An approximate analytical method for evaluating the
performance of closed loop flow systems with unreliable
machines and finite buffers — Part II: Large Loops

Stanley B. Gershwin* Loren M. Werner!

May 8, 2003

Abstract

We present an efficient and accurate approximate analytical decomposition method for
evaluating the production rate and distribution of inventory of a closed loop manufacturing
system with unreliable machines and finite buffers. It is based on an earlier decomposition for
a tandem line; it differs only in accounting for the different sets of machines that could cause
blockage or starvation to other machines. The method can be applied to tandem production
lines with a limited number of pallets or fixtures; the pallets travel in a loop even thought the
parts follow a line. It can also be applied to systems controlled by a conwip policy with infinite
or finite buffers since such a policy can be implemented with a limited number of tokens that
behave in the same way as pallets.
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In this paper, we present an efficient and accurate analytical decomposition method for evaluat-
ing the production rate and distribution of inventory of a closed loop manufacturing system with
unreliable machines and finite buffers. This is an extension of the method of Maggio (2000) and
Maggio, Matta, Gershwin, and Tolio (2003) which was only practical for very small systems. The
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new method, which was first described in Werner (2001), relies on a novel network transforma-
tion and can treat systems with a large number of machines and buffers. We focus our attention
here on loops with discrete material and with fixed-processing-time machines (the Buzacott model)
but the same transformation is applicable to other versions that have been used for lines and as-
sembly/disassembly networks (discrete material and exponential processing time machines; and
continuous material).

A closed-loop production system or loop is a system in which a constant amount of material (the
loop population) flows through a single fixed cycle of work stations and storage buffers. This type
of system appears frequently in factories. Manufacturing processes which utilize pallets or fixtures
can be viewed as loops since the number of pallets/fixtures that are in the system remains constant.
Similarly, control policies such as CONWIP and kanban create conceptual loops by imposing a
limitation on the number of parts that can be in the system an any given time. Figure 1 represents
a K-machine loop.

Decomposition methods have been developed for the performance evaluation of some large sys-
tems for which exact analytic methods do not exist and numerical methods are infeasible. These
techniques approximate the original large system with a set of smaller systems that satisfy a set
of carefully chosen relationships. Networks with finite buffers are the major focus of attention.
Early work focused on tandem systems with unreliable machines and finite buffers (Gershwin 1987;
Dallery, David, and Xie 1988); more recent papers extended it to assembly/disassembly networks
(Mascolo, David, and Dallery 1991; Gershwin 1991). Except for a small number of papers, this
work was limited to acyclic or tree-like systems: those whose graphs contain no loops. Literature
surveys appear in Dallery and Gershwin (1992) and Gershwin (1994).

In this paper, we make use of and extend a recent decomposition method (Tolio and Matta
1998). We describe the extension of decomposition methods to systems that consist only of the
machines and buffers in a single loop. A later paper (Gershwin and Levantesi 2003) will describe
the extension to general assembly/disassembly networks with multiple loops. Such networks are of
interest because they arise in the analysis of an important class of control policies for manufacturing
systems (Gershwin 2000).

Performance measures such as average produc- M, B M, B M., B,
tion rate and the distribution of in-process inven- | ( > ( > ( )
tory cannot be expressed in closed form. Simula-
tion provides accurate results for these quantities, 3 :
but it can be time consuming. Although constant
improvements in computer technology steadily re- ‘
duce simulation time, computation time remains | : : k K

important for optimization, which requires very e @ @ e

large numbers of evaluations. Some fast analyt-
ical methods have been developed, but they are pigure 1: Illustration of a closed-loop produc-
accurate in a limited class of cases. The purpose i system

of this paper is to describe a more versatile ap-

proximate analytical method for evaluating the performance measures of closed-loop production
systems.
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1.2 Literature Review

Compared to open production lines, little work has been done on closed-loop production systems
with finite buffers and unreliable machines. Onvural and Perros (1990) demonstrated that the
production rate of a closed-loop system is a function of the number of parts in the system. In
addition, they showed that the throughput versus population curve is symmetric when blocking
occurs before service and processing time is exponential. To avoid the complication that finite
buffers create in closed-loop systems, Akyildiz (1988) approximated the production rate by reducing
the population and evaluating the same system with infinite buffers. Bouhchouch, Frein, and Dallery
(1992) used a closed-loop queuing network with finite capacities to model a closed-loop system with
finite buffers. For more detailed listings and discussions of previous work dealing with closed-loop
finite-buffer systems, see Tolio and Gershwin (1998), Maggio (2000), Maggio, Matta, Gershwin, and
Tolio (2003), and Balsamo, de Nitto Personé, and Onvural (2001).

The first approximate analytical method for evaluating the performance of closed-loop systems
with finite buffers and unreliable machines was proposed by Frein, Commault, and Dallery (1996).
This method was an extension of the Gershwin (1987) decomposition technique. It did not account
for the correlation among numbers of parts in each buffer. As a result, the method is only accurate
for large loops with populations that are neither too large or too small. A recent method has been
presented by Han and Park (2002), but numerical results for only a small number of loops are
described.

Maggio (2000) and Maggio, Matta, Gershwin, and Tolio (2003) present a new decomposition
method which does account for the correlation between population and the probability of blocking
and starvation. However, the method is too complex to be practical for loops with more than three
machines. Here, we simplify and extend these results to loops with any number of machines.

1.3 Outline

We describe the model, the transformation, and the solution technique in Section 2. We describe
the algorithm in detail in Section 3. In Section 4 we describe the performance of the technique and
in Section 5 we use it to demonstrate some features of loop behavior. We conclude and recommend
future research directions in Section 6.

2 Approach

In Section 2.1, we describe the model we are analyzing, review decomposition methods for open
lines, present the important features of closed loop systems that are accounted for in our method,
and define buffer thresholds and explain their impact on the analysis of these systems. We introduce
the transformation that allows us to avoid treating thresholds explicitly in Section 2.2, and define
the range of blocking and the range of starvation. In Section 2.3, we present the new decomposition
and describe the building block and the decomposition equations. This new decomposition is so
similar to Tolio and Matta’s method (Tolio and Matta 1998) for an open line, that a program to

4



Gershwin and Werner ...FOR EVALUATING CLOSED LOOP FLOW SYSTEMS May 8, 2003

analyze loops can be written by making a minor modification to a program for evaluating lines.
The relationship is illustrated in Section 2.3.3.

2.1 Closed-Loop Production Systems
2.1.1 Basic Model

We extend the deterministic processing time model introduced by Buzacott (1967) and modified
by Gershwin (1987) and Tolio and Matta (1998) to closed-loop systems. Processing times for
all machines are assumed to be deterministic and identical. We scale time so that the common
processing time is one time unit. All operational (i.e. not failed) machines start their operations at
the same instant. Parts in the machines are ignored, as is travel time between machines. Machine
failure times and repair times are geometrically distributed. We use the version of the model
presented by Tolio, Gershwin, and Matta (2002) and Tolio and Matta (1998), which allows machines
to fail in more than one mode. This feature is critical to our method and is discussed in detail in
Section 2.1.5.

In this paper, M, refers to Machine 7. B; is its downstream buffer and has capacity N;. B;_;
is the buffer upstream® of M;. A machine is blocked if its downstream buffer is full and starved if
its upstream buffer is empty. When M; is working (operational and neither blocked nor starved) it
has a probability p;; of failing in mode j in one time unit. If M; is down in mode j, it is repaired
in a given time unit with probability r;;. By convention, machine failures and repairs take place
at the beginnings of time steps and changes in buffer levels occur at the ends of time steps. The
population, the fixed total number of parts in the system, is N?. It is convenient to define

K
Ntotal — Z Ni;
i=1
the total buffer space in the loop.

Lower bound on buffer size In this model of a production line, the minimal buffer size is 2.
(That is, N; > 2 for all 7.) This is because of the assumptions on the behavior of empty and full
buffers, and because we do not consider the workspace in the machines to be available for storage.
Werner (2001) restricted N; > 2 for this reason. Tolio, Gershwin, and Matta (2002) required N; > 3
because of the structure of their analytical two-machine line solution — if this is not satisfied, there
is no n; such that 2 < n; < N; — 2, and the solution has a special structure for such n;.

2.1.2 Tandem Line Decomposition Techniques

It is possible to obtain the exact steady-state probability distribution (and from that the production
rate and average buffer level) analytically for a two-machine, one-buffer line. It is not possible for
longer lines because of the rapid increase in the state space with the length of the line and the

'Tn an open line, there is no buffer upstream of M;. In a K-machine closed loop, however, the buffer upstream of
M is Bg. The required change of notation is described in Section 2.1.3.
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sizes of the buffers. However, accurate approximate decomposition methods have been developed
for evaluating the performance of long tandem lines and assembly/disassembly systems (Gershwin
1994). These methods decompose a K-machine tandem line into K — 1 two-machine lines or
building blocks. In each building block L(i), the buffer B(i) corresponds to B; in the original line.
The upstream machine M"(7) represents the collective behavior of the line upstream of B; and the
downstream machine M9 (i) represents the behavior downstream.

Consider an observer in B; who is only allowed to see the arrivals and departures of material
from that buffer. Suppose he is told that he is observing the buffer of a two-machine line. The
upstream and downstream machines of that line are called M*“(i) and M<%(i). To that observer
(whose buffer is referred to as B(i) for consistency), M"(i) appears to be down when M; is either
down or starved by some upstream machine. In Tolio and Matta (1998), A “(i) has local failure
modes corresponding to those of M; and remote failure modes corresponding to each of the upstream
machines?. Likewise, M%(i) has local failure modes corresponding to those of M;,; and remote
failure modes corresponding to each of the downstream machines. Tolio and Matta (1998) show
how to obtain the failure and repair probabilities for these modes. These quantities are functions of
all the machines and buffers in the original line, and are therefore related to similar parameters in
the fictional two-machine lines monitored by other fictional observers. To obtain these parameters,
Tolio and Matta (1998) develop a set of decomposition equations that involve the analysis of the
two-machine lines to obtain production rates and probabilities of starvation and blockage.

This is illustrated in Figure 2, which focuses
on the view of the observer in the buffer B, who
believes that he is in the buffer of the two-machine
line consisting of M*(3), B(3), and M%(3). Failure
modes are indicated in the machines, so Machine
1 fails in modes 1 and 2, Machine 2 fails in mode
3, etc. The local modes, as seen by the observer
in Buffer 3 are 4, 5, 6, and 7. The rest are remote.

R S e Bl The goal of the decomposition method is to
' ' N choose the parameters of M*(i) and M%(i) such
Figure 2: Tolio decomposition that the flow of parts through B(i) mimics the flow

through B;. Accomplishing this for all building blocks gives approximate values for throughput and
average buffer levels in the original tandem line.

2.1.3 Special Characteristics of Closed-Loop Systems

In a tandem line, each machine can block every upstream machine and it can starve every down-
stream machine. That is, each machine can cause every upstream buffer to become full, if it stays
down long enough, and it can empty every downstream buffer if it is down for a sufficiently long
time.

The situation is different in loops. Whether or not a machine can be starved or blocked by the
failure of another machine depends on the number of parts in the system and the total buffer space
between the two machines. We define (7, j) as the set of indices of the machines between M; and

2In papers by Tolio and his co-authors, the local and remote modes were called real and virtual modes.
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M; inclusive. For ease of notation, we define all subscripts to be modulo K. Then

(it 1,...,K,1,..,5) ifi>j

We define ¥(v, w) as the total buffer space between M, and M,, in the direction of flow (Maggio
2000; Maggio, Matta, Gershwin, and Tolio 2003). More formally,

(0. ) :{ (i,i4+1,..,5) if i < j 1)

w IN, ifv£w
ifv=w

v = { 5 ®

The total buffer space in the line is N**! = ¥ (v, w)+¥(w, v) (for any w # v) and the population
must satisfy

0 S NP S Ntotal.

If N? < U(v,w), then the failure of M, can never cause M, to become blocked because there are
not enough parts in the system to fill all buffers between A, and M,, simultaneously. Conversely,
if NP > ¥(v,w), M,, cannot starve M, because there are too many parts in the system to allow all
the buffers between M, and M, to be empty.

2.1.4 Thresholds

The issue of blocking and starvation is more complicated still. In some cases, whether or not a
machine can ever be starved or blocked by the failure of another machine depends on the number
of parts in an adjacent buffer. This is the concept of buffer thresholds introduced in Maggio (2000)
and Maggio, Matta, Gershwin, and Tolio (2003).

Consider the loop in Figure 3 where 7 parts 5 5
are traveling through a three-machine loop with
three buffers of size 5. If M, fails, parts begin to
build up in B; and eventually M; becomes blocked.
However, we know that M; cannot be blocked if
the number of parts in its upstream buffer, Bs, is
greater than 2. If there are more than 2 parts in 5
B3, there must be fewer than 5 parts in B; since
there are only 7 parts in the system. Therefore,
M, cannot be blocked.

Conversely, we know that if the number of parts
in Bj is less than 2 then the number of parts in
By must be greater than zero and M;3 cannot be-
come starved.®> Therefore, we say that B; has a
threshold of 2.

In general, we define the threshold /;(i) to be the maximum level of B; such that all buffers
between M;.; and M; can become full at the same time. That is, {;(4) is the maximum level of B;
such that the failure of M; could cause M;;; to become blocked. It is

M3 MZ

Figure 3: Example of a loop with thresholds.
NP =T,

3Maggio (2000) and Maggio, Matta, Gershwin, and Tolio (2003) show that blocking thresholds and starving
thresholds are the same. .
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(i) = NP — (i + 1,5) (3)

Note that [;(i) can assume values ranging from less than zero to greater than N; depending on
the population and buffer sizes. We only need to consider cases where 0 < [;(i) < N;. To deal
with these cases, Maggio (2000) and Maggio, Matta, Gershwin, and Tolio (2003) propose a more
detailed building block and a new set of decomposition equations. This approach is accurate and
has been implemented for three-machine loops with certain restrictions on population and buffer
sizes. However, this building block can only take a single threshold into account. It would be
possible to extend the method to larger loops, but the building block would have to become very
complex to deal with multiple thresholds.

2.1.5 Ranges of Starvation and Blockage

Here, we define the range of starvation and range of blocking of a machine. The range of starvation
of M; is the set of machines M; such that if M, is failed for a sufficiently long time and all other
machines are operational, M; will be starved; that is, B;_; will be empty. It is the contiguous set
{Ms(i), Miy41y oo M; 1}, where My is the furthest machine upstream that can cause M; to be
starved if it is failed for a long period of time and all the other machines are operational. Similarly,
the range of blocking of M is the contiguous set { M1, M;yo, ..., My}, where My is the machine
farthest downstream which can cause M; to be blocked if it is down for a sufficiently long time and
all other machine are up. These ranges are illustrated in Figure 4 for machine M; in a 6-machine
loop in which the sizes of all the buffers are 10 and the population is 35. If M, fails and stays down
for a very long time, and no other machines are down, M; will be blocked since B;, Bs, and Bj
will be full. (The remaining 5 parts will be in Bs.) M, and Mz can also cause B to be full and
therefore M; to be blocked.
) If M fails for a long time

Range of blocking of M, while all other machines are

M, M, H operational, the 35 parts will
be found in By, B3, By and

: B;. (B; will have 5 parts
M M, and the others will be full.)
! Therefore, By and Bg will
/\ m m be empty and M; will be
\By - \By - @ starved.
Range of starvation of M, (Note that if the pOpI-
lation were 30 in this case,
M, would be in both the
range of starvation and the range of blocking of M;. This situation must be considered for the
transformation in Section 2.2.)

Figure 4: Ranges of blocking and starvation
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L(1) L(2) L©3)

M@ B MY M2 B MY M3 BB MY

e Range of blocking of M,

(o e (G w5
B e e e e

G

Range of starvation of M,

MY@6)  B(6) MYE) ;M%) BB MY MY  B@) MY

L(6) L(5) L(4)

Figure 5: Loop decomposition

We calculate* s(i) and b(i) as follows:?

s(i) = mjax{j + 1| (i, j) < NP} (4)
b(i) = rryin{j|\IJ(i,j +1) > N?} (5)

2.1.6 Loop Decomposition

We are now in a position to describe the loop decomposition: it is exactly the same as the tandem
line decomposition but with one exception. In the tandem line, the range of starvation of machine
M; is simply the set of machines upstream of M;, and the range of blocking is the set of machines
downstream of M;. In the loop the ranges of blocking of starvation and blockage are described
instead by (4)—(5). This is represented in Figure 5, which is the decomposition of the loop in Figure
4.

In building block L(i), the failure modes of M“(i) are the same as those of the machines in the
range of starvation of M, ;: machines M) through M;. The local modes are those of M; and
the remote modes are those of M1,y through M;_;. Md(i) has failure modes which are the same

“Here, “min” means “travel downstream from M; until you find the first machine for which the condition is
satisfied,” and “max” means “travel downstream from M; until you find the last machine for which the condition is
satisfied.”

®Note that the inequalities are strict. We use this convention to deal with the situation of simultaneous blocking
and starvation. See Section 2.2.2.
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L)

M@ B MY

"~ Range of blocking of M,

() () ()
&) e e )

Range of starvation of M,

Figure 6: Failure modes in L(1)

as those of the machines in the range of blocking of M;, the modes of M;,, through Mjy;;1). The
remote modes are those of M; » through My;;1) and the local modes are those of M.

For example, consider Figure 5 with N? = 35. B(1) in building block L(1) being full is an event
that should occur in almost the same way as (ie, almost statistically indistinguishably from) how
By being full in the original loop occurs. Since B; can become full when and only when M,, Mj,
or M; fail, then the failure modes of M¢(1) (whose failure causes the filling of B(1)) should be the
same as those of My, M3, and M. In this case, i = 1 and b(1) = 4.

Similarly, B(6) in building block L(6) being empty is an event that should occur in almost the
same way as (ie, almost statistically indistinguishable from) how Bg being empty in the original
loop occurs. Since Bg can become empty when and only when M5 or Mg fail, then the failure modes
of M"(6) (whose failure causes the emptying of B(6)) should be the same as those of M; and M;.
Here,i =6 and i +1 =7 =1 mod 6 so s(1) = 5.

Figure 6 shows the failure modes of the machines of L(1). We have already described the failure
modes of M%(1). The failure modes of M“(1) are those of the machines in the range of starvation
of M,

Recall that the sets of machines that are in each range of blocking and starvation depend on the
population N? (as well as the sizes of the buffers). The method takes N? into account by including
in the building blocks only those failure modes from machines within the appropriate ranges of
blocking and starvation.

2.2 Loop Transformation
2.2.1 Elimination of Thresholds

It is possible to eliminate the complications in the two-machine building blocks due to thresholds
by transforming the loop. The transformation allows us to evaluate much larger loops for a wider
range of population levels and buffer sizes than is possible using the method presented in Maggio

10
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(2000) and Maggio, Matta, Gershwin, and Tolio (2003). Instead of dealing with the thresholds
directly, we transform the loop into one without thresholds that behaves in almost the same way.
The resulting loop is relatively easy to analyze.

Consider again the three-machine loop of Figure 3. Into each of the three buffers, we insert a
perfectly reliable machine so that the buffer of size 5 is replaced by an upstream buffer of size 3
and a downstream buffer of size 2. See Figure 7. The performance of this new six-machine loop is
approximately the same® as the original three-machine loop, and we have eliminated all thresholds
between 0 and V;.

We can extend this approach to any K-machine
loop. For each threshold 0 < I(i) < N;, we in-
sert a perfectly reliable machine M- into buffer B;
such that U(k*, k) = NP. B; is now represented as
a buffer of size N; — (i) followed by My followed
by a buffer of size (7). Since each unreliable ma-
chine can generate at most one threshold between
zero and Nj;, the transformed loop will consist of at
most 2K machines. Although the loop is larger,
we can now use the same building block that is
used in Tolio’s tandem line decomposition (Tolio,
Gershwin, and Matta 2002, Tolio and Matta 1998).
Furthermore, the computational complexity does
not increase with the addition of the new machines because no new failure modes are introduced.

Unfortunately, this transformation creates a problem for discrete-material models. It may create
a buffer that violates the minimal buffer size condition of Section 2.1.1. In the algorithm of Section
3, we suggest increasing such buffers to the minimal size. This is crude, but it appears not to create
large errors.

Figure 7: Ilustration of a loop which is trans-
formed so that thresholds are eliminated

2.2.2 Simultaneous Blocking and Starvation

If ¥(v,w) = NP then machine M, can become simultaneously blocked and starved when M, is
down for a long period of time. In this case, the threshold /,(v — 1) = 0 and [,(v) = N,. In
transformed loops, this situation can occur at each reliable machine M- when M, fails since the
buffer sum between the two machines W (k*, k) = NP by construction.

The two-machine building block developed in Tolio and Gershwin (1996), Tolio, Gershwin, and
Matta (2002) does not account for the states where both machines are down and the buffer level is
either zero or full. However, this is not a problem. Although a real machine may be simultaneously
blocked and starved, the pseudo-machines in the two-machine lines are never both down due the
failure of the same real machine.

Figure 8 shows the ranges of blockage and starvation of M in the six-machine loop where all the
buffer sizes are 10 and the population is 30. Note that A, is in both ranges. However, the ranges
of blockage and starvation of the machines in L(1) are the same as in Figure 6. If A/, fails for a
long time and is the only machine that is down, buffers By, By, and Bz will be full. In L(1), buffer

6This is approximate because breaking up a buffer by inserting a machine adds one time unit of delay to the time
it takes a part to traverse the buffer.

11
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R

Range of blocking of M,

&)
&)

_________________________________________________

:
®)

Figure 8: Ranges of blocking and starvation of M; when NP = 30

B(1) is full and M%(1) is down. Since machines M5, Mg, and M, are up, M*(1) is up. M*(1) can
be down only due to a long failure of Ms, Mg, or M;. Consequently, we can never be in a situation
in which M*(1) and M?(1) appear to fail simultaneously due to a failure of the same real machine.

Figure 9 shows which real machines contribute failure modes to the pseudo-machines of line L(6),
when the buffer sizes are all 10 and the population is 30. Since M, is in the range of starvation of
M;, its modes are present in M*(6). However, it is not in the range of blockage of Mg, so its modes
do not appear in M%(6).

2.2.3 Reduction of Large Buffers

Consider a loop in which one buffer is the same size as the population. That is, there is one buffer
B; such that N; = NP. We claim that if V; is increased by m > 0 spaces to N? +m, the performance
of the loop is not affected. This can be seen by running two loops which differ only in the size of

Range of blocking of M,

. Range of starvation of M,

NoM%)  BE)  MYe)

L(6)

Figure 9: Failure modes in L(6)
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N; from the same initial condition (ie, distribution of parts and repair/failure states of machines)
with the same sample (ie, the same schedule of failures and repairs of machines). Assume that in
the initial condition, there are fewer than NP parts in B;.

Until the first time that the smaller B; is full, the histories of all the corresponding n;(t) are
the same in the two loops because both sets of trajectories are subject to the same events and
constraints. At the time when both B; hold N? parts, machine M; is blocked in one of the loops
and not in the other. However, it is starved in both, and is thus unable to operate or fail in both.
Therefore the states of both loops remain the same. When a part leaves B; in both loops (which
will happen simultaneously), the situation reverts to that of the initial condition: the distribution
of inventory is the same in the two loops and the the repair/failure states are the same in the two
loops. Again the buffer trajectories remain the same at least until the next time B; holds N? parts,
but the two loops stay the same when that happens as well. To summarize: there are no events
than can cause the states of the two loops to differ, so they remain the same for all time.

As a consequence, we can reduce the size of any buffer which is larger than NP to exactly NP
without affecting the performance of the loop. In the rest of Section 2 and in Section 3, we assume
N; < NP for all 7. In the algorithm, we reduce the size of any buffer larger than N? to NP.

Equivalence (Ammar and Gershwin 1989) can be invoked to reduce large buffers when the
population of the loop is very large. We can define a hole to be a space in a buffer. If, at time £,
the are n(t) parts in a buffer of size N, then there are N — n(t) holes in that buffer. Therefore,
there are N*tal _ NP holes in a closed loop, and the number of holes stays constant. Every time a
part moves from B;_; through M; to B;, a hole simultaneously moves from B; through M; to B;_;.
Therefore, the flow of holes is the same as the flow of parts through a loop which is made up of the
same machines and buffers but in reverse order. The throughput rates will be the same, and the
average number of parts in a buffer of the original loop is the complement of the number of holes
in the corresponding buffer of the reversed system.

Consider a loop in which Ntotal — NP is smaller than the largest buffer. This loop will be
equivalent to a reversed loop with population N?' = Ntotal _ NP Ag above, we can reduce the size
of any buffer in the reversed loop which is larger than N?' to N?' without changing the throughput of
the loop or the average number of parts in any buffer of the reversed loop. We can then evaluate the
reversed loop with reduced buffers and use its results to evaluate the original loop: the production
rate of the original loop will be the same, and the average inventory in B; of the original loop will
be N; — n;', where n;’ is the average number of parts in the reversed loop with reduced buffers.

2.3 Decomposition of Loops

To develop a decomposition for closed loop systems, we must establish a building block model and
find a way to relate the building blocks to one another. This section discusses the parameters of the
building blocks and the equations used to find them. Since, according to Section 2.2, it is always
possible to transform a loop into one in which buffer thresholds need not be treated explicitly, we
restrict our attention to loops without thresholds.
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2.3.1 The Building Block Parameters

As in the Tolio tandem line decomposition (Tolio and Matta 1998), we evaluate the loop by ap-
proximating its behavior with a set of two-machine building blocks. Each building block L(i) is
associated with the buffer B; in the original loop. The upstream machine M*(7) has local failure
modes corresponding to those of M; and remote failure modes corresponding to those of machines
M,y through M;_;. We use the symbol Ay; to represent a failure mode of M*(7): the mode cor-
responding to mode j of Machine My, k = s(i),...,i — 1. Similarly, M%(4) has local failure modes
corresponding to those of M, ; and remote failure modes corresponding to those of machines M; o
through My(;;1y. Here, A; represents mode j of Machine My, k =i+ 1,...,b(3).

When we have the parameters of two-machine line L(7), we can use the results of Tolio, Gershwin,
and Matta (2002) to evaluate its production rate F(i) and the probabilities of starvation P (i)
due to mode \g; and blockage P/ (i) due to mode Awji(i). These quantities are needed in the
decomposition equations (Section 2.3.2).

As shown in Tolio and Matta (1998) and Maggio, Matta, Gershwin, and Tolio (2000), the failure
and repair probabilities for the local failure modes are equal to the probabilities of the corresponding
modes of the machines in the loop. That is,

P (1) = pij (6)
ri(i) =1y (7)
p;'i+1,j(i) = Pit+1,5 (8)
Tzd—l—l,j(i) = Tit1,5 (9)

In addition, we know that the probability of repair when a machine is down in remote failure
mode \y; is equal to the probability that machine M is repaired when it is down in failure mode
j. This gives us

T (i) = T (10)

d .
Tkj(l) = Tkj (11)
To evaluate the performance measure of the loop, we must find the remote failure probabilities
pi;(i) and pf;(i) for each L(7). This is the objective of solving the decomposition equations.
2.3.2 Decomposition Equations for a Line

Here, we review the decomposition equations for the tandem line derived in Tolio and Matta (1998).
We define Pi(i) as the probability that B(i) is empty due to M*(i) being down in remote failure
mode Ay;. Likewise, P/5(i) is the probability that B(:) is full due to M%(z) being down in remote
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failure mode ;. Finally, we define E(i) to be the average throughput of building block L(). Using
this notation, we write the decomposition equations. For all 2 < i < K — 1 and all 5, Tolio and
Matta (1998) show that

pr; (i) = %rm fork=1,...,i—1 (12)
and
d oy _ D+l .
Py (i) = erj fork=1+2,.,K (13)

We know the values of the local p parameters and all the r parameters in the line from (6)-
(11). With the quantities determined in (12) and (13), we have enough information to evaluate the
two-machine line of Tolio, Gershwin, and Matta (2002) to determine Pg}(i — 1) and PPi(i + 1) in
(12) and (13). The decomposition equations (12) and (13) thus form a system of 2K independent
equations in 2K unknowns.

2.3.3 Decomposition Equations for a Loop

The decomposition equations for a loop are nearly identical to those of the tandem line decompo-
sition. In fact, we need only modify the limits of the indices in (12) and (13) to account for the
range of blocking and starvation and the fact that loops contain as many buffers as machines.

In the line, all machines upstream of a machine can cause its starvation, and all downstream
machines can cause it to be blocked. Here, however, we need to determine which machines can cause
starvation and blockage to each given machine. Recall from Section 2.1.5 that s(i) is the index of
the machine furthest upstream which falls within the range of starvation of machine M;. Similarly,
b(i) is the index of the machine furthest downstream which falls within the range of blocking of M;.
Then, for all 7 and j,

Pit(i—1
pr; (i) = %rm for k=s(i+1),...,i—1 (14)
and
d oy D+l . .
Pi; (i) = erj for k =1+2,...,0(:) (15)

Again we know the values of the local p parameters and all the r parameters, and we use the
decomposition equations (14) and (15) to determine the rest of the p parameters. The decomposition
equations (14) and (15) represent a system of 2K’ independent equations in 2K’ unknowns. We
present an algorithm, based on the DDX algorithm (Dallery, David, and Xie 1988) for a line, in
Section 3.
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2.3.4 Additional comments

Conditions on parameters

e We must require that for each machine M;,
Zpij <1 (16)
J

This is because Tolio, Gershwin, and Matta (2002) have that requirement for both machines
of their two-machine line. In fact, to satisfy those requirements, we must actually satisfy the
stronger condition

Spil) < 1 (17)

o) < 1 (18)

where the sums are taken over all the failure modes of all the machines in the range of
starvation and the range of blocking, respectively. However, we cannot specify this at the
initiation of the algorithm.

e To use the method of Tolio, Gershwin, and Matta (2002) for the two-machine line, we must
have a minimal buffer size of 3. Werner (2001) solved the two-machine line by iterated matrix
multiplication, so he was able to have a minimal buffer size of 2.

e The method will not work well when the population is very small and the size of the loop is
very large. Consider a loop made up of 100 perfectly reliable machines where the population
NP = 3. Assume all 100 buffer sizes are larger than 3. The production rate of this system
will be 3/100 because it takes 100 time steps for each part to circumnavigate the loop. On
the other hand, our algorithm will calculate a production rate of 1.

The reason for this discrepancy is that we do not consider the single time unit that a part
spends in a machine for its operation. When this time is large compared to downtime due to
failures, the algorithm is inaccurate.

Non-equality of production rates Maggio (2000) and Maggio, Matta, Gershwin, and Tolio
(2003) observed that when the algorithm converged, the production rates were not exactly equal.
We observe the same. This is undesirable, but the errors never appear to be large. We have not
determined the cause of this discrepancy. In our experience, the maximum F/(i) has proved to be
the most accurate estimate of production rate when compared with simulation.
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No specification of inventory sum It is noteworthy that we do not have an explicit requirement
in the method that specifies the sum of the buffer levels. This is in contrast with the method of
Frein, Commault, and Dallery (1996), which explicitly requires that

> n(i) = N?

3 Implementing the Loop Transformation and Decomposi-
tion

This section provides a step-by-step procedure for evaluating a loop. In Section 2.2 we transform
an arbitrary loop into one that we can analyze. In Section 3.2 we describe an algorithm for solving
the decomposition equations which is a slight modification of that of Tolio and Matta (1998).

3.1 The Transformation Algorithm
1. For all N; > NP set N; = NP. (See Section 2.2.3.)

2. Insert a perfectly reliable machine M;, for every unreliable machine M; such that W(ix, i) = NP
(unless a machine M; such that ¥(j,7) = N? already exists). The new loop consists of K’
machines separated by K' buffers (where K < K' < 2K).

3. Re-number the machines and buffers from 1 to K.
4. Calculate the range of starvation and range of blocking for each M; using (4) and (5).

5. For all N; less than the minimal buffer size, set N; to the minimal buffer size.

Note that some loops will not be changed at all by this transformation.

3.2 The Decomposition Algorithm

This algorithm is designed for loops that are the result of the transformation of Section 3.1.

1. For each line L(i), the set of failure modes of M*(i) (ie, the set of Aj;(7)) is the set of failure
modes in the range of starvation of M; ;. The set of failure modes of M<(i) (ie, the set of
A¢;(i)) is the set of failure modes in the range of blocking of M;.

2. Initialize p};(i), ri5(2), pf,,;(0), v, ;(0), ri;(i), and rf;(i) for all valid failure modes using
equations (6)—(11). Set p;(i) = pr; and pf;(i) = pr;.

3. Fori=1to K"
~ Calculate E(i) and Pgi(i).
— Update py;(i + 1) using (14).
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4. Fori =K' to 1:
— Calculate E(i) and PP(i).
— Update pf;(i — 1) using (15).

5. Repeat (c) and (d) until the parameters converge to an acceptable tolerance.

6. Record performance measures.

e Use max;F(i) as an estimate of production rate E.

e Calculate the average buffer level 7(¢). Form the appropriate sums of the average levels
of the buffers created in the transformation of Section 3.1 to obtain the average levels of
the buffer of the original loop.

4 Performance of the Method

In this section, we examine the accuracy, convergence reliability, and speed of the method. The
method was tested extensively on three- to ten-machine loops with machine parameters and buffer
sizes generated randomly. Repair probabilities for each machine in the loop where drawn from a
uniform distribution between 0.05 and 0.2 and were required to be on the same order of magnitude.
Failure probabilities were randomly generated from a uniform distribution such that the isolated
efficiency r/(r + p) of each machine in the loop was between 75 and 99 percent. Buffer sizes were
drawn from a uniform distribution between 1/5r and 5/r. For each loop, the decomposition and
simulation were performed for all possible population levels. Here, we summarize the accuracy and
convergence reliability. Details can be found in Werner (2001).

4.1 Accuracy

In this section, we compare the analytical results to those obtained through simulation. The mea-
sures of interest are average throughput and average buffer levels.
The production rate errors are calculated according to

Edecomposition — Lssimulation

€Ep —

Esimulation

Buffer level errors were calculated according to

9 77I’(Z’)decomposition - n(i)simulation

N;

€n(i) =

We calculate buffer level errors in this way so as not to magnify the errors in small buffer levels
while, at the same time, reducing the apparent errors in large buffer levels. Consider the reported
error in the buffer level for a buffer of size 100 where the decomposition estimates the level to
be 89.9 and the simulation calculates 90.0. Using the usual calculation of error (as we do for the
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Figure 10: Throughput error (three-machine loops)

production rate), the error would appear to be about -0.1%. However, if we reversed the direction
of flow in the system, we would have an equivalent system with the same production rate but with
complementary buffer levels (Ammar 1980; Ammar and Gershwin 1989; Gershwin 1994). In that
case, the decomposition would calculate a buffer level of 1.1 and the simulation would calculate 1.0.
The apparent error would then be 10%. This is unreasonable, since the two systems are equivalent
and the decomposition calculations are exactly the same. Using the formula above, we find ¢; = .002
for both cases.

4.1.1 Three-machine Loops

The method was observed to be accurate in evaluating three-machine loops. In all cases where the
population was within the specified range, the relative throughput error is less than 1%. See Figure
107.

The mean for buffer level error for the 48 three-machine cases is 2.9%, but the error reaches as
high as 9.58%. See Figure 11.

4.1.2 Six-machine Loops

For six-machine loops, the mean throughput error increased to 1.1% with a maximum of 2.7% for
the 287 cases tested. The mean buffer level error was 5.04%. Although the maximum error is
21.0%, 87.3% of the cases have buffer level errors of less than 10.0%. Figures 12, 13, and 14 give a
graphical representation of the results.

"In all of the error graphs, cases are sorted in order of ascending error.
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Figure 13: Average buffer level error (six-machine loops)
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Figure 15: Throughput error (ten-machine loops)

4.1.3 Ten-machine Loops

In the ten-machine loops studied, the errors are slightly larger. For the 454 cases tested, the mean
throughput error is 1.43% and the maximum is 4.04% (see Figure 15). Average buffer level errors
range from 0.0% to 43.8% with a mean of 6.27%. 80.2% of the mean buffer errors are less than
10.0%.

4.2 Convergence Reliability

In nearly all cases studied, the decomposition algorithm converged. The criterion used for conver-
gence was that difference in the value of all p* and p? between successive iterations be less than the
specified tolerance of 107%. The few cases where the algorithm did not converge were ten-machine
loops that exceeded the maximum number of iterations before satisfying the convergence criterion.
Even though the algorithm did not converge to the tolerance, the errors in throughput and buffer
levels are still very small.

As in Maggio (2000) and Maggio, Matta, Gershwin, and Tolio (2003), our decomposition al-
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gorithm does not exactly satisfy conservation of flow even though Tolio’s equations imply that it
should hold. However, the differences between the throughputs of the building blocks are generally
very small in the cases we examined.

4.3 Speed

The speed of the algorithm was tested by finding the computation time for five randomly generated
loops of size three, six, and ten. Cases were run on a 650 MHz Pentium III PC with 128 MB of
RAM. The mean run times were 0.61, 8.6, and 53.33 seconds for three-, six-, and ten-machine loops,
respectively. Figure 17 shows the results. From the graph, we see that computation time increases
rapidly as the number of machines in the loop increases.

In addition, one case of an 18-machine loop was tested. This was the largest loop evaluated.
Each of the machines had » = 0.1 and p = 0.01. All of the buffers were size 10. The case was run
with 100 parts in the system and required 334 seconds of computation time.
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Figure 18: Example of loop with transfer line flatness

5 Observations on Loop Behavior

Consider a three-machine loop with buffers of size 10, 5, and 50 (Figure 18). The production rate
and average buffer levels are shown in Figures 19 and 20. Note the symmetry and flatness of Figure
19.

In this section we discuss some of the loop phenomenon we observed while developing and testing
the method.

5.1 Flatness

The most interesting observation we have made using the algorithm has to do with the relationship
between the loop parameters, population, and throughput. Specifically, we observed a characteristic
we call flatness, which refers to the shape of the throughput versus population curves of closed-loop
systems.

5.1.1 Transfer Line Flatness

This special type of flatness occurs in loops where the capacity of the largest buffer is greater than
the sum of the capacities of the other buffers. For all population levels N? such that /Ntotal — ymaz <
NP < N™ " the throughput is constant.

To illustrate the concept of transfer line flatness, we consider a three-machine loop with buffers
of size 10, 5, and 50 (see Figure 18). When there are 16 parts in the system, it is possible for buffers
By and B, to be both full and empty. However, Bs can never become full or empty. This means
that machine M; can never be starved and M;3 can never be blocked. If we ignore Bj, the system
has the same production rate and average buffer levels as a transfer line consisting of M, By, Ms,
Bs, and Mj. This behavior remains the same for populations up to 50 because in each of these cases
M, is never starved and Mj is never blocked. In this population range, the average throughput and
average buffer levels of B; and By remain the same (Figures 19 and 20). Only the average buffer
level of Bj3 varies with the population.
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Figure 19: Analytical throughput as a function of population
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Figure 20: Analytical average buffer level as a function of population
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5.1.2 Near Flatness and Non-Flatness

We also observed a phenomenon that we call near flatness. It occurs in loops that do not meet the
requirements for transfer line flatness, but have population ranges where the throughput is nearly
constant.

In the cases we studied, symmetrical loops, in which the machines are identical and the buffer
capacities are the same, did not seem to exhibit near flatness. Loops which were very asymmetrical
did exhibit near flatness. The degree of flatness seemed to increase with the degree of asymmetry
in the loop.

Specifically, the standard deviation in the buffer capacities opugers Seems to give a good indi-
cation of how flat the throughput versus population curve will be for a given loop. We calculate
Opuffers 10T a K-machine loop as follows:

KT, N, — (5 N
Obuffers — K2( ) (19)

Figures® 21, 22, and 23 illustrate how the degree of flatness increases as opugrers increases from
7.97 to 19.12.

5.2 Sensitivity to Parameters

In this section, we explore how changes in machine parameters and buffer sizes affect average
throughput and buffer levels. The basic loop used for these tests is the symmetrical three-machine
loop with » = 0.1, p = 0.01 and N = 10 shown in Figure 24. For all of the tests, the loop population
is held constant at NP = 15.

5.2.1 Machine Parameters

In this section, we examine the effect of varying one or all the repair probabilities on the performance
of the loop.

Only r, varied First, we examine the effect of varying r; between 0.0 and 1.0. Figures 25 and
26 give average throughput E and average buffer levels 7i(i) as a function of 1. As r; approaches
0.0, throughput goes to 0.0. In addition, we see that 7(1) approaches 0.0, 7(2) approaches 5.0, and
7(3) approaches 10.0. This result is consistent with intuition. When machine M), fails, parts begin
to build up buffer B3 until it reaches its capacity of ten. This causes M3 to become blocked and
parts begin to build up in By until all of the five remaining parts are in By. Since r; = 0.0, the
system can never leave this state and throughput is zero.

As 7y increases, M, spends less time down. M, is starved less frequently and Mj3 is blocked less
frequently. This translates into an increase in throughput and (1) and a decrease in 7(3).

When r; = 0.1, the loop is symmetrical and all of the average buffer levels are equal to 5.0 since
the 15 parts are distributed evenly between the three buffers.

8The parameters for these loops can be found in Werner (2001).
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As r; approaches 1.0, the probability that M, will be starved approaches 0.0, as does the
probability that Mj; will be blocked. By performing what is essentially the inverse of our loop
transformation, we can view the system as a two-machine loop where M represents Ms, B7“"
represents By, M} represents Ms, and B} represents Bs, My, By. Since N{*** = 10, N3** = 20,
and NP = 15, the system acts essentially like a two-machine transfer line made up of the original
M,, By, and Mj3;. When we compare the throughput of the loop with that of the line, we find that
they are nearly identical. As r; approaches 1.0, the average throughput of the loop approaches
0.8535. The average throughput of the corresponding two-machine transfer line is 0.8561.

All r; varied together Next, we study the effect of varying all of the rs together between 0.0 and
1.0. Since the loop is symmetrical in all cases here, the average buffer levels remain unchanged (i.e.
n(i) = 5.0). However, it is interesting to look at average throughput as a function of both r and the
isolated efficiency e = ﬁ of the machines. Figures 27 and 28 illustrate the relationship. We observe
that throughput is equal to 0.0 when r = 0 and approaches 1.0 asymptotically as r increases to 1.0.

In addition, we see that throughput increases hyper-linearly as a function of isolated efficiency.

5.2.2 Buffer Size

Here, we consider the effect that changing the buffer sizes has on average throughput. To do this, we
use our standard symmetrical three-machine loop but set N? = 28. Figure 29 shows how throughput
changes as we vary the buffer size N between 10 and 35.

When N = 10, the probability of blocking P% is very high, causing throughput to be relatively
low. At this point, the probability of starvation P! is zero because the number of holes is less than
N. As N increases to 14, P decreases but P*! remains zero, resulting in an increase in throughput.
For N > 13, P* is no longer zero. In the range 13 < N < 28, the decrease in P is greater than
the increase in P*' so there is a net increase in throughput. However, for N > 28, P = 0.0, P*' is
constant, and throughput is constant. All of the parts can fit in any of the buffers so no machine
can ever become blocked. Furthermore, increasing the buffer size beyond NP does not increase the
probability that one of the buffers can become empty.

M1
Basic Parameters
ri | pi | Vi | NP
0.1]0.0L]10] 15
M3 MZ

Figure 24: Basic loop
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6 Conclusions and Future Work

The purpose of this research was to build on earlier work (Maggio 2000; Maggio, Matta, Gersh-
win, and Tolio 2003) to find a practical general approach to evaluating closed-loop systems. Our
transformation algorithm significantly reduces the complexity of large loops by eliminating multi-
ple thresholds. The transformation and decomposition technique described in this paper provide
extremely accurate approximations of average production rate.

There are several extensions to the method which would prove useful:

1. The approach described here could be extended to multiple loop systems. (See Levantesi
(2001).) This is of particular interest for evaluating the performance of systems operated
under token-based control policies (Gershwin 2000).

2. The method could also be modified to deal with closed-loop systems in which multiple part
types share a common set of resources. In this type of system, different part types compete for
resources and therefore the production of one part interferes with the production of another.

3. Another possibility is the combination of the first two items. The method can be extended to
evaluate multiple loops with multiple part types.

4. The method should be extended to other models of production loops, including exponential
processing time and continuous material models (Gershwin 1994).

5. Improvements to the performance of the algorithm are possible. One would be to use the
method of Tolio, Gershwin, and Matta (2002) for the two-machine lines early in the algorithm,
and iterated matrix multiplication (which Werner (2001) did, but for the whole algorithm) in
the late stages. This would reduce the computational effort if the initial guess for each two-
machine line evaluation was the probability distribution calculated the last time the algorithm
evaluated that two-machine line.
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