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Abstract

We present an efficient and accurate approximate analytical decomposition method for
evaluating the production rate and distribution of inventory of a closed loop manufacturing
system with unreliable machines and finite buffers. It is based on an earlier decomposition for
a tandem line; it differs only in accounting for the different sets of machines that could cause
blockage or starvation to other machines. The method can be applied to tandem production
lines with a limited number of pallets or fixtures; the pallets travel in a closed loop even
thought the parts do not. It can also be applied to systems controlled by a conwip policy
with infinite or finite buffers since such a policy can be implemented with a limited number of
tokens that behave in the same way as pallets.

1 Introduction

1.1 Problem Statement

In this paper, we present an efficient and accurate analytical decomposition method for evaluat-
ing the production rate and distribution of inventory of a closed loop manufacturing system with
unreliable machines and finite buffers. This is an extension of the method of Maggio (2000) and
Maggio, Matta, Gershwin, and Tolio (2006) which was only practical for very small systems. The
new method, which was first described in Werner (2001), relies on a novel network transforma-
tion and can treat systems with a large number of machines and buffers. We focus our attention
here on loops with discrete material and with fixed-processing-time machines (the Buzacott model)
but the same transformation is applicable to other versions that have been used for lines and as-
sembly/disassembly networks (discrete material and exponential processing time machines; and
continuous material).
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A closed-loop production system or loop is a system in which a constant amount of material (the
loop population) flows through a single fixed cycle of work stations and storage buffers. This type
of system appears frequently in factories. Manufacturing processes which utilize pallets or fixtures
can be viewed as loops since the number of pallets/fixtures that are in the system remains constant.
Similarly, control policies such as CONWIP and kanban create conceptual loops by imposing a
limitation on the number of parts that can be in the system an any given time. Figure 1 represents
a K-machine loop.

Decomposition methods have been developed
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Figure 1: Illustration of a closed-loop produc-
tion system

for the performance evaluation of some large sys-
tems for which exact analytic methods do not exist
and numerical methods are infeasible. These tech-
niques approximate the original large system with
a set of smaller systems that satisfy a set of care-
fully chosen relationships. Networks with finite
buffers are the major focus of attention. Early
work focused on tandem systems with unreliable
machines and finite buffers (Gershwin 1987; Dallery,
David, and Xie 1988); more recent papers extended
it to assembly/disassembly networks (Mascolo, David,

and Dallery 1991; Gershwin 1991). Except for a small number of papers, this work was limited
to acyclic or tree-like systems: those whose graphs contain no loops. Literature surveys appear in
Dallery and Gershwin (1992) and Gershwin (1994).

In this paper, we make use of and extend a recent decomposition method (Tolio and Matta
1998). We describe the extension of decomposition methods to systems that consist only of the
machines and buffers in a single loop. Levantesi (2001) describes the extension to general assem-
bly/disassembly networks with multiple loops. Such networks are of interest because they arise in
the analysis of an important class of control policies for manufacturing systems (Gershwin 2000).

Performance measures such as average production rate and the distribution of in-process inven-
tory cannot be expressed in closed form. Simulation provides accurate results for these quantities,
but it can be time consuming. Although constant improvements in computer technology steadily
reduce simulation time, computation time remains important for optimization, which requires very
large numbers of evaluations. Some fast analytical methods have been developed, but they are
accurate in a limited class of cases. The purpose of this paper is to describe a more versatile ap-
proximate analytical method for evaluating the performance measures of closed-loop production
systems.

1.2 Literature Review

Compared to open production lines, little work has been done on closed-loop production systems
with finite buffers and unreliable machines. Onvural and Perros (1990) demonstrated that the
production rate of a closed-loop system is a function of the number of parts in the system. In
addition, they showed that the throughput versus population curve is symmetric when blocking
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occurs before service and processing time is exponential. To avoid the complication that finite
buffers create in closed-loop systems, Akyildiz (1988) approximated the production rate by reducing
the population and evaluating the same system with infinite buffers. Bouhchouch, Frein, and Dallery
(1992) used a closed-loop queuing network with finite capacities to model a closed-loop system with
finite buffers. Papers that have treated loops by other approaches include Bozer and Hsieh (2005),
(Lim and Meerkov 1993), and (Kim, Kulkarni, and Lin 2002). See also Perros (1990). For more
detailed listings and discussions of previous work dealing with closed-loop finite-buffer systems,
see Tolio and Gershwin (1998), Maggio (2000), Maggio, Matta, Gershwin, and Tolio (2006), and
Balsamo, de Nitto Personé, and Onvural (2001).

The first approximate analytical method for evaluating the performance of closed-loop systems
with finite buffers and unreliable machines was proposed by Frein, Commault, and Dallery (1996).
This method was an extension of the Gershwin (1987) decomposition technique. It did not account
for the correlation among numbers of parts in each buffer. As a result, the method is only accurate
for large loops with populations that are neither too large or too small. A recent method has been
presented by Han and Park (2002), but numerical results for only a small number of loops are
described.

Maggio (2000) and Maggio, Matta, Gershwin, and Tolio (2006) present a new decomposition
method, based on the Tolio decomposition (Tolio and Matta 1998), which does account for the
correlation between population and the probability of blocking and starvation. However, the method
is too complex to be practical for loops with more than three machines. Here, we simplify and extend
these results to loops with any number of machines.

1.3 Outline

We describe the model, the transformation, and the solution technique in Section 2. We describe
the algorithm in detail in Section 3. In Section 4 we describe the performance of the technique and
in Section 5 we use it to demonstrate some features of loop behavior. We conclude and recommend
future research directions in Section 6.

2 Approach

In Section 2.1, we describe the model, review decomposition methods for open lines, present the
important features of closed loop systems that are accounted for in our method, and define buffer
thresholds and explain their impact on the analysis of these systems. We introduce the transfor-
mation that allows us to avoid treating thresholds explicitly in Section 2.2, and define two new
concepts: the range of blocking and the range of starvation. In Section 2.3, we present the new
decomposition and describe the building block and the decomposition equations. This new de-
composition is so similar to Tolio and Matta’s method (Tolio and Matta 1998) for an open line,
that a program to analyze loops can be written by making a minor modification to a program for
evaluating lines. The relationship is illustrated in Section 2.3.3.
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2.1 Closed-Loop Production Systems

2.1.1 Basic Model

We extend the deterministic processing time model introduced by Buzacott (1967) and modified
by Gershwin (1987) and Tolio and Matta (1998) to closed-loop systems. Processing times for
all machines are assumed to be deterministic and identical. We scale time so that the common
processing time is one time unit. All operational (i.e. not failed) machines start their operations at
the same instant. Parts in the machines are ignored, as is travel time between machines. Machine
failure times and repair times are geometrically distributed. We use the version of the model
presented by Tolio, Matta, and Gershwin (2002) and Tolio and Matta (1998), which allows machines
to fail in more than one mode. This feature is critical to our method and is discussed in detail in
Section 2.1.5.

In this paper, Mi refers to Machine i. Bi is its downstream buffer and has capacity Ni. Bi−1

is the buffer upstream1 of Mi. A machine is blocked if its downstream buffer is full and starved if
its upstream buffer is empty. When Mi is working (operational and neither blocked nor starved) it
has a probability pij of failing in mode j in one time unit. If Mi is down in mode j, it is repaired
in a given time unit with probability rij. By convention, machine failures and repairs take place
at the beginnings of time steps and changes in buffer levels occur at the ends of time steps. The
population, the fixed total number of parts in the system, is Np. It is convenient to define

N total =
K

∑

i=1

Ni,

the total buffer space in the loop.

Lower bound on buffer size In this model of a production line, the minimal buffer size is 2.
(That is, Ni ≥ 2 for all i.) This is because of the assumptions on the behavior of empty and full
buffers, and because we do not consider the workspace in the machines to be available for storage.
Werner (2001) restricted Ni ≥ 2 for this reason. Tolio, Matta, and Gershwin (2002) required Ni ≥ 3
because of the structure of their analytical two-machine line solution — if this is not satisfied, there
is no ni such that 2 ≤ ni ≤ Ni − 2, and the solution has a special structure for such ni. As
indicated in Section 2.3.4, it is possible to solve two-machine lines with Ni = 2 by iterated matrix
multiplication.

2.1.2 Tandem Line Decomposition Techniques

It is possible to obtain the exact steady-state probability distribution (and from that the production
rate and average buffer level) analytically for a two-machine, one-buffer line. It is not possible for
longer lines because of the rapid increase in the state space with the length of the line and the
sizes of the buffers. However, accurate approximate decomposition methods have been developed

1In an open line, there is no buffer upstream of M1. In a K-machine closed loop, however, the buffer upstream of
M1 is BK . The required change of notation is described in Section 2.1.3.
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for evaluating the performance of long tandem lines and assembly/disassembly systems (Gershwin
1994). These methods decompose a K-machine tandem line into K − 1 two-machine lines or
building blocks. In each building block L(i), the buffer B(i) corresponds to Bi in the original line.
The upstream machine Mu(i) represents the collective behavior of the line upstream of Bi and the
downstream machine Md(i) represents the behavior downstream.

Consider an observer in Bi who is only allowed to see the arrivals and departures of material
from that buffer. Suppose he is told that he is observing the buffer of a two-machine line. The
upstream and downstream machines of that line are called Mu(i) and Md(i). To that observer
(whose buffer is referred to as B(i) for consistency), Mu(i) appears to be down when Mi is either
down or starved by some upstream machine. In Tolio and Matta (1998), Mu(i) has local failure
modes corresponding to those of Mi and remote failure modes corresponding to each of the upstream
machines2. Likewise, Md(i) has local failure modes corresponding to those of Mi+1 and remote
failure modes corresponding to each of the downstream machines. Tolio and Matta (1998) show
how to obtain the failure and repair probabilities for these modes. These quantities are functions of
all the machines and buffers in the original line, and are therefore related to similar parameters in
the fictional two-machine lines monitored by other fictional observers. To obtain these parameters,
Tolio and Matta (1998) develop a set of decomposition equations that involve the analysis of the
two-machine lines to obtain production rates and probabilities of starvation and blockage.

This is illustrated in Figure 2, which focuses M1

M (3)u

3 4 85,6,7 9,10

1,2,
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M2 M M5 M6MB 3 43
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Figure 2: Tolio decomposition

on the view of the observer in the buffer B3, who
believes that he is in the buffer of the two-machine
line consisting of Mu(3), B(3), and Md(3). Failure
modes are indicated in the machines, so Machine
1 fails in modes 1 and 2, Machine 2 fails in mode
3, etc. The local modes, as seen by that observer
are 4, 5, 6, and 7. The rest are remote.

The goal of the decomposition method is to
choose the parameters of Mu(i) and Md(i) such
that the flow of parts through B(i) mimics the flow
through Bi. Accomplishing this for all building blocks gives approximate values for throughput and
average buffer levels in the original tandem line.

2.1.3 Special Characteristics of Closed-Loop Systems

In a tandem line, each machine can block every upstream machine and it can starve every down-
stream machine. That is, each machine can cause every upstream buffer to become full, if it stays
down long enough, and it can empty every downstream buffer if it is down for a sufficiently long
time.

The situation is different in loops. Whether or not a machine can be starved or blocked by the
failure of another machine depends on the number of parts in the system and the total buffer space
between the two machines. We define (i, j) as the set of indices of the machines between Mi and
Mj inclusive. For ease of notation, we define all subscripts to be modulo K. Then

2In papers by Tolio and his co-authors, the local and remote modes were called real and virtual modes.
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Figure 3: Example of a loop with thresholds. Np = 7.

(i, j) =

{

(i, i + 1, ..., j) if i < j
(i, i + 1, ..., K, 1, ..., j) if i > j

(1)

We define Ψ(v, w) as the total buffer space between Mv and Mw in the direction of flow (Maggio
2000; Maggio, Matta, Gershwin, and Tolio 2006). More formally,

Ψ(v, w) =

{

∑w−1
z=v Nz if v 6= w

0 if v = w
(2)

The total buffer space in the line is N total = Ψ(v, w)+Ψ(w, v) (for any w 6= v) and the population
must satisfy

0 ≤ Np ≤ N total.

If Np < Ψ(v, w), then the failure of Mw can never cause Mv to become blocked because there are
not enough parts in the system to fill all buffers between Mv and Mw simultaneously. Conversely,
if Np > Ψ(v, w), Mw cannot starve Mv because there are too many parts in the system to allow all
the buffers between Mw and Mv to be empty.

2.1.4 Thresholds

The issue of blocking and starvation is more complicated still. In some cases, whether or not a
machine can ever be starved or blocked by the failure of another machine depends on the number
of parts in an adjacent buffer. This is the concept of buffer thresholds introduced in Maggio (2000)
and Maggio, Matta, Gershwin, and Tolio (2006).

Consider the loop in Figure 3 where Np = 7 parts are traveling through a three-machine loop
with three buffers of size 5. If M2 fails, parts begin to build up in B1 and eventually M1 becomes
blocked. However, we know that M1 cannot be blocked if the number of parts in its upstream
buffer, B3, is greater than 2. If there are more than 2 parts in B3, there must be fewer than 5 parts
in B1 since there are only 7 parts in the system. Therefore, M1 cannot be blocked.
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Conversely, we know that if the number of parts in B3 is less than 2 then the number of parts
in B2 must be greater than zero and M3 cannot become starved.3 Therefore, we say that B3 has a
threshold of 2.

In general, we define the threshold lj(i) to be the maximum level of Bi such that all buffers
between Mi+1 and Mj can become full at the same time. That is, lj(i) is the maximum level of Bi

such that the failure of Mj could cause Mi+1 to become blocked. It is

lj(i) = Np − Ψ(i + 1, j) (3)

Note that lj(i) can assume values ranging from less than zero to greater than Ni depending on
the population and buffer sizes. We only need to consider cases where 0 < lj(i) < Ni. To deal
with these cases, Maggio (2000) and Maggio, Matta, Gershwin, and Tolio (2006) propose a more
detailed building block and a new set of decomposition equations. This approach is accurate and
has been implemented for three-machine loops with certain restrictions on population and buffer
sizes. However, this building block can only take a single threshold into account. This is somewhat
of a limitation for a three-machine loop, but it is a serious limitation for larger loops. It would be
possible to extend the method to larger loops, but the building block would have to become very
complex to deal with multiple thresholds.

2.1.5 Ranges of Starvation and Blockage

Here, we define the range of starvation and range of blocking of a machine. The range of starvation
of Mi is the set of machines Mj such that if Mj is failed for a sufficiently long time and all other
machines are operational, Mi will be starved; that is, Bi−1 will be empty. It is the contiguous set
{Ms(i), Ms(i)+1, ..., Mi−1}, where Ms(i) is the furthest machine upstream that can cause Mi to be
starved if it is failed for a long period of time and all the other machines are operational. Similarly,
the range of blocking of Mi is the contiguous set {Mi+1, Mi+2, ..., Mb(i)}, where Mb(i) is the machine
farthest downstream which can cause Mi to be blocked if it is down for a sufficiently long time and
all other machines are up. These ranges are illustrated in Figure 4 for machine M1 in a 6-machine
loop in which the sizes of all the buffers are 10 and the population is 35. If M4 fails and stays down
for a very long time, and no other machines are down, M1 will be blocked since B1, B2, and B3

will be full. (The remaining 5 parts will be in B6.) M2 and M3 can also cause B1 to be full and
therefore M1 to be blocked.

If M5 fails for a long time while all other machines are operational, the 35 parts will be found
in B4, B3, B2 and B1. (B1 will have 5 parts and the others will be full.) Therefore, B5 and B6 will
be empty and M1 will be starved.

(Note that if the population were 30 in this case, M4 would be in both the range of starvation and
the range of blocking of M1. This situation must be considered for the transformation in Section
2.2.)

3Maggio (2000) and Maggio, Matta, Gershwin, and Tolio (2006) show that blocking thresholds and starving
thresholds are the same.

7



Gershwin and Werner An approximate analytical method ... December 22, 2005

B1

Range of blocking of M 1

Range of starvation of M 1

M M3

M6B6 M5B5

B3

M4

B4

22 B

M1

Figure 4: Ranges of blocking and starvation

We calculate4 s(i) and b(i) as follows:5

s(i) = max
j

{j + 1|Ψ(i, j) < Np} (4)

b(i) = min
j
{j|Ψ(i, j + 1) > Np} (5)

2.1.6 Loop Decomposition

We are now in a position to describe the loop decomposition: it is exactly the same as the tandem
line decomposition but with one exception. In the tandem line, the range of starvation of machine
Mi is simply the set of machines upstream of Mi, and the range of blocking is the set of machines
downstream of Mi. In the loop the ranges of blocking of starvation and blockage are described
instead by (4)–(5). This is represented in Figure 5, which is the decomposition of the loop in Figure
4.

In building block L(i), the failure modes of Mu(i) are the same as those of the machines in the
range of starvation of Mi+1: machines Ms(i+1) through Mi. The local modes are those of Mi and
the remote modes are those of Ms(i+1) through Mi−1. Md(i) has failure modes which are the same
as those of the machines in the range of blocking of Mi, the modes of Mi+1 through Mb(i+1). The
remote modes are those of Mi+2 through Mb(i+1) and the local modes are those of Mi+1.

For example, consider Figure 5 with Np = 35. B(1) in building block L(1) being full is an event
that should occur in almost the same way as (ie, almost statistically indistinguishably from) how
B1 being full in the original loop occurs. Since B1 can become full when and only when M2, M3,
or M4 fail, then the failure modes of Md(1) (whose failure causes the filling of B(1)) should be the
same as those of M2, M3, and M4. In this case, i = 1 and b(1) = 4.

4Here, “min” means “travel downstream from Mi until you find the first machine for which the condition is
satisfied,” and “max” means “travel downstream from Mi until you find the last machine for which the condition is
satisfied.”

5Note that the inequalities are strict. We use this convention to deal with the situation of simultaneous blocking
and starvation. See Section 2.2.2.
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Figure 5: Loop decomposition

Similarly, B(6) in building block L(6) being empty is an event that should occur in almost the
same way as (ie, almost statistically indistinguishable from) B6 being empty in the original loop.
Since B6 can become empty when and only when M5 or M6 fail, then the failure modes of Mu(6)
(whose failure causes the emptying of B(6)) should be the same as those of M5 and M6. Here, i = 6
and i + 1 = 7 = 1 mod 6 so s(1) = 5.

Figure 6 shows the failure modes of the machines of L(1). We have already described the failure
modes of Md(1). The failure modes of Mu(1) are those of the machines in the range of starvation
of M2

Recall that the sets of machines that are in each range of blocking and starvation depend on the
population Np (as well as the sizes of the buffers). The method takes Np into account by including
in the building blocks only those failure modes from machines within the appropriate ranges of
blocking and starvation.

2.2 Loop Transformation

2.2.1 Elimination of Thresholds

It is possible to eliminate the complications in the two-machine building blocks due to thresholds
by transforming the loop. The transformation allows us to evaluate much larger loops for a wider
range of population levels and buffer sizes than is possible using the method presented in Maggio
(2000) and Maggio, Matta, Gershwin, and Tolio (2006). Instead of dealing with the thresholds
directly, we transform the loop into one without thresholds that behaves in almost the same way.
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Figure 6: Failure modes in L(1)

The resulting loop is relatively easy to analyze.

Consider again the three-machine loop of Figure 3. Into each of the three buffers, we insert a
perfectly reliable machine so that the buffer of size 5 is replaced by an upstream buffer of size 3
and a downstream buffer of size 2. See Figure 7. The performance of this new six-machine loop is
approximately the same6 as the original three-machine loop, and we have eliminated all thresholds
between 0 and Ni.

We can extend this approach to any K-machine

B2

B3 B1

M 2

M1

M 3

3

32

2

2 3

M2* M3*

M1*

Figure 7: Illustration of a loop which is trans-
formed so that thresholds are eliminated

loop. For each threshold 0 < lk(i) < Ni, we in-
sert a perfectly reliable machine Mk∗ into buffer Bi

such that Ψ(k∗, k) = Np. Bi is now represented as
a buffer of size Ni − lk(i) followed by Mk∗ followed
by a buffer of size lk(i). Since each unreliable ma-
chine can generate at most one threshold between
zero and Ni, the transformed loop will consist of at
most 2K machines. Although the loop is larger,
we can now use the same building block that is
used in Tolio’s tandem line decomposition (Tolio,
Matta, and Gershwin 2002, Tolio and Matta 1998).
Furthermore, the computational complexity does

not increase with the addition of the new machines because no new failure modes are introduced.

Unfortunately, this transformation creates a problem for discrete-material models. It may create
a buffer that violates the minimal buffer size condition of Section 2.1.1. In the algorithm of Section
3, we suggest increasing such buffers to the minimal size. This is crude, but it appears not to create
large errors.

6This is approximate because breaking up a buffer by inserting a machine adds one time unit of delay to the time
it takes a part to traverse the buffer. But as indicated in Section 2.1.1, we are ignoring travel time in buffers.
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Figure 8: Ranges of blocking and starvation of M1 when Np = 30

2.2.2 Simultaneous Blocking and Starvation

If Ψ(v, w) = Np then machine Mv can become simultaneously blocked and starved when Mw is
down for a long period of time. In this case, the thresholds lw(v − 1) = 0 and lw(v) = Nv. In
transformed loops, this situation can occur at each reliable machine Mk∗ when Mk fails since the
buffer sum between the two machines Ψ(k∗, k) = Np by construction.

The two-machine building block developed in Tolio and Gershwin (1996), Tolio, Matta, and
Gershwin (2002) does not account for the states where both machines are down and the buffer level
is either zero or full. In that model, the pseudo-machines in the two-machine lines are never both
down due the failure of the same real machine. However, they can be in a loop, as the following
example shows. Our numerical experience indicates that this does not appear to cause a large error.

Figure 8 shows the ranges of blockage and starvation of M1 in the six-machine loop where all
the buffer sizes are 10 and the population is 30. Note that M4 is in both ranges. If M4 fails for a
long time and is the only machine that is down, buffers B1, B2, and B3 will be full. In L(1), buffer
B(1) is full and Md(1) is down. Buffers B4, B5, and B6 will be empty, so Mu(1) is also down. That
is, Mu(1) and Md(1) appear to fail simultaneously due to a failure of the same real machine, M4.

2.2.3 Reduction of Large Buffers

Consider a loop in which one buffer is the same size as the population. That is, there is one buffer
Bi such that Ni = Np. We claim that if Ni is increased by m > 0 spaces to Np+m, the performance
of the loop is not affected. This can be seen by running two loops which differ only in the size of
Ni from the same initial condition (ie, distribution of parts and repair/failure states of machines)
with the same sample (ie, the same schedule of failures and repairs of machines). Assume that in
the initial condition, there are fewer than Np parts in Bi.

Until the first time that the smaller Bi is full, the histories of all the corresponding nj(t) are
the same in the two loops because both sets of trajectories are subject to the same events and
constraints. At the time when both Bi hold Np parts, machine Mi is blocked in one of the loops
and not in the other. However, it is starved in both, and is thus unable to operate or fail in both.
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Therefore the states of both loops remain the same. When a part leaves Bi in both loops (which
will happen simultaneously), the situation reverts to that of the initial condition: the distribution
of inventory is the same in the two loops and the the repair/failure states are the same in the two
loops. Again the buffer trajectories remain the same at least until the next time Bi holds Np parts,
but the two loops stay the same when that happens as well. To summarize: there are no events
than can cause the states of the two loops to differ, so they remain the same for all time.

As a consequence, we can reduce the size of any buffer which is larger than Np to exactly Np

without affecting the performance of the loop. In the rest of Section 2 and in Section 3, we assume
Ni ≤ Np for all i. In the algorithm, we reduce the size of any buffer larger than Np to Np.

Equivalence (Ammar and Gershwin 1989) can be invoked to reduce large buffers when the
population of the loop is very large. We can define a hole to be a space in a buffer. If, at time t,
the are n(t) parts in a buffer of size N , then there are N − n(t) holes in that buffer. Therefore,
there are N total −Np holes in a closed loop, and the number of holes stays constant. Every time a
part moves from Bi−1 through Mi to Bi, a hole simultaneously moves from Bi through Mi to Bi−1.
Therefore, the flow of holes is the same as the flow of parts through a loop which is made up of the
same machines and buffers but in reverse order. The throughput rates will be the same, and the
average number of parts in a buffer of the original loop is the number of holes (complement of the
number of parts) in the corresponding buffer of the reversed system.

Consider a loop in which N total − Np is smaller than the largest buffer. This loop will be
equivalent to a reversed loop with population Np′ = N total −Np. As above, we can reduce the size
of any buffer in the reversed loop which is larger than Np′ to Np′ without changing the throughput of
the loop or the average number of parts in any buffer of the reversed loop. We can then evaluate the
reversed loop with reduced buffers and use its results to evaluate the original loop: the production
rate of the original loop will be the same, and the average inventory in Bi of the original loop will
be Ni − n̄i

′, where n̄i
′ is the average number of parts in the reversed loop with reduced buffers.

2.3 Decomposition of Loops

To develop a decomposition for closed loop systems, we must establish a building block model and
find a way to relate the building blocks to one another. This section discusses the parameters of the
building blocks and the equations used to find them. Since, according to Section 2.2, it is always
possible to transform a loop into one in which buffer thresholds need not be treated explicitly, we
restrict our attention to loops without thresholds.

2.3.1 The Building Block Parameters

As in the Tolio tandem line decomposition (Tolio and Matta 1998), we evaluate the loop by ap-
proximating its behavior with a set of two-machine building blocks. Each building block L(i) is
associated with the buffer Bi in the original loop. The upstream machine Mu(i) has local failure
modes corresponding to those of Mi and remote failure modes corresponding to those of machines
Ms(i) through Mi−1. We use the symbol λkj to represent a failure mode of Mu(i): the mode cor-
responding to mode j of Machine Mk, k = s(i), ..., i. Similarly, Md(i) has local failure modes
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corresponding to those of Mi+1 and remote failure modes corresponding to those of machines Mi+2

through Mb(i+1). Here, λkj represents mode j of Machine Mk, k = i + 1, ..., b(i).
When we have the parameters of two-machine line L(i), we can use the results of Tolio, Matta,

and Gershwin (2002) to evaluate its production rate E(i) and the probabilities of starvation and
blockage due to each failure mode. These quantities are needed in the decomposition equations
(Section 2.3.2).

In line L(i), define pu
ij(i) to be the probability that the upstream machine fails in mode λij ; let

ru
ij(i) be the the probability that the upstream machine is repaired when it was in failure mode

λij; let pd
i+1,j(i) be the probability that the downstream machine fails in mode λi+1,j; and define

rd
i+1,j(i) to be the the probability that the downstream machine is repaired when it was in failure

mode λi+1,j . Then, as shown in Tolio and Matta (1998) and Maggio, Matta, Gershwin, and Tolio
(2006), the failure and repair probabilities for the local failure modes are equal to the probabilities
of the corresponding modes of the machines in the loop. That is,

pu
ij(i) = pij (6)

ru
ij(i) = rij (7)

pd
i+1,j(i) = pi+1,j (8)

rd
i+1,j(i) = ri+1,j (9)

In addition, we know that the probability of repair when a machine is down in remote failure
mode λkj is equal to the probability that machine Mk is repaired when it is down in failure mode
j. This gives us

ru
kj(i) = rkj (10)

rd
kj(i) = rkj (11)

To evaluate the performance measure of the loop, we must find the remote failure probabilities
pu

kj(i) and pd
kj(i) for each L(i). This is the objective of solving the decomposition equations.

2.3.2 Decomposition Equations for a Line

Here, we review the decomposition equations for the tandem line derived in Tolio and Matta (1998).
We define P st

kj(i) as the probability that B(i) is empty due to Mu(i) being down in remote failure
mode λkj. Likewise, P bl

kj(i) is the probability that B(i) is full due to Md(i) being down in remote
failure mode λkj. Finally, we define E(i) to be the average throughput of building block L(i). Using
this notation, we write the decomposition equations. For all 2 ≤ i ≤ K − 1 and all j, Tolio and
Matta (1998) show that
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pu
kj(i) =

P st
kj(i − 1)

E(i)
rkj for k = 1, ..., i− 1 (12)

and

pd
kj(i) =

P bl
kj(i + 1)

E(i)
rkj for k = i + 2, ..., K (13)

We know the values of the local p parameters and all the r parameters in the line from (6)–(11).
With the quantities determined in (12) and (13), we have enough information to evaluate the two-
machine line of Tolio, Matta, and Gershwin (2002) to determine E(i), P st

kj(i), and P bl
kj(i) in (12) and

(13). The decomposition equations (12) and (13) thus form a system of 2K independent equations
in 2K unknowns.

2.3.3 Decomposition Equations for a Loop

The decomposition equations for a loop are nearly identical to those of the tandem line decompo-
sition. In fact, we need only modify the limits of the indices in (12) and (13) to account for the
range of blocking and starvation and the fact that loops contain as many buffers as machines.

In the line, all machines upstream of a machine can cause its starvation, and all downstream
machines can cause it to be blocked. Here, however, we need to determine which machines can cause
starvation and blockage to each given machine. Recall from Section 2.1.5 that s(i) is the index of
the machine furthest upstream which falls within the range of starvation of machine Mi. Similarly,
b(i) is the index of the machine furthest downstream which falls within the range of blocking of Mi.
Then, for all i and j,

pu
kj(i) =

P st
kj(i − 1)

E(i)
rkj for k = s(i + 1), ..., i − 1 (14)

and

pd
kj(i) =

P bl
kj(i + 1)

E(i)
rkj for k = i + 2, ..., b(i) (15)

Again we know the values of the local p parameters and all the r parameters, and we use the
decomposition equations (14) and (15) to determine the rest of the p parameters. The decomposition
equations (14) and (15) represent a system of 2K ′ independent equations in 2K ′ unknowns. We
present an algorithm, based on the DDX algorithm (Dallery, David, and Xie 1988) for a line, in
Section 3.

2.3.4 Additional comments

Conditions on parameters
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• We must require that for each machine Mi,

∑

j

pij < 1 (16)

This is because Tolio, Matta, and Gershwin (2002) have that requirement for both machines
of their two-machine line. In fact, to satisfy those requirements, we must actually satisfy the
stronger condition

∑

j,k

pu
kj(i) < 1 (17)

∑

j,k

pd
kj(i) < 1 (18)

where the sums are taken over all the failure modes of all the machines in the range of
starvation and the range of blocking, respectively. However, we cannot specify this at the
initiation of the algorithm.

• To use the method of Tolio, Matta, and Gershwin (2002) for the two-machine line, we must
have a minimal buffer size of 3. Werner (2001) solved the two-machine line by iterated matrix
multiplication, so he was able to have a minimal buffer size of 2. In our numerical work,
we dealt with buffers of size 1 by increasing their sizes to 2. This is certainly not perfectly
accurate, but numerical experience indicates that it does not create a large error.

• The method will not work well when the population is very small and the size of the loop is
very large. Consider a loop made up of 100 perfectly reliable machines where the population
Np = 3. Assume all 100 buffer sizes are larger than 3. The production rate of this system
will be 3/100 because it takes 100 time steps for each part to circumnavigate the loop. On
the other hand, our algorithm will calculate a production rate of 1.

The reason for this discrepancy is that we do not consider the single time unit that a part
spends in a machine for its operation. When this time is large compared to downtime due to
failures, the algorithm is inaccurate.

Non-equality of production rates Maggio (2000) and Maggio, Matta, Gershwin, and Tolio
(2006) observed that when the algorithm converged, the production rates were not exactly equal.
We observe the same. This is undesirable, but the errors never appear to be large. We have not
determined the cause of this discrepancy. In our experience, the maximum E(i) has proved to be
the most accurate estimate of production rate when compared with simulation.

No specification of inventory sum It is noteworthy that we do not have an explicit requirement
in the method that specifies the sum of the buffer levels. This is in contrast with the method of
Frein, Commault, and Dallery (1996), which explicitly requires that
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∑

i

n̄(i) = Np

3 Implementing the Loop Transformation and Decomposi-

tion

This section provides a step-by-step procedure for evaluating a loop. In Section 2.2 we transform
an arbitrary loop into one that we can analyze. In Section 3.2 we describe an algorithm for solving
the decomposition equations which is a slight modification of that of Tolio and Matta (1998).

3.1 The Transformation Algorithm

1. For all Ni > Np, set Ni = Np. (See Section 2.2.3.)

2. Insert a perfectly reliable machine Mi∗ for every unreliable machine Mi such that Ψ(i∗, i) = Np

(unless a machine Mj such that Ψ(j, i) = Np already exists). The new loop consists of K ′

machines separated by K ′ buffers (where K ≤ K ′ ≤ 2K).

3. Re-number the machines and buffers from 1 to K ′.

4. Calculate the range of starvation and range of blocking for each Mi using (4) and (5).

5. For all Ni less than the minimal buffer size, set Ni to the minimal buffer size.

Note that some loops will not be changed at all by this transformation.

3.2 The Decomposition Algorithm

This algorithm is designed for loops that are the result of the transformation of Section 3.1.

1. For each line L(i), the set of failure modes of Mu(i) (ie, the set of λu
kj(i)) is the set of failure

modes in the range of starvation of Mi+1. The set of failure modes of Md(i) (ie, the set of
λd

kj(i)) is the set of failure modes in the range of blocking of Mi.

2. Initialize pu
ij(i), ru

ij(i), pd
i+1,j(i), rd

i+1,j(i), ru
kj(i), and rd

kj(i) for all valid failure modes using
equations (6)–(11). Set pu

kj(i) = pkj and pd
kj(i) = pkj.

3. For i = 1 to K ′:
– Calculate E(i) and P st

kj(i).
– Update pu

kj(i + 1) using (14).

4. For i = K ′ to 1:
– Calculate E(i) and P bl

kj(i).
– Update pd

kj(i − 1) using (15).
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5. Repeat (c) and (d) until the parameters converge to an acceptable tolerance.

6. Record performance measures.

• Use max iE(i) as an estimate of production rate E.

• Calculate the average buffer level n(i). Form the appropriate sums of the average levels
of the buffers created in the transformation of Section 3.1 to obtain the average levels of
the buffer of the original loop.

4 Performance of the Method

In this section, we examine the accuracy, convergence reliability, and speed of the method. The
method was tested extensively on three- to ten-machine loops with machine parameters and buffer
sizes generated randomly. Repair probabilities for each machine in the loop where drawn from a
uniform distribution between 0.05 and 0.2 and were required to be on the same order of magnitude.
Failure probabilities were randomly generated from a uniform distribution such that the isolated
efficiency r/(r + p) of each machine in the loop was between 75 and 99 percent. Buffer sizes were
drawn from a uniform distribution between 1/5r and 5/r. For each loop, the decomposition and
simulation were performed for all possible population levels. Here, we summarize the accuracy and
convergence reliability. Details can be found in Werner (2001).

4.1 Accuracy

In this section, we compare the analytical results to those obtained through simulation. The mea-
sures of interest are average throughput and average buffer levels.

The production rate errors are calculated according to

ǫE =
∣

∣

∣

∣

Edecomposition − Esimulation

Esimulation

∣

∣

∣

∣

Buffer level errors were calculated according to

ǫn̄(i) = 2

∣

∣

∣

∣

∣

n̄(i)decomposition − n̄(i)simulation

Ni

∣

∣

∣

∣

∣

We calculate buffer level errors in this way so as not to magnify the errors in small buffer levels
while, at the same time, reducing the apparent errors in large buffer levels. Consider the reported
error in the buffer level for a buffer of size 100 where the decomposition estimates the level to
be 89.9 and the simulation calculates 90.0. Using the usual calculation of error (as we do for the
production rate), the error would appear to be about -0.1%. However, if we reversed the direction
of flow in the system, we would have an equivalent system with the same production rate but with
complementary buffer levels (Ammar 1980; Ammar and Gershwin 1989; Gershwin 1994). In that
case, the decomposition would calculate a buffer level of 1.1 and the simulation would calculate 1.0.
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The apparent error would then be 10%. This is unreasonable, since the two systems are equivalent
and the decomposition calculations are exactly the same. Using the formula above, we find ǫn̄ = .002
for both cases.

Three-Machine Loops The method was observed to be accurate in evaluating three-machine
loops. In all of the 20 cases tested, the relative throughput error is less than 0.3%. The mean
for buffer level error is 2.9%, but the error reaches as high as 8.0%. The average 95% confidence
intervals are +/- 0.09% for simulated throughput and +/- 0.33% for average buffer level.

Six-Machine Loops For six-machine loops, the mean throughput error increased to 0.65% with
a maximum of 1.36% for the 20 cases tested. The mean buffer level error is 5.14%. Although the
maximum error is 19.44%, 82.5% of the cases tested have buffer level errors of less than 10.0%.
The average 95% confidence intervals are +/- 0.08% for simulated throughput and +/- 0.31% for
average buffer level.

Ten-machine Loops In the ten-machine loops studied, the errors are slightly larger. For the
20 cases tested, the mean throughput error is 2.08% and the maximum is 3.54%. Average buffer
level errors range from 0.11% to 30% with a mean of 6.46%. 79% of the mean buffer errors are less
than 10.0%. The average 95% confidence intervals are +/- 0.08% for simulated throughput and +/-
0.27% for average buffer level.

4.2 Convergence Reliability

In nearly all cases studied, the decomposition algorithm converged. The criterion used for con-
vergence was that the difference in the value of all pu and pd between successive iterations be less
than the specified tolerance of 10−6. The few cases where the algorithm did not converge were ten-
machine loops that exceeded the maximum number of iterations before satisfying the convergence
criterion. Even though the algorithm did not converge to the tolerance, the errors in throughput
and buffer levels are still very small.

As in Maggio (2000) and Maggio, Matta, Gershwin, and Tolio (2006), our decomposition al-
gorithm does not exactly satisfy conservation of flow even though Tolio’s equations imply that it
should hold. However, the differences between the throughputs of the building blocks are generally
very small in the cases we examined.

4.3 Speed

The speed of the algorithm was tested by finding the computation time for five randomly generated
loops of size three, six, and ten. In addition, one case of an 18-machine loop was tested. Cases were
run on a 1.7GHz Pentium M laptop with 512 MB of RAM. Table 1 compares the mean run times
of the algorithm with simulation run times. For each case, we ran the simulation for 200 runs of
100K time steps to ensure that the 95% confidence interval for throughput was less than +/- 0.1%.
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Number of Time (sec) Avg 95% CI
Machines Algorithm Simulation (+/-)

3 0.07 540 0.093%
6 1.64 1020 0.082%
10 4.63 1620 0.083%
18 66.70 2940 0.084%

Table 1: Computation time

B M B

M B M

1 1

23 2

3

50 10

5

Figure 9: Example of loop with transfer line flatness

5 Observations on Loop Behavior

Consider a three-machine loop with buffers of size 10, 5, and 50 (Figure 9). The production rate
and average buffer levels are shown in Figures 10 and 11. Note the symmetry and flatness of Figure
10.

In this section we discuss some of the loop phenomenon we observed while developing and testing
the method.

5.1 Flatness

The most interesting observation we have made using the algorithm has to do with the relationship
between the loop parameters, population, and throughput. Specifically, we observed a characteristic
we call flatness, which refers to the shape of the throughput versus population curves of closed-loop
systems.

5.1.1 Transfer Line Flatness

This special type of flatness occurs in loops where the capacity of the largest buffer is greater than
the sum of the capacities of the other buffers. For all population levels Np such that N total−Nmax <
Np < Nmax, the throughput is constant.
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Figure 11: Analytical average buffer level as a function of population

To illustrate the concept of transfer line flatness, we consider a three-machine loop with buffers
of size 10, 5, and 50 (see Figure 9). When there are 16 parts in the system, it is possible for buffers
B1 and B2 to be both full and empty. However, B3 can never become full or empty. This means
that machine M1 can never be starved and M3 can never be blocked. If we ignore B3, the system
has the same production rate and average buffer levels as a transfer line consisting of M1, B1, M2,
B2, and M3. This behavior remains the same for populations up to 50 because in each of these cases
M1 is never starved and M3 is never blocked. In this population range, the average throughput and
average buffer levels of B1 and B2 remain the same (Figures 10 and 11). Only the average buffer
level of B3 varies with the population.

5.1.2 Near Flatness and Non-Flatness

We also observed a phenomenon that we call near flatness. It occurs in loops that do not meet the
requirements for transfer line flatness, but have population ranges where the throughput is nearly
constant.

In the cases we studied, symmetrical loops, in which the machines are identical and the buffer
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capacities are the same, did not seem to exhibit near flatness. Loops which were very asymmetrical
did exhibit near flatness. The degree of flatness seemed to increase with the degree of asymmetry
in the loop.

Specifically, the standard deviation in the buffer capacities σbuffers seems to give a good indi-
cation of how flat the throughput versus population curve will be for a given loop. We calculate
σbuffers for a K-machine loop as follows:

σbuffers =

√

K
∑

i N
2
i − (

∑

i Ni)2

K2
(19)

Figures7 12, 13, and 14 illustrate how the degree of flatness increases as σbuffers increases from
7.97 to 19.12.

5.2 Sensitivity to Parameters

In this section, we explore how changes in machine parameters and buffer sizes affect average
throughput and buffer levels. The basic loop used for these tests is the symmetrical three-machine
loop with r = 0.1, p = 0.01 and N = 10 shown in Figure 15. For all of the tests, the loop population
is held constant at Np = 15.

5.2.1 Machine Parameters

In this section, we examine the effect of varying one or all the repair probabilities on the performance
of the loop.

Only r1 varied First, we examine the effect of varying r1 between 0.0 and 1.0. Figures 16 and
17 give average throughput E and average buffer levels n(i) as a function of r1. As r1 approaches
0.0, throughput goes to 0.0. In addition, we see that n(1) approaches 0.0, n(2) approaches 5.0, and
n(3) approaches 10.0. This result is consistent with intuition. When machine M1 fails, parts begin
to build up in buffer B3 until it reaches its capacity of ten. This causes M3 to become blocked and
parts begin to build up in B2 until all of the five remaining parts are in B2. Since r1 = 0.0, the
system can never leave this state and throughput is zero.

As r1 increases, M1 spends less time down. M2 is starved less frequently and M3 is blocked less
frequently. This translates into an increase in throughput and n(1) and a decrease in n(3).

When r1 = 0.1, the loop is symmetrical and all of the average buffer levels are equal to 5.0 since
the 15 parts are distributed evenly between the three buffers.

As r1 approaches 1.0, the probability that M2 will be starved approaches 0.0, as does the
probability that M3 will be blocked. By performing what is essentially the inverse of our loop
transformation, we can view the system as a two-machine loop where Mnew

1 represents M2, Bnew
1

represents B2, Mnew
2 represents M3, and Bnew

2 represents B3, M1, B1. Since Nnew
1 = 10, Nnew

2 = 20,
and Np = 15, the system acts essentially like a two-machine transfer line made up of the original
M2, B2, and M3. When we compare the throughput of the loop with that of the line, we find that

7The parameters for these loops can be found in Werner (2001).
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Figure 12: σbuffers = 7.97.
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Figure 13: σbuffers = 11.80.
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Figure 14: σbuffers = 19.12.
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they are nearly identical. As r1 approaches 1.0, the average throughput of the loop approaches
0.8535. The average throughput of the corresponding two-machine transfer line is 0.8561.

All ri varied together Next, we study the effect of varying all of the rs together between 0.0
and 1.0. Since the loop is symmetrical in all cases here, the average buffer levels remain unchanged
(i.e. n(i) = 5.0). However, it is interesting to look at average throughput as a function of both r
and the isolated efficiency e = r

r+p
of the machines. Figures 18 and 19 illustrate the relationships.

We observe that throughput is equal to 0.0 when r = 0 and approaches 1.0 asymptotically as
r increases to 1.0. In addition, we see that throughput increases hyper-linearly as a function of
isolated efficiency.

5.2.2 Buffer Size

Here, we consider the effect that changing the buffer sizes has on average throughput. To do this, we
use our standard symmetrical three-machine loop but set Np = 28. Figure 20 shows how throughput
changes as we vary the buffer size N between 10 and 35.

When N = 10, the probability of blocking P bl is very high, causing throughput to be relatively
low. At this point, the probability of starvation P st is zero because the number of holes is less than
N . As N increases to 14, P bl decreases but P st remains zero, resulting in an increase in throughput.
For N > 13, P st is no longer zero. In the range 13 < N < 28, the decrease in P bl is greater than
the increase in P st so there is a net increase in throughput. However, for N ≥ 28, P bl = 0.0, P st is
constant, and throughput is constant. All of the parts can fit in any of the buffers so no machine
can ever become blocked. Furthermore, increasing the buffer size beyond Np does not increase the
probability that one of the buffers can become empty.

Note that the production rate behaves anomalously near N = 14 and N = 26. This is due to
the fact that the transformation creates buffers of size 1 and that, as mentioned in Section 2.3.4,
we evaluated systems with such buffers as though the buffer sizes were 2. While the shape of the
curve is clearly affected by this transformation, the resulting errors are not large.

B M B

M B M

1 1

23 2

3

Basic Parameters
ri pi Ni Np

0.1 0.01 10 15

Figure 15: Basic loop
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Figure 17: Average Buffer Level as a Function of r1
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6 Conclusions and Future Work

The purpose of this research was to build on earlier work (Maggio 2000; Maggio, Matta, Gersh-
win, and Tolio 2006) to find a practical general approach to evaluating closed-loop systems. Our
transformation algorithm significantly reduces the complexity of large loops by eliminating multi-
ple thresholds. The transformation and decomposition technique described in this paper provide
extremely accurate approximations of average production rate.

There are several extensions to the method which would prove useful:

1. The approach described here could be extended to multiple loop systems. (See Levantesi
(2001).) This is of particular interest for evaluating the performance of systems operated
under token-based control policies (Gershwin 2000).

2. The method could also be modified to deal with closed-loop systems in which multiple part
types share a common set of resources. In this type of system, different part types compete for
resources and therefore the production of one part interferes with the production of another.

3. Another possibility is the combination of the first two items. The method can be extended to
evaluate multiple loops with multiple part types.

4. The method should be extended to other models of production loops, including exponential
processing time and continuous material models (Gershwin 1994).

5. Improvements to the performance of the algorithm are possible. One would be to use the
method of Tolio, Matta, and Gershwin (2002) for the two-machine lines early in the algorithm,
and iterated matrix multiplication (which Werner (2001) did, but for the whole algorithm) in
the late stages. This would reduce the computational effort if the initial guess for each two-
machine line evaluation was the probability distribution calculated the last time the algorithm
evaluated that two-machine line.
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