogen depletion), SP (stationary phase). 
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Table 1) Gene expression associations for most significant groups of word pairs 
The output P × C matrix of word pairs (P) that were significantly associated (p < 0.005) with at least 10 or more environmental conditions 
(C) was ordered using hierarchical clustering. Numbers correspond to groups of overlapping word pairs indicated in Figure 4. Boldface 
denotes sequence pairs whose involvement in multifactorial regulation has not been previously reported. Consensus sequences were 
assembled from groups of word pairs that were found in adjacent rows in the ordering. Residues are shown in bold if it is contained in at 
least two hexamers. Numbers denote the groups that are indicated in Figure 4. IUPAC codes used: K (G or T); M (A or C); R (A or G); S 
(C or G); W (A or T). 

   Most significant word pair in consensus group 
 Conserved Word 

Pairs (Consensus 
of overlapping 

words) 

Known 
transcription 

factors or motifs 

Conservation 
(χ2, p-val via 
Bonferroni) 

Avg. 
min 
dist 

D  

# 
TCR 

 

Expression conditions with 
significant gene subsets (FDR 

significance) 

1 RCGAAA, 
RACGCG, 

Swi4/6, 
Swi6/Mbp1 

83.0  (7×10-13) 68.1  36 Cell cycle, G1 phase   (10-6) 

2* CACGAAA, 
CGCCAA 

Swi4/6, 
Stb1 (putative) 

55.6  (2×10-7) 78.2 25 Cell cycle, G1 phase   (10-4) 

3* CCGATA, 
TC[GT]TTT 

Hap1, 
Ecm22 | Upc2 

36.2  (0.004) 81.7 30 Ergosterol inhibition (10-4) 
MMS (DNA damage) (10-3) 

4* GATAAG, 
TTCTTT 

GATA, 
TnC 

36.0  (0.005) 100.5 88 Nitrogen depletion 8h   (10-5) 

5 GGCTAA 
CGGCGG 

Ume6, 
Ume6 

179.2 
        (2×10-34) 

81.9 15 Late stationary phase  (10-4) 

6 CCGATA, 
CCAATC 

Hap1, 
Hap2/3/4/5 

35.0  (0.007) 88.6   16 Stationary phase        (10-4) 
Ethanol                       (10-4) 

7 ACCCCA, 
CCGCCG 

Mig1, 
Ume6 | Pdr1/3 

66.7  (7×10-10) 70.5 16 Stationary phase        (10-6) 
Ethanol                       (10-5) 

8* GATAAG, 
ACAGCC 

GATA, 
Novel 

39.5  (0.004) 75.5 21 Nitrogen depletion 8,12h (10-5) 
Stationary phase 10h-2d (10-4) 

9* AAGGGG, 
CGGGCC 

Msn2/4, 
Novel 

33.4  (0.016) 79.6 14 Elutriation 2d, 4d, 6d       (10-5) 
Stationary phase 10h-3d  (0.005) 

10 ANTGAAA, 
GAAAAWT 

rESR2 
(Overlap) 

96.9  (2×10-16) 96.8 68 Repressed in multiple environmental 
stresses (10-6) 

11 G[AC]GATGAG 
TGAAAATTTT 

rESR1 motif, 
rESR2 motif 

240.6  (10-49) 41.6 183 Repressed in multiple environmental 
stresses (10-6) 

12 AWAAGG, 
AGGGG 

Msn2/4 
(Overlap) 

94.7  (5×10-16) 99.0 29 Multiple stresses        (10-3) 

13 
 

ACTGTGGC, 
[GT]CACGTG 

Met31/32, 
Cbf1 | Pho4 

47.5  (2×10-5) 
 

43.5  22 Amino acid starv. (10-6) 
Nitrogen depletion     (10-6) 
Cadmium                    (10-6) 

 
Recent chromatin immunoprecipitation experiments 

suggested that this sequence may represent the binding site for 
Stb1, a transcription factor that binds Swi6 in vitro and is 
implicated in cell cycle regulation [36]. This sequence was 
found in several genes adjacent to intergenic regions bound by 
Stb1 in vivo [37]. 

Some groups of genes with shared word pair templates 
were enriched for known targets of transcription factors. Genes 
with a conserved half-site for the Hap1p transcription factor, as 
well as a conserved Hap2/3/4/5p binding site, in their TCR’s 
were significantly associated with induction in late stationary 
phase (Figure 3A). In addition, many of these genes were more 
highly expressed in growth medium containing ethanol, relative 
to other carbon sources (Figure 3A). Many of these genes 
encode aerobic respiration enzymes, which are required for the 
switch from fermentation to respiration [38] [39]. Indeed, both 
the Hap1p transcription factor and the Hap2/3/4/5p transcription 

factor complex are known to regulate the expression of these 
genes in response to heme and/or oxygen availability and 
carbon source, respectively. By contrast, gene groups with both 
a conserved Hap1p binding site and a conserved Ecm22p or 
Upc2p binding site in their TCR’s were only significantly 
associated with induction in the presence of a drug that inhibited 
ergosterol biosynthesis (Figure 3B). This group of 30 genes 
contained 8 ergosterol biosynthesis genes; this proportion 
represented an enrichment compared to the rest of the genome. 
The transcription factors Ecm22p and Upc2p have been shown 
to induce the expression of ergosterol biosynthesis genes in 
response to low intracellular concentrations of ergosterol, while 
Hap1p is known to regulate the expression of these genes 
according to the availability of heme and oxygen which are 
required for the pathway (see Discussion) [40]. Note that the 
gene groups shown in Figure 3 and Figure 3 showed significant 
gene expression changes in different sets of environmental 
conditions. 
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4. DISCUSSION 
This work describes two principles for analyzing 

combinations of regulatory sequences. First, sequence 
conservation among closely related yeast species was used to find 
sequences that were more likely to be functionally important. 
Secondly, a template approach that considered joint positional 
distributions of word pairs increased the specificity of gene 
expression predictions using sequence-based rules. We have 
demonstrated that higher-order sequence features within TCR’s 
were conserved across multiple Saccharomyces genomes. Closely 
spaced and jointly conserved word pairs were also more likely to 
be associated with gene expression changes. A large proportion of 
words contained in templates matched known transcription factor 
binding sites, and some of the uncharacterized words may 
represent novel regulatory sequences. In many cases, associations 
between templates and gene expression changes were significant 
in conditions when the corresponding transcription factors are 
known to be active. In addition, groups of genes that co-
conserved both words in a template often were enriched for 
common functional roles. These results suggest that conserved 
word pair templates, which were discovered strictly based on 
higher-order properties of sequence conservation, also carry 
biological relevance. 

Conserved word pair templates may be classified under 
several distinct classes of regulatory elements in TCR’s. One 
possible interpretation of templates is that closely spaced 
sequence pairs may promote direct or indirect interactions 
between transcription factors by increasing the local 
concentrations of the individual factors. For example, the 
proximity of Cbf1p and Met31/32p binding sites may promote 
interaction between these factors in recruiting their common 
transcriptional activators, Met4 and Met28. Experimental studies 
on the TCR’s of MET3 and MET28 have demonstrated that the 
binding of Cbf1p enhances the DNA binding affinity of 
Met31/32p [41]. Indeed, biochemical experiments suggest that all 
of these proteins interact at the TCR’s of some sulfur utilization 
genes [41]. 

Another possible regulatory scheme for conserved, closely-
spaced word pairs is that individual sequences found in templates 
may correspond to binding sites for transcription factors that bind 
independently under the same or separate conditions. The Hap1p 
and Hap2/3/4/5p transcription factors, whose binding sites were 
identified in a template, represent an example of multifactorial 
regulation in response to different environmental stimuli [42]. In 
some cases, templates could discern genes that shared binding 
sites for one transcription factor, but were differentially expressed 
under certain sets of conditions. Genes that conserved both Hap1p 
and Hap2/3/4/5p binding sites in their TCR’s included genes 
encoding mitochondrial enzymes, as well as respiration proteins, 
that showed significant induction during growth in stationary 
phase and ethanol (Figure 3A). By contrast, genes that conserved 
both the Hap1p and Upc2p/Ecm22p binding sites in their TCR’s 
were enriched for genes encoding ergosterol biosynthesis 
enzymes. Unlike the genes encoding mitochondrial enzymes, 
these genes showed no expression changes in response to 
different carbon sources, yet they were significantly induced 
under treatment with drugs that inhibit ergosterol biosynthesis: 
itraconazole, lovastatin and terbinafine (Figure 3B) [34]. A 
biochemical link between these two enzyme categories may 
explain their common regulation via Hap1p: the protein products 

of these genes all require the cofactor heme, whose intracellular 
levels are sensed by Hap1p [43] [44]. Our results suggest that 
Hap1p controls the expression of all of these genes in response to 
heme and/or oxygen levels. The expression of genes encoding 
mitochondrial and respiration enzymes may be controlled by 
Hap2/3/4p in response to nonfermentable carbon sources, whereas 
the expression of ergosterol biosynthesis genes may be regulated 
by Ecm22p and/or Upc2p in response to ergosterol levels. 
Whether these factors act cooperatively with, or independently of, 
Hap1p will require further biochemical investigation to elucidate. 

Close spacing between word pairs may be important for 
reasons other than the promotion of transcription factor 
interactions. Different regions of TCR’s at varying windows away 
from translation start sites may be more competent at recruiting or 
inhibiting RNA polymerase. These differences may be influenced 
by nucleosome accessibility, chromatin structure, or DNA 
physical properties, which can be correlated with local A/T 
content (see [45] for references). Notably, we have also found that 
the relative proportions of A and T nucleotides vary considerably 
within the 200 bp closest to translation start sites (A. M. Moses, 
M. B. Eisen and Audrey Gasch, unpublished results). Low-
complexity words that contained 4 or more A’s or T’s could be 
found in many templates (denoted by TnC in Figure 4 and Table 
1); these words may serve as surrogates for a distance window 
from translation start. Transcription factor binding sites that are 
closely spaced to these low-complexity words may be found in 
more transcriptionally competent regions of TCR’s.  

Since transcription factor binding sites often contain 
degenerate positions that reflect specificity, a key limitation of 
our approach is the use of exact words [11]. The known binding 
sites listed in Table 1 correspond to transcription factors with high 
sequence specificities. Since other known binding sites are poorly 
modeled by exact words (in that they bind sequences with relaxed 
specificity at certain positions in their binding sites), our method 
has failed to include them in conserved word pair templates. In 
addition, our method currently requires sequence identity for a 
word to be labeled as conserved. This strict requirement omits 
binding sites that may retain their function, despite mutations in 
degenerate positions that may have little impact on transcription 
factor binding. 

The consideration of joint conservation and close spacing has 
provided insights into how TCR organization may influence the 
multifactorial regulation of gene expression in Saccharomyces 
cerevisiae. These criteria were motivated by experimental studies 
on the positional organization of individual binding sites within 
TCR’s, with the hypothesis that this underlying architecture 
would be functionally conserved. Even more complicated higher-
order sequence rules are apparent in the organization of cis-
regulatory modules in Drosophila melanogaster [46]. 
Nevertheless, a common organizational theme of the TCR’s in 
both of these organisms is the importance of relative spacing 
between transcription factor binding sites. The discovery of 
additional principles for TCR organization will further advance 
our understanding of how regulatory information is encoded in 
genome sequences. 
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