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This paper describes efficient algorithms for determining how buffer space should be
allocated in a flow line. We analyze two problems: a primal problem, which minimizes total
buffer space subject to a production rate constraint; and a dual problem, which maximizes
production rate subject to a total buffer space constraint. The dual problem is solved by
means of a gradient method, and the primal problem is solved using the dual solution.
Numerical results are presented. Profit optimization problems are natural generalizations of
the primal and dual problems, and we show how they can be solved using essentially the
same algorithms.

1. Introduction

1.1. Problem description

Production systems are often organized with machines or work centers connected
in series and separated by buffers. This arrangement is often called a flow line, or
transfer line, or production line. A five-machine line is represented in figure 1, in which
the squares represent machines and the circles represent buffers. Material moves in the
direction of the arrows, from upstream inventory to the first machine for an operation,
to the first buffer where it waits for the second machine, to the second machine, etc.

Material flow may be disrupted by machine failures or variable processing times.
Buffers are inserted between machines to limit the propagation of disruptions, and
this increases the average production rate of the line. Inclusion of buffers requires
additional capital investment and floor space, which may be expensive. Buffering
also increases in-process inventory. If the buffers are too large, the work-in-process
inventory and capital costs incurred will outweigh the benefit of increased productivity.
If the buffers are too small, the machines will be underutilized or demand will not be
met.

Often, the limitation on the amount of in-process inventory is not due to physical
constraints. Instead this limitation is a control policy, for example, a version of the
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Figure 1. Flow line.

kanban policy [38]. It is essential to determine buffer sizes to achieve the desired
performance.

This paper describes efficient algorithms for buffer space allocation. Much liter-
ature analyzes the effects of machine unreliability and buffer sizes on system perfor-
mance. Less effort has been expended to develop methods for optimizing or improving
the allocation of buffer space. This paper is a summary of Schor [44], in which can
be found all details of algorithms and numerical results.

1.2. Approach and outline

This paper provides a unified view of solutions to several versions of the problem.
They are organized according to problem type and model type.

• Problem type. We describe algorithms which choose buffers sizes for a flow line.
They are based on the qualitative properties of the production rate described in
section 2. The number of machines and the reliability and speed parameters of each
machine are assumed to be specified.

∗ Primal. The goal of the primal is to minimize the total buffer space required
for the line to meet or exceed a given average production rate. This formulation
is appropriate if either floor space or the buffering mechanism is expensive, if
work-in-process inventory is inexpensive, and if an average production rate is
mandated.

∗ Dual. The goal of the dual is to maximize the production rate achievable with a
given total buffer space. This is appropriate in cases where the total floor space
is fixed, where the number of buffer locations is fixed, and where the problem
is how to space the machines to get the maximum benefit from the buffers. In
addition, the dual is used in this paper as a subproblem in solving the primal.

∗ Constrained profit maximization. The goal is to maximize profit subject to a
constraint on total buffer space. The solution technique is similar to that of the
dual problem.

∗ Unconstrained profit maximization. The buffer space constraint is relaxed. The
solution technique is similar to that of the primal problem. It uses the constrained
profit maximization problem in the same way that the primal algorithm uses the
dual.

• Model type. We consider systems that may be represented by discrete or continuous
material flow models. In both, the processing time is deterministic. The discrete
material model has the advantage of better representing the discrete nature of typical
factories, but it suffers from two important drawbacks: it is restricted to systems
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with equal processing times, and the buffer sizes (which are the decision variables
in the allocation problems) are integers. The continuous model is better suited
to optimization because its variables are real numbers; it can be used for discrete
part factory design by rounding the buffer sizes after the optimization has been
completed.

∗ Discrete material. In the discrete material, deterministic processing time system,
the machines have equal processing times and geometrically distributed failure
and repair times. The probability of Machine Mi failing during an operation
time while it is operating (operational and not starved or blocked) is pi. The
probability of a repair during an operation time while it is under repair is ri. The
size of Buffer Bi is Ni. Ni is a nonnegative integer; pi and ri are real numbers
in [0,1]. See [7,18]. We use an approximate decomposition method, developed
by Gershwin [17], to determine production rate and average buffer levels. The
DDX algorithm [12], solves the decomposition equations efficiently and produces
estimates for production rate and average buffer levels.

∗ Continuous material. The machines have different processing rates and expo-
nentially distributed failure and repair times. The amount of material produced
during (t, t + δt) by Machine Mi while it is fully operational (operational, not
starved or blocked, and not slowed down by an adjacent machine) is µiδt. The
probability of Machine Mi failing during such an interval is piδt. The probability
of a repair during (t, t + δt) while it is under repair is riδt. The size of Buffer
Bi is Ni. µi, pi, ri, and Ni are nonnegative real numbers. The decomposition
for the continuous model, and the ADDX algorithm, with which we evaluate its
performance measures, were developed by Burman [6]. The ADDX algorithm
approximately determines the production rate and average in-process inventory
for this kind of system, by a decomposition method which is an extension of the
Gershwin [17]–Dallery–David–Xie [12] method.

Numerical results are provided for selected cases.
Qualitative properties of flow line models are discussed in section 2. The primal

and dual problem formulations are presented in section 3. The primal and dual problem
solution methods are summarized in sections 4 and 5. The behavior of the algorithms is
discussed in section 6. We reformulate the problems to maximize profit (and therefore
to include inventory costs) in section 7. We conclude in section 8.

1.3. Prior literature

There is a substantial literature on the analysis of transfer or flow lines [13]. This
literature is mainly concerned with the prediction of performance. Much of it is aimed
at evaluating the production rate of a system with specified machines and buffers. One
ultimate goal of the literature is to aid the designers of such systems to make efficient
choices of machines and buffers. To do this, two elements are needed: a fast, accurate
method of evaluating systems, and an efficient way of selecting systems to evaluate.
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Fast evaluation methods exist, but as Martin [36] says, “. . . the more practical goal of
optimizing system design is one less visibly pursued in the literature.”

Here, we do not review the literature on evaluation; we concentrate instead on
flow line optimization papers and on papers about relevant qualitative properties of
production lines. The main contribution of this paper is a set of algorithms that effi-
ciently select the minimal buffer space in a flow line to achieve a specified production
rate. The algorithms are based on analytical approximations of the Buzacott model
of a flow line, so they are appropriate for automated systems, and they are fast. By
contrast, some papers in the literature are based on simulation; others use different
analytic models; and nearly all have other objective functions.

1.3.1. Qualitative properties
In order for gradient methods to work well, certain qualitative properties are

needed. Although the independent variables often are integers, there should be some
kind of continuity: a small change in a buffer size should lead to a small change in
the system’s performance. (Many line optimization papers assume this implicitly.) In
addition, many methods rely on monotonicity: an increase in a buffer’s size (while all
the other buffer sizes are increased or held constant) increases production rate. Finally,
for a gradient method to find a unique optimum, it is helpful for some form of concavity
to hold. That is, the increase in production rate due to a unit increase in buffer size
decreases as the buffer size increases. (It is interesting to observe how much of the
work on line optimization was done before the publication of the papers described in
this section.) Combinatorial approaches, which do not exploit these properties, can be
expected to be relatively inefficient.

Several papers have studied qualitative properties of models of manufacturing
systems that are relevant to optimization. The properties have been proved for classes
of systems other than those we study here, but we believe that the systems are similar
enough to justify assuming the properties we need. Numerical experiments support
this assumption.

Shanthikumar and Yao [48] studied cyclic queuing networks with finite buffers.
Service processes were exponential, with rates that are increasing functions of the
number of customers in the queue. They showed that the production rate is an increas-
ing function of the buffer sizes. Adan and Van der Wal [1] proved monotonicity of
the production rate with respect to buffer sizes of acyclic systems using a sample path
method. That is, they also showed that the production rate increases as each buffer is
enlarged. They prove this for a more general class of networks than the one studied
here.

Meester and Shanthikumar [37] studied tandem queueing systems with reliable
exponential servers and finite storage areas. They showed that the production rate
is an increasing, concave function of the buffer sizes. Anantharam and Tsoucas [3]
studied systems of queues in series with single exponential servers, finite buffers, and
communication blocking (blocking before service). They showed that the throughput
(production rate) is a concave function of the buffer sizes. Glasserman and Yao [22]
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studied similar systems under a wide variety of blocking mechanisms, and demon-
strated concavity for systems with exponential processing times, and other qualitative
properties for general service time distributions. Dallery et al. [14] generalized the
results of Shanthikumar and Yao [48] and Meester and Shanthikumar [37] by estab-
lishing the concavity of throughput as a function of buffer sizes (and initial conditions,
for a closed network) for a greatly extended class of distributions of service times.
Useful properties for a general class of related systems were studied by Tayur [52]
and Muckstadt and Tayur [38]. Buzacott and Shanthikumar [9] summarized much of
the relevant literature on manufacturing system design.

1.3.2. Simulation-based approaches
Many papers have proposed design methodologies based on evaluation by simu-

lation. Because simulation takes longer than analytical methods on the same problem,
even the most recent of such methods are slower than analytical methods. The main
advantage of simulation is that it has the potential for dealing with a larger class of
systems than analytical methods.

Barten [5] simulated a set of cases, and interpolated a curve fit for delay time as
a function of storage capacity for several line lengths, assuming normally distributed
operation times. He formed a cost function, and calculated the optimal storage capacity.
Freeman [16] simulated short lines (two and three stages) with unreliable machines.
Even under these limited conditions, he was able to show that the placement and sizes
of buffers is important, and he provided some preliminary rules about how to allocate
storage space.

Anderson and Moodie [4] simulated two classes of production lines with reliable
machines: one class had identical, normally distributed service times; the other had
identical, exponentially distributed service times. All the buffers in each line had
identical sizes. In each case, average in-process inventory and delay (evidently 1.0-
utilization) were fitted to simple functions of the length of the lines and the buffer
sizes. Cost functions were also developed, and optimal buffer sizes were calculated
from them. Martin [35,36] extended this work by refining the delay and inventory
functions and generalizing the cost and profit functions. He studied the performance
of the line as a function of line length and buffer size.

Powell [42] and Powell and Pyke [43] simulated flow lines to determine the
optimal locations and amounts of buffering. In their systems, operation times are
random but machines or workstations do not fail. As a consequence, the buffer sizes
they found were small. They also suggested some rules of thumb for buffer sizing and
placement.

Chow [11] and Liu and Lin [34] used simulation to construct functions to predict
the throughput and the CV of the interdeparture time of a reliable two-machine line. Liu
and Lin [34] improved Chow’s approach by designing a procedure that required fewer
runs to construct these functions. They also proposed an aggregation method, which
represented the long line as a single two-machine line, to extend their results to longer
lines. They used this in a dynamic programming formulation to solve the production
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rate maximization problem. They solve the minimum total buffer space problem by
using the solution to the production rate maximization problem. Starting with buffers
of size zero, they evaluated the maximum production rate for each value of total
space. They increased the space by one and repeated until the throughput constraint
was satisfied. They performed experiments on lines of less than ten machines with a
total buffer space of less than fifty. When evaluating longer lines they only considered
bottleneck machines.

Another important class of simulation-based papers optimize lines by means of
perturbation analysis. Ho et al. [26] was the first of these. In this paper, a Buzacott-
like model of a transfer line (one with discrete parts, identical constant processing
times, and geometrically distributed repair and failure times) was simulated. By means
of a sophisticated analysis, an estimate of the gradient of the production rate with
respect to all the buffer sizes was determined from only one run of the simulation.
This estimate was then used in a steepest descent method for solving the dual problem
(see also Ho et al. [27]). Caramanis [10] applied a similar technique to a line with
deterministic but different processing times (and exponential repair and failure times).
The cost function depended on buffer capacity, average inventory, and production rate.
A more recent paper, which studied the optimization of production rate in a continuous
material model of a flow line (subject to linear constraints on the line parameters) by
similar techniques is Plambeck et al. [41].

1.3.3. Exploration of the optimum by exact numerical evaluation
Hillier and So [24] studied systems of unreliable machines and finite buffers.

They represented the systems as finite queues in series with two-stage Coxian distrib-
uted operation times. Using an exact numerical method for short lines (5 stations or
less) and small buffers (4 or less), they evaluated all plausible optimal distributions of
buffer sizes in order to find the optimum. Hillier et al. [25] studied a problem which is
similar to the dual described here, the maximization of the production rate subject to a
total buffer space constraint. As is typical of the papers in the series by Hillier and his
co-authors, they evaluated a large number of cases to find the optimum, and charac-
terized the optimal distribution. This methodology requires small, simple lines: their
machines were reliable with exponential processing times, their lines had no more than
eight stations, and their buffers were no larger than 14. When all machines were the
same, they observed an inverted bowl phenomenon, in which the optimal distribution
has smaller buffers near the ends of the line, and larger buffers in the interior.

The main goal of these papers has been to develop an understanding of the
structure of optimal systems. By contrast, our goal is to develop efficient methods for
obtaining an optimum (or a near-optimum). In addition, these papers tend to deal with
models of reliable work centers with processing times (which may be appropriate for
manual systems). This paper deals with deterministic processing time models which
are appropriate for automated systems with fixed processing times and random failures.
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1.3.4. Other algorithms and approaches
Early papers. The early papers on buffer allocation in flow lines made various sim-
plifications or restrictions in order to obtain results. Small systems are easier to analyze
than large systems, and reliable machines with exponential processing times are easier
to analyze than machines with more realistic behavior.

One of the earliest papers in the production line literature was that of Sevast’yanov
[47]. This paper included an exact solution of a two-machine line, and an approx-
imate analysis of longer lines. (Some ideas that have been implemented in the last
fifteen years were anticipated by this paper.) It also contained formulations of stor-
age size optimization problems that are similar to those here. Numerical results were
not included, no doubt due to the unavailability of computers, but theoretical results
demonstrated that buffer sizes should be chosen so that the apparent upstream failure
rate should equal the apparent downstream failure rate, for an observer in each buffer.

Hatcher [23] studied reliable systems with exponential processing times and finite
buffers, and investigated the allocation of capacity in three-stage, two-buffer systems.
(However, there is an error in the evaluation of the line. See Knott [31].) Kraemer
and Love [32] optimize the profit in a two-stage, one-buffer system with reliable,
exponential machines. Profit is revenue minus inventory carrying cost minus storage
facility cost; revenue is proportional to production rate; inventory carrying cost is
proportional to expected in-process inventory; and storage facility cost is proportional
to the buffer size.

Sheskin [49] studied the allocation of buffer space in systems like ours: those
with unreliable machines with equal, deterministic processing times, and finite buffers.
However, he restricted his analysis to the case where ri + pi = 1 (in our notation),
which is equivalent to assuming that the machine repair state at time t+1 is independent
of the state at time t. In addition, he assumed time-dependent failures, i.e., that
machines could fail even if they were starved or blocked. A decomposition method
was used to produce numerical results for small systems with small buffers. These
results led to some rules of thumb on the allocation of buffer space to maximize
production rate. Soyster et al. [51] used the same model to study the maximization of
production rate subject to general linear inequality constraints on buffer sizes. They
approximated the production rate for small systems and used an integer programming
package to find optimal allocations of buffer space.

Altiok and Stidham [2] studied systems with exponentially distributed service, re-
pair, and failure times. Their goal was to maximize average profit, which increased with
production rate and decreased with total average inventory. There were no constraints
on total buffer space. They evaluated the steady state distribution by numerically
solving the transition equations, so they were limited to small systems.

More recent papers. Chow [11] developed an aggregation procedure for evaluating
production lines. He developed a dynamic programming procedure to maximize pro-
duction rate subject to a total buffer space constraint.



124 S.B. Gershwin, J.E. Schor / Efficient algorithms for buffer space allocation

Smith and Daskalaki [50] developed a method for general networks of reliable
exponential machines with random routing and finite buffers. They formed an uncon-
strained optimization problem. In their profit objective, production rate had a positive
coefficient, and average buffer level had a negative coefficient. A standard optimiza-
tion method was used. By contrast, we deal with unreliable machines with constant
processing time and fixed routing in a tandem network, and we develop a special
purpose optimization method.

Jafari and Shanthikumar [30] studied a problem similar to our dual: maximiz-
ing the production rate subject to the total storage space constraint. They included
scrapping in their model, and they evaluated their lines in a manner similar to the
method used here. They studied two optimization methods: a dynamic programming
algorithm, and a greedy heuristic.

Park [40] developed a two-phase tree search branch and bound technique to solve
some of the same problems that we investigate here. He restricted his analysis to the
same discrete material model that we study. He identified four kinds of problems:
problem 1 is the same as our primal; problem 2 is a generalization of our dual (in
which the buffer sizes may be weighted with different coefficients, and in which there
may be more than one linear constraint); problem 3 seeks to minimize the total buffer
space subject to the production rate requirement of problem 1 (and our primal) and to
the generalized buffer limits of problem 2. Problem 4 seems to have two objectives:
to simultaneously maximize production rate while minimizing total buffer space. Park
also included a survey of earlier buffer allocation work.

Jacobs and Meerkov [28,29] studied the improvability of production line systems.
While their definition of “improvable” appears equivalent to “non-optimal”, their goal
was not the design of systems. Rather, they sought methods for efficiently improving
the performance of existing systems using data that is available as the systems operate.
Jacobs and Meerkov [28,29] employ the concept of improvability to determine how
buffer space should be allocated. They propose a method for determining whether the
individual buffer sizes may be changed, while holding the total buffer space constant,
so that the production rate will increase. The flow line model they study is similar to
that of Sheskin [49] and Soyster et al. [51]. Kuo et al. [33] described an application.

Seong et al. [45] studied our dual problem: they maximized the production rate
subject to a constraint on the total buffer size. (This is our dual, and Park’s problem 2.)
In Seong et al. [46], they studied the same objective function as Altiok and Stidham
[2] with general linear constraints on buffer sizes. Material was assumed continuous,
machine operation speeds were deterministic and equal, and repairs and failures were
exponentially distributed. They solved the problem with a gradient projection algo-
rithm. They used a similar approximation of the gradient of the production rate as
we do below. Seong et al. [45] used a gradient method to solve the production rate
maximization problem for a flow line with exponentially distributed failure, repair,
and processing times. Seong et al. [46] also solved this problem and the profit max-
imization problem for a specified total buffer space for a continuous flow line. We
compare our results with theirs in section 7. Dogan and Altiok [15] use decomposition
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to estimate the throughput gradient vector with respect to repair rates. Their ultimate
goal is to optimize “repair rate allocation”. Altiok and Yamashita [53] observed a
similar primal/dual relationship as ours, and solved the dual problem using a dynamic
programming approach.

Gershwin and Goldis [20] employed a gradient method to solve the primal prob-
lem. Their algorithm was based on the observation that if the production rate is
expanded to first order the problem may be formulated as an integer linear program.
They guaranteed that their solutions are optimal or near-optimal. The algorithm pre-
sented here converges much more quickly in the majority of the cases we study.

2. Definitions and properties

2.1. Models, parameters, and notation

In the following, Ni, the size of Buffer Bi, is the decision variable, and P is the
production rate of the line. The line has k machines and k− 1 buffers. In the discrete
material formulation, all machines are assumed to have the same operation time, which
we use as the time unit. The parameters of Machine Mi are pi, the probability of a
failure during a time unit while the machine is operating; and ri, the probability of a
repair during a time unit while the machine is down.

In the continuous material formulation, workpieces are treated like a continuous
fluid. This is one way of modeling machines that have different speeds. The rate at
which Machine Mi processes material, when it is operational and neither starved nor
blocked is µi. That is, it processes µiδt units of material in a time interval of length
δt. The reliability parameters of Machine Mi are pi and ri. They are probability rates:
piδt is the probability of a failure during a time period of length δt during which the
machine is operating and neither starved nor blocked; and riδt is the probability of
a repair during a δt time period during which the machine is down. Details of both
models can be found in Gershwin [18].

Although the production rate P is a function of machine speeds and reliabilities
(and, in general, other attributes not treated here), we vary only buffer sizes, so we
write P = P (N1, . . . ,Nk−1).

2.2. Machines

Isolated quantities are quantities of a machine that are independent of the rest of
the line. The isolated efficiency of Machine Mi is given by

ei =
ri

ri + pi
.

In the discrete material model, the operation time is 1 and the production rate
is the average number of parts produced in one time unit. Therefore, the isolated
production rate is the same as the isolated efficiency.
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In the continuous material model, the production rate of Machine Mi is µi when
it is operating and not influenced by other machines or buffers. Therefore, its isolated
production rate is given by ρi = µiei.

2.3. Lines

2.3.1. Quantitative properties
The production rate P when all buffer sizes are infinite is the minimum of the

isolated production rates of all the machines in the line. That is, in the discrete material
case,

P (∞, . . . ,∞) = min
i=1,...,k

ei.

In the continuous material case,

P (∞, . . . ,∞) = min
i=1,...,k

ρi.

In the deterministic processing time model, the production rate when all buffers
have size 0 is [7]

P (0, . . . , 0) =
1

1 +
∑k

i=1 pi/ri
. (1)

A similar equation is available for the continuous material case. It is more complex
when the µi are not the same.

When there are more than two machines and all Ni are neither infinite nor zero,
the production rate and average inventory levels cannot be calculated analytically or
exactly even numerically. Decomposition methods [6,17,18] and iterative algorithms
[6,12,18] must be used. These algorithms work by calculating ru(i), pu(i), rd(i), and
pd(i) (and also µu(i) and µd(i) for the continuous material case), the parameters of
fictitious machines that represent the behavior of the flow of material into and out of
Buffer Bi. As indicated in section 5.4, these methods should be adapted for use in the
algorithms described here.

2.3.2. Qualitative properties
We assume the following qualitative properties:

• Continuity. A small change in any Ni creates a small change in P .
• Monotonicity. The production rate increases monotonically in each Ni.
• Concavity. The production rate appears to be a concave function of the vector (N1,
. . . , Nk−1).

These properties are evident in figure 2, which shows how production rate varies
with buffer sizes for the three-machine line whose parameters are given in table 1.
Figure 3 shows the curves of constant P for this case. (The optimal curve is described
in section 5.2.) The literature provides proofs of these properties for similar systems.
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Figure 2. P vs. N1 and N2.

Figure 3. Iso-P lines.

Table 1
Three-machine line parameters.

Machine ri pi

1 0.35 0.037
2 0.15 0.015
3 0.4 0.02
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3. Primal and dual problem

In all of these problems, the buffer sizes have lower bounds. In the discrete
material formulation, it is convenient to restrict Ni to be greater than or equal to 4.
This is because the functional forms of the production rate and average buffer levels
are different for Ni < 4 than for Ni > 4. We therefore write Ni > NMIN, where
NMIN = 4 in the discrete material case and NMIN = 0 in the continuous material case.

3.1. Primal problem

In the primal problem, we seek the buffer sizes (N1, . . . ,Nk−1) that minimize
total buffer space NTOTAL such that the production rate P is greater than or equal to a
specified value P ∗. Or,

Minimize NTOTAL =
k−1∑
i=1

Ni (2)

subject to P (N1, . . . ,Nk−1) > P ∗; P ∗ specified, (3)

Ni > NMIN, i = 1, . . . , k − 1.

This problem is difficult because the constraint P > P ∗ cannot be expressed in
closed form. Consequently, even if we know a value of (N1, . . . ,Nk−1) satisfying
P (N1, . . . ,Nk−1) = P ∗, it is difficult to construct another (N1, . . . ,Nk−1) that will
also be on that surface.

The qualitative properties ensure that a solution will be found with constraint
(3) satisfied with equality. Since the properties appear to hold strictly, there will be a
unique solution.

3.2. Dual problem

In the dual problem, we seek the buffer sizes N = (N1, . . . ,Nk−1) that maximize
the production rate P such that the total buffer space is equal to a specified value
NTOTAL. That is,

Maximize P (N1, . . . ,Nk−1) (4)

subject to NTOTAL =
k−1∑
i=1

Ni; NTOTAL specified, (5)

Ni > NMIN, i = 1, . . . , k − 1.

The input to this problem is NTOTAL and the outputs are the optimal PMAX and
(N1, . . . ,Nk−1). The resulting maximum value of P is written PMAX(NTOTAL).
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4. Dual algorithm

The dual algorithm is a gradient algorithm. An initial guess N is selected and
a direction to move in (N1, . . . ,Nk−1) space is determined. A linear search is then
conducted in that direction until a maximum is encountered. This becomes the next
guess. A new direction is chosen and the process continues until no improvement is
realized.

The dual problem is relatively easy to solve, and the dual algorithm is relatively
easy to implement, because the constraint set (5) is a plane. As a result, large steps
may be taken.

To determine the search direction, we find the gradient g according to a forward
or backward difference formula. The forward difference is

gi =
P (N1, . . . ,Ni + δN , . . . ,Nk−1)− P (N1, . . . ,Ni, . . . ,Nk−1)

δN
. (6)

Monotonicity guarantees that gi > 0 for all i.
We must select δN = N̂ −N (where N is the most recent guess of the dual

solution and N̂ is the next guess) to achieve the greatest increase in P and to continue
to satisfy constraint (5). We construct the search direction p by projecting g onto the

Figure 4. Block diagram of dual algorithm.



130 S.B. Gershwin, J.E. Schor / Efficient algorithms for buffer space allocation

hyperplane
∑k−1

i=1 δNi = 0 as follows:

ḡ =
1

k − 1

k−1∑
i=1

gi; pi = gi − ḡ. (7)

An exception occurs when Nq = NMIN and pq 6 0 for some q. We calculate
the new direction by deleting the q-th component of g and setting pq = 0. Then
we recalculate the other components of p using (7), and the new g. This process is
continued until a feasible step may be taken or all components of g are deleted.

We find the scalar A such that N̂ = N + δN = N + Ap maximizes P . Then
we calculate the next gradient g and repeat. This process ends when all components
of g are sufficiently small.

A block diagram of this algorithm appears in figure 4.

5. Primal algorithm

5.1. Algorithm structure

It is difficult to construct (N1, . . . ,Nk−1) to satisfy constraint (3) with equality.
By using the dual algorithm as part of the solution of the primal problem, we avoid
having to search surfaces like those of figure 2.

We solve the primal problem by dividing it into two subproblems: the dual and
the one-dimensional primal problem (ODPP). The primal problem is: find NTOTAL such
that PMAX(NTOTAL) = P ∗. The dual algorithm is used to evaluate PMAX(NTOTAL).

Let N (NTOTAL) be the distribution of buffer space that solves the dual problem
with total buffer space NTOTAL. The optimal curve is the set of N (NTOTAL) as NTOTAL

varies over a range of values. An example of an optimal curve appears in figure 3.
The nearly straight optimal curve is helpful in making the algorithm efficient.

Linearizing it leads to a very good initial guess of (N1, . . . ,Nk−1) for the dual algo-
rithm.

5.2. One-Dimensional Primal Problem (ODPP)

Figure 5 is the graph of PMAX(NTOTAL) for the three-machine, two-buffer system
determined in table 1. (This is the same system that generated figure 3.)

Consider the following one-dimensional problem:

Minimize NTOTAL (8)

subject to PMAX(NTOTAL) > P ∗; P ∗ specified,

NTOTAL > (k − 1)NMIN.

Let the solution be called NTOTAL∗. This is essentially the same as the primal
problem because the same NTOTAL∗ satisfies both, and because N (NTOTAL∗) satisfies
the primal.
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Figure 5. PMAX vs. NTOTAL.

Schor [44] develops a one-dimensional search which is based on the property that
PMAX(NTOTAL) is monotonically increasing in NTOTAL. The algorithm requires an initial
guess, N1. We evaluate PMAX(N1) using the dual algorithm. We also need PMAX(0), the
production rate of the line when all buffers are of size zero. The evaluation of PMAX(0)
is described in section 5.4 under “Necessity”. We construct a linear approximation of
PMAX(NTOTAL), and we use this to estimate N2, the second guess.

For j > 2, PMAX(N j) is evaluated using the dual algorithm, j is incremented and
then we iterate. Each iteration uses N j and N j−1 to construct the next linear approx-
imation of PMAX(NTOTAL). The process continues until PMAX(NTOTAL) is sufficiently
close to P ∗.

5.3. Algorithm

A block diagram of this algorithm appears in figure 6. The algorithm is initialized
with N0 = (k−1)NMIN, j = 2, and with values of N1 and search parameters specified.
PMAX(N1) is obtained by solving the dual; PMAX(N0) is obtained from Buzacott’s zero-
buffer formula in the discrete material case (in which case it is an approximation), or
from evaluating the ADDX algorithm for Ni = 0 for all i in the continuous case.

N j is determined from N j−2 and N j−1 by approximating the inverse function
of P (NTOTAL) with a straight line. That is, we approximate

NTOTAL ≈ mPMAX + b,
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Figure 6. Block diagram of primal algorithm.

where

m =
N j−1 −N j−2

PMAX(N j−1)− PMAX(N j−2)
, b = N j−1 −mPMAX

(
N j−1)

and we select

N j = mP ∗ + b.

We can also write this as

N j = AN j−1 +BN j−2, (9)

where

A =
P ∗ − PMAX(N j−2)

PMAX(N j−1)− PMAX(N j−2)
, B =

PMAX(N j−1)− P ∗
PMAX(N j−1)− PMAX(N j−2)

.

This approach must be modified when NTOTAL is large because the PMAX vs.
NTOTAL curve (figure 5) is very flat.

The dual algorithm is used to evaluate PMAX(N j). If PMAX(N j) is sufficiently
close to P ∗, the algorithm terminates.
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5.4. Implementation issues

There are some important issues to consider when implementing these algorithms.

Feasibility. We check feasibility by requiring that the isolated production rate of each
machine is greater than the production rate target. That is, in the discrete material case,
a solution exists only if

P ∗ < min
i

ri
ri + pi

and in the continuous material case, a solution exists only if

P ∗ < min
i

riµi
ri + pi

.

Necessity. We also want to determine if there is a need for buffers. If the production
rate of the line with no buffers is greater than P ∗ there is no reason to run the
algorithm. When the deterministic processing time model is used, calculate P (0, . . . , 0)
according to (1). If the processing rates of the machines are different, we invoke the
ADDX algorithm with Ni = 0 for all i to evaluate P (0, . . . , 0). In either case, if
P (0, . . . , 0) > P ∗, then all the optimal buffer sizes are 0.

ADDX and DDX algorithm initialization. These are iterative algorithms that must be
initialized whenever they are invoked. Here, instead of a standard initialization, we use
the final value of (N1, . . . ,Nk−1) from the last evaluation. This decreases the number
of iterations required for the algorithms to converge. (See Gershwin and Goldis [20].)

Dual initialization. Just as the next guess for NTOTAL is obtained from locally lin-
earizing the PMAX(NTOTAL) graph, a good guess for (N1, . . . ,Nk−1) can be obtained
from linearizing the optimal curve.

Rounding. In the final step of the algorithms for continuous material models (if the
actual line is discrete), we round N i so that the solution is integer. This can sometimes
reduce P to below the target P ∗, so some adjustment is made.

6. Algorithm behavior

6.1. Dual

Schor [44] observes that the solutions are either optimal or very close to optimal
in all of the cases studied. The accuracy was established by comparing results with an
algorithm of Gershwin and Goldis [20]. Gershwin and Goldis established the accuracy
of their solutions by comparing them to the results of an exhaustive search.

When a continuous model is used for a discrete system, Schor observed that the
accuracy of the solution is affected by the rounding methodology.
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Table 2
Five-machine line (Ho et al. [27]).

Machine 1 2 3 4 5

MTTR = 1/r 11 19 12 7 7
MTTF = 1/p 20 167 22 22 26

Table 3
Buffer allocation for a five-machine line.

Buffer i
Case 1 2 3 4 N P (DDX) P (simulation)

Ho et al. 5 11 8 7 31 0.4914 0.4931
Dual 7 10 10 4 31 0.4943 0.4962

6.1.1. Discrete five-machine system
The optimal allocation algorithm of Ho et al. [26] is an iterative simulation-

based algorithm. It has an efficient method that determines the production rate and
gradient by simulating a transfer line once rather than k times. In this algorithm, A is
determined empirically (and is evidently constant throughout the algorithm), and the
next guess N̂ is N +Ap, where N is the previous guess. Simulation is then used to
estimate P (N1, . . . ,Nk−1) and g for each guess. When no improvement is realized,
the algorithm stops.

In this example, we are determining the optimal buffer allocation for the five-
machine discrete material line described in table 2. The final buffer distributions are
presented in table 3. The production rates for both buffer distributions are calculated
using the DDX algorithm and simulation. The distribution of buffer space seemed to
be quite different, but the total buffer space and the production rate were very close.

The simulation was run for 50 runs of 100,000 cycles each and it required more
than 5 minutes. To run the dual algorithm required 0.3 seconds. (This experiment was
performed on a Sun SparcStation 2.)

6.1.2. Continuous seven-machine system
In this example, the machines have different processing times so we cannot use

the discrete material analytical model. Ho et al. have no such restriction because they
use simulation. As a result, we compare the optimal distribution that we get from
using the continuous material model and then rounding with the distribution obtained
by Ho et al.

We are seeking the optimal buffer allocation for the seven-machine line described
in table 4. The final buffer distributions are presented in table 5. The production rates
reported in the last column of table 5 are calculated using the ADDX algorithm.
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Table 4
Seven-machine line (Ho et al. [26]).

Machine 1 2 3 4 5 6 7

MTTR = 1/r 450 760 460 270 270 650 320
MTTF = 1/p 820 5700 870 830 970 1900 1100
Cycle time = 1/µ 40 34 39 38 37 40 43

Table 5
Buffer allocation for a seven-machine line.

Buffer i
Case 1 2 3 4 5 6 N ADDX production rate

Ho et al. 5 11 8 7 19 4 54 0.0126
Dual 8 10 13 10 9 4 54 0.0128

Table 6
Twelve-machine line (Park [40]).

i 1 2 3 4 5 6 7 8 9 10 11 12

ri 0.35 0.15 0.4 0.4 0.3 0.2 0.3 0.3 0.4 0.4 0.3 0.25
pi 0.037 0.015 0.02 0.03 0.03 0.01 0.02 0.02 0.02 0.03 0.03 0.01

6.2. Primal

The deterministic processing time model is used for all the examples in this
chapter. We have initialized Ni = 5 ∀i for all examples unless we explicitly state
otherwise.

Again, Schor [44] compared his results with those of Gershwin and Goldis [20],
who established the accuracy of their solutions by comparison with the results of an
exhaustive search. The search was performed for several five-machine lines and buffer
sizes of up to 20. In all cases, NTOTAL is either the same or it differs by 1.

6.2.1. Comparison with prior work
In this section, we compare the performance of the primal algorithm to algo-

rithms developed by Park [40] and Gershwin and Goldis [20]. Park’s algorithm uses a
two-phase tree search method and does not guarantee an optimal solution. Gershwin
and Goldis’ “combined” algorithm (called GG here) is a gradient algorithm which
takes advantage of the decomposition to obtain a crude and cheap approximation of
the gradient in the early iterations, and uses a more accurate approximation at the end.
(This could be done with any iterative algorithm.)

Both the Park and GG algorithms solve the primal problem for the discrete
material, deterministic processing time model. Both algorithms use the DDX algorithm
to evaluate P (N1, . . . ,Nk−1). Both papers present results for the twelve-machine line
described in table 6.
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Table 7
Comparison of algorithms.

Case Target Park GG Primal
rate Actual Long N Actual Evals. N Actual Evals. N

rate line rate long line rate long line
evals. (two-mach.) (two-mach.)

1 0.85 0.8396 739 84
2 0.85 0.8420 1,107 84
3 0.85 0.8505 1,659 93 0.8507 182 87 0.8507 114 87
4 0.85 0.8505 1,838 93 (125,923) (79,140)

5 0.895 0.8950 510 390 0.8950 1,173 242 0.8950 342 243
(1,481,928) (534,820)

Figure 7. Two-machine evaluations as a function of P .

Table 7 compares the total buffer size, production rates, and number of long
line and two-machine evaluations for experiments with two different values of
P ∗. The initial guess for the primal and GG algorithms, in both cases, is N =
(5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5). (Park’s algorithm does not require an initial guess.) Cases
1–4 are all the same problem: Park runs his algorithm with different search parameters.

We feel that the number of two-machine evaluations is the best measure of the
run time of the algorithms because this measure is computer-independent. Park reports
the number of long line evaluations. This is also independent of the computer, but it
is a less absolute measure because there is more flexibility in the long line evaluation.
(The initial conditions and the solution accuracy can vary during the course of the
algorithm.)
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Table 8
Ten-machine block.

Machine i
1 2 3 4 5 6 7 8 9 10

ri 0.094 0.095 0.045 0.078 0.069 0.094 0.095 0.045 0.078 0.069
pi 0.007 0.008 0.003 0.004 0.006 0.007 0.008 0.003 0.004 0.006
Pi 0.93 0.92 0.94 0.95 0.92 0.93 0.92 0.94 0.95 0.92

Table 9
Long line computation times.

Number of machines Two-machine evals. N

Primal GG Primal GG

10 82,176 258,661 433 443
20 1,814,868 6,867,878 995 995
30 15,955,968 47,157,058 1,556 1,557

For cases 1–4 the GG algorithm and the primal algorithm achieve identical solu-
tions but the primal algorithm requires about one third fewer two-machine evaluations.
Park’s algorithm does not satisfy the production rate constraint in cases 1 or 2. In the
cases where Park does satisfy the constraint, a larger N is calculated. When Park’s
algorithm satisfies the production rate constraint, it requires substantially more long
line evaluations than the others.

For P ∗ = 0.895, the solution of the primal algorithm has one more buffer space
than the GG algorithm. The primal algorithm requires the least computational effort
in all cases.

Increasing P ∗. Figure 7 illustrates how execution time is impacted by P ∗ for the
primal and GG algorithms. The number of two-machine evaluations, for the line
described in table 8, is reported. When P ∗ approaches the infinite buffer production
rate (0.92) the number of two-machine evaluations required increases significantly.
The primal and GG algorithms calculate the same value for N in all cases.

Long lines. Table 9 demonstrates how increasing the length of the line impacts com-
putational effort. Each line is composed of ten-machine blocks. Each block is described
in table 8. P ∗ = 0.88 for all the lines. The significant increase in computational effort
is a consequence of three factors. The first is the increased number of two-machine
evaluations required for the DDX algorithm to converge. The second is that each gra-
dient calculation requires an additional long line evaluation for each added machine.
The third is that as the line increases the total buffer space increases and the algorithm
must search a larger space.
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Figure 8. Twenty-machine line.

Table 10
Summary of twenty-machine line results.

Line Production rate Minimal buffer space
with no buffers for production rate target

(0.88 parts/min)

Case 1 0.487 430
Case 2 0.475 485
Case 3 0.475 523

6.2.2. Effect of a bottleneck
This example comes from Gershwin and Goldis [20]. Consider the design of a

20-machine production line. The machines have already been selected, and the only
decision remaining is the amount of space to allocate for in-process inventory. The
common operation time is one operation per minute. The target production rate is 0.88
parts per minute. The goal is to determine the smallest amount of in-process inventory
space so that the line meets that target.

Three versions of this line are analyzed.

• In case 1, each machine is unreliable with mean time to fail (MTTF) 200 minutes
and mean time to repair (MTTR) 10.5 minutes. Every machine could therefore
operate in isolation at rate 0.95 parts per minute on the average, and easily meet
the target. However, if there were no in-process inventory allowed, each machine’s
failure would cause every other machine to be forced idle, and the actual production
rate would only be 0.487. To achieve the target production rate, the minimal
required inventory space is room for 430 parts, distributed according to the figure.

• Cases 2 and 3 are similar to case 1, except that Machine 5 (and only Machine 5)
is replaced by a less reliable model. There is thus a well-defined bottleneck. See
figure 8. In both cases, the reliability of Machine 5 is reduced to 0.905.

∗ In case 2, MTTF = 100 and MTTR = 10.5 minutes.

∗ In case 3, MTTF = 200 and MTTR = 21 minutes.

The results are summarized in table 10 and figure 9. With no buffering between
the machines, the production rate of both cases 2 and 3 would be 0.475. Again,
each machine (including the bottleneck) could meet the required production rate in
isolation, but the complete system cannot without inventory buffering between the
machines. The minimal required total inventory space is room for 485 parts for case
2 and 523 for case 3. Figure 9 displays how the space is distributed in each case. The
zero-buffer production rates were calculated from Buzacott [8].
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Figure 9. Optimal buffer distributions.

Observations:

• The additional inventory space is allocated approximately symmetrically around the
bottleneck, but it is not all placed precisely at the bottleneck.

• Case 3 needs more space than case 2. This suggests that increased repair time is
worse than increased failure frequency.

• Case 1 exhibits the inverted bowl phenomenon, observed by Hillier et al. [25]. A
line with identical machines requires less buffer space at the ends because of the
usual assumption that the first machine is never starved and the last machine is
never blocked.

• The graphs are somewhat uneven. This is due mainly to the fact that we have
restricted the solution to integers: we are assuming that the line is producing discrete
items. In addition, the results shown may be slightly non-optimal.

7. Profit maximization

Here, we generalize the objective function to include inventory holding costs.
Let n̄i be the average amount of inventory in Buffer Bi. This quantity is an output of
the DDX and ADDX algorithms. Let Φ, ai, and bi be nonnegative cost coefficients.
The profit is

Π = ΦP (N1, . . . ,Nk−1)−
k−1∑
i=1

aiNi −
k−1∑
i=1

bin̄i,
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in which Φ is the profit per item sold, when all costs other than inventory costs at this
system are considered. The cost of inventory space is linear in the size of the space,
and the cost per unit space in Buffer Bi is ai. The cost of inventory held is linear in
the average amount of inventory, and the cost per item stored in Buffer Bi is bi.

We know of no published papers that discuss the qualitative properties of profit
as a function of buffer sizes (comparable to section 2.3.2). Gershwin [18] shows that
average buffer level may be either a concave or convex function of buffer size for a
two-machine line. The shape of this function depends upon the reliability parameters
and processing rates of the machines. Consequently, if profit is a function of average
buffer level, it may not be concave.

7.1. Profit maximization with total buffer space constraint

Maximize Π (10)

subject to NTOTAL =
k−1∑
i=1

Ni; Ni > NMIN.

7.2. Profit maximization without space constraints

Maximize Π (11)

subject to Ni > NMIN.

7.3. Properties of Π

We can no longer rely on the objective function being monotonic or concave.
However, numerical experience suggests that it has a single maximum, and this appears
to be enough for the algorithms to work effectively.

Figure 10 is a graph of Π(N1,N2) vs. N1 and N2 for the balanced three-machine
continuous material line with parameters ri = 0.1, pi = 0.01, and µi = 1 for i = 1, 2, 3.
The cost coefficients are Φ = 1000, ai = 0, and bi = 1 for i = 1, 2. Therefore
Π(N1,N2) = 1000P (N1,N2) − n̄1 − n̄2. The contour lines indicate that the function
Π(N1,N2) has a global maximum and no other local maxima. The maximum profit for
this line is realized when (N1,N2) = (21, 49). (These have been rounded to integers.)
Note that figure 10 is not symmetric and the buffer sizes are not equal, even though
the line is balanced.

7.4. Profit maximization algorithms

The algorithm for the constrained profit maximization problem (10) is essentially
the same as the algorithm for the dual problem (section 4). It is the same as figure 4
with P replaced by Π.
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Figure 10. Profit vs. N1 and N2.

The algorithm for the unconstrained profit maximization problem (11) follows
the primal algorithm (section 5) very closely. It also consists of the iterated solution
of two problems: the constrained profit maximization problem (in place of the dual)
and a one-dimensional profit maximization problem (in place of the one-dimensional
primal).

Details on the algorithms, as well as numerical examples, appear in Schor [44].

8. Conclusions

The algorithms described here are fast and accurate. They can be used in the
design of production systems. These methods can easily be extended to assem-
bly/disassembly systems [18]. It would be valuable to extend them to systems that
have loops, such as systems with captive pallets or fixtures. Other useful extensions in-
clude systems with multiple part types, with set-up changes, etc. The main challenges
in such extensions are more in the modeling and analysis than in the optimization
algorithm.

These extensions are valuable for designing more general systems. As shown
in Gershwin [19] they are also valuable in designing real-time scheduling policies for
manufacturing systems.
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