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Abstract During the past three decades, the success of the Toyota Pro-
duction System has spurred much research in manufacturing systems engi-
neering. Productivity and quality have been extensively studied, but there
is little research in their intersection. The goal of this paper is to analyze
how production system design, quality, and productivity are inter-related
in small production systems. We develop a new Markov process model for
machines with both quality and operational failures, and we identify impor-
tant differences between types of quality failures. We also develop models
for two-machine systems, with infinite buffers, buffers of size zero, and fi-
nite buffers. We calculate total production rate, effective production rate
(ie, the production rate of good parts), and yield. Numerical studies using
these models show that when the first machine has quality failures and the
inspection occurs only at the second machine, there are cases in which the
effective production rate increases as buffer sizes increase, and there are
cases in which the effective production rate decreases for larger buffers. We
propose extensions to larger systems.

Key words Quality, Productivity, Manufacturing System Design

1 Introduction

1.1 Motivation

During the past three decades, the success of the Toyota Production Sys-
tem has spurred much research in manufacturing systems design. Numerous
research papers have tried to explore the relationship between production
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system design and productivity, so that they can show ways to design facto-
ries to produce more products on time with less resources (such as people,
material, and space). On the other hand, topics in quality research have cap-
tured the attention of practitioners and researchers since the early 1980s.
The recent popularity of Statistical Quality Control (SQC), Total Quality
Management (TQM), and Six Sigma have demonstrated the importance of
quality.

These two fields, productivity and quality, have been extensively stud-
ied and reported separately both in the manufacturing systems research
literature and the practitioner literature, but there is little research in their
intersection. The need for such work was recently described by authors from
the GM Corporation based on their experience [13]. All manufacturers must
satisfy these two requirements (high productivity and high quality) at the
same time to maintain their competitiveness.

Toyota Production System advocates admonish factory designers to com-
bine inspections with operations. In the Toyota Production System, the
machines are designed to detect abnormalities and to stop automatically
whenever they occur. Also, operators are equipped with means of stopping
the production flow whenever they note anything suspicious. (They call this
practice jidoka.) Toyota Production System advocates argue that mechani-
cal and human jidoka prevent the waste that would result from producing
a series of defective items. Therefore jidoka is a means to improve quality
and increase productivity at the same time [23], [24]. But this statement is
arguable: quality failures are often those in which the quality of each part is
independent of the others. This is the case when the defect takes place due
to common (or chance or random) causes of variations [16]. In this case,
there is no reason to stop a machine that has made a bad part because
there is no reason to believe that stopping it will reduce the number of
bad parts in the future. In this case, therefore, stopping the operation does
not influence quality but it does reduce productivity. On the other hand,
when quality failures are those in which once a bad part is produced, all
subsequent parts will be bad until the machine is repaired (due to special or
assignable or systematic causes of variations) [16], catching bad parts and
stopping the machine as soon as possible is the best way to maintain high
quality and productivity.

Non-stock or lean production is another popular buzzword in manufac-
turing systems engineering. Some lean manufacturing professionals advo-
cate reducing inventory on the factory floor since the reduction of work-
in-process (WIP) reveals the problems in the production lines [3]. Thus, it
can help improve product quality. It is true in some sense: less inventory
reduces the time between making a defect and identifying the defect. But it
is also true that productivity would diminish significantly without stock [5].
Since there is a tradeoff, there must be optimal stock levels that are specific
to each manufacturing environment. In fact, Toyota recently changed their
view on inventory and are trying to re-adjust their inventory levels [9].
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What is missing in discussions of factory design, quality, and produc-
tivity is a quantitative model to show how they are inter-related. Most of
the arguments about this are based on anecdotal evidence or qualitative
reasoning that lack a sound scientific quantitative foundation. The research
described here tries to establish such a foundation to investigate how pro-
duction system design and operation influence productivity and product
quality by developing conceptual and computational models of two-machine-
one-buffer systems and performing numerical experiments.

1.2 Background

1.2.1 Quality models There are two extreme kinds of quality failures based
on the characteristics of variations that cause the failures. In the quality
literature, these variations are called common (or chance or random) cause
variations and assignable (or special or unusual) cause variations [18].

Figure 1 shows the types of quality failures and variations. Common
cause failures are those in which the quality of each part is independent of
the others. Such failures occur often when an operation is sensitive to exter-
nal perturbations like defects in raw material or when the operation uses a
new technology that is difficult to control. This is inherent in the design of
the process. Such failures can be represented by independent Bernoulli ran-
dom variables, in which a binary random variable, which indicates whether
or not the part is good, is chosen each time a part is operated on. A good
part is produced with probability π, and a bad part is produced with proba-
bility 1−π. The occurrence of a bad part implies nothing about the quality
of future parts, so no permanent changes can have occurred in the machine.
For the sake of clarity, we call this a Bernoulli-type quality failure. Most
of the quantitative literature on inspection allocation assumes this kind of
quality failure [21]. In this case, if bad parts are destined to be scrapped, it
is useful to catch them as soon as possible because the longer before they
are scrapped, the more they consume the capacity of downstream machines.
However, there is no reason to stop a machine that has produced a bad part
due to this kind of failure.

The quality failures due to assignable cause variations are those in which
a quality failure only happens after a change occurs in the machine. In that
case, it is very likely that once a bad part is produced, all subsequent parts
will be bad until the machine is repaired. Here, there is much more in-
centive to catch defective parts and stop the machine quickly. In addition
to minimizing the waste of downstream capacity, this strategy minimizes
the further production of defective parts. For this kind of quality failure,
there is no inherent measure of yield because the fractions of parts that are
good and bad depend on how soon bad parts are detected and how quickly
the machine is stopped for repair. In this paper, we call this a persistent-
type quality failure. Most quantitative studies in Statistical Quality Control
(SQC) are dedicated to finding efficient inspection policies (sampling inter-
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val, sample size, control limits, and others) to detect this type of quality
failure [26].

In reality, failures are mixtures of Bernoulli-type quality failures and
persistent-type quality failures. It can be argue that the quality strategy
of the Toyota Production System [17], in which machines are stopped as
soon as a bad part is detected, is implicitly based on the assumption of the
persistent-type quality failure. In this paper, we focus on persistent failures.

Mean

Bernoulli-
type quality
failure

Random Variation

Markovian-
type quality
failure

Repair takes place
Upper

Specification
Limit

Lower
Specification

LimitAssignable Variation
(tool breakage) takes

place

Fig. 1 Types of Quality Failures

1.2.2 System yield System yield is defined here as the fraction of input to
a system that is transformed into output of acceptable quality. This is an
important metric because customers observe the quality of products only
after all the manufacturing processes are done and the products are shipped.
The system yield is a complex function of how the factory is designed and
operated, as well as of the characteristics of the machines. Some of influenc-
ing factors include individual operation yields, inspection strategies, opera-
tion policies, buffer sizes, and other factors. Comprehensive approaches are
needed to manage system yield effectively. This research aims to develop
mathematical models to show how the system yield is influenced by these
factors.

1.2.3 Quality improvement policy System yield is a complex function of
various factors such as inspection, individual operation yields, buffer size,
operation policies, and others. There are many ways to affect the system
yield. Inspection policy has received the most attention in the literature.
Research on inspection policies can be divided into optimizing inspection
parameters at a single station and the inspection station allocation prob-
lem. The former issue has been investigated extensively in the SQC liter-
ature [26]. Here, optimal SQC parameters such as control limits, sampling
size, and frequency are sought for an optimal balance between the inspec-
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tion cost and the cost of quality. The latter research looks for the optimal
distributions of inspection stations along production lines [21].

Improving individual operation yield is another important way to in-
crease the system yield. Many studies in this field try to stabilize the pro-
cess either by finding root causes of variation and eliminating them or by
making the process insensitive to external noise. The former topic has nu-
merous qualitative research papers in the fields of Total Quality Manage-
ment (TQM) [2] and Six Sigma [19]. Quantitative research is more oriented
toward the latter topic. Robust engineering [20] is an area that has gained
substantial attention.

It has been argued that inventory reduction is an effective means to im-
prove system yield. Many lean manufacturing specialists have asserted that
less inventory on the factory floor reveals problems in the manufacturing
lines more quickly and helps quality improvement activities [1], [17].

There also have been investigations to explain the relationship between
plant layout design and quality [7]. They argue that U-shaped lines are
better than straight lines for producing higher quality products since there
are more points of contact between operators. There is also less material
movement, and there are other reasons.

There are many ways to improve system yield, but using only a single
method will give limited gains. The effectiveness of each method is greatly
dependent on the details of the factory. Thus, there is need to determine
which method or which combination of methods is most effective in each
case. The quantitative tools that will be developed from this research can
help fulfill this need.

1.3 Outline

In Section 2 we introduce the structure of the modeling techniques used in
this paper. We present modeling, solution techniques, and validation of the
2-machine-1-finite buffer case in Section 3. Discussions on the behavior of
a production line based on numerical experiments are provided in Section
5. A future research plan is shown in Section 6. Parameters of many of the
systems studied numerically here, and details of the analytical solution of
the two-machine line, can be found in the appendices.

2 Mathematical Models

2.1 Single machine model

There are many possible ways to characterize a machine for the purpose
of simultaneously studying quality and quantity issues. Here, we model a
machine as a discrete state, continuous time Markov process. Material is
assumed continuous, and µi is the speed at which Machine i processes ma-
terial while it is operating and not constrained by the other machine or the
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buffer. It is a constant, in that µi does not depend on the repair state of
the other machine or the buffer level.

Figure 2 shows the proposed state transitions of a single machine with
persistent-type quality failures. In the model, the machine has three states:

? State 1: The machine is operating and producing good parts.
? State -1: The machine is operating and producing bad parts, but the

operator does not know this yet.
? State 0: The machine is not operating.

r

p

g f

State 1 State -1 State 0

Fig. 2 States of a Machine

The machine therefore has two different failure modes (i.e. transition to
failure states from state 1):

? Operational failure: transition from state 1 to state 0. The machine stops
producing parts due to failures like motor burnout.

? Quality failure: transition from state 1 to state -1. The machine stops
producing good parts (and starts producing bad parts) due to a failure
like a sudden tool damage.

When a machine is in state 1, it can fail due to a non-quality related
event. It goes to state 0 with transition probability rate p. After that an
operator fixes it, and the machine goes back to state 1 with transition rate r.
Sometimes, due to an assignable cause, the machine begins to produce bad
parts, so there is a transition from state 1 to state -1 with a probability rate
g. Here g is the reciprocal of the Mean Time to Quality Failure (MTQF).
A more stable operation leads to a larger MTQF and a smaller g.

The machine, when it is in state -1, can be stopped for two reasons: it
may experience the same kind of operational failure as it does when it is
in state 1; and the operator may stop it for repair when he learns that it
is producing bad parts. The transition from state -1 to state 0 occurs at
probability rate f = p + h where h is the reciprocal of the Mean Time To
Detect (MTTD). A more reliable inspection leads to a shorter MTTD and a
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larger f . (The detection can take place elsewhere, for example at a remote
inspection station.) Note that this implies that f > p. Here, for simplicity,
we assume that whenever a machine is repaired, it goes back to state 1. All
the indicated transitions are assumed to follow exponential distributions.

Single Machine Analysis To determine the production rate of a single ma-
chine, we first determine the steady-state probability distribution. This is
calculated based on the probability balance principle: the probability of
leaving a state is the same as the probability of entering that state. We
have

(g + p)P (1) = rP (0) (1)

fP (−1) = gP (1) (2)

rP (0) = pP (1) + fP (−1) (3)

The probabilities must also satisfy the normalization equation:

P (0) + P (1) + P (−1) = 1 (4)

The solution of (1)–(4) is

P (1) =
1

1 + (p + g)/r + g/f
(5)

P (0) =
(p + g)/r

1 + (p + g)/r + g/f
(6)

P (−1) =
g/f

1 + (p + g)/r + g/f
(7)

The total production rate, including good and bad parts, is

PT = µ(P (1) + P (−1)) = µ
1 + g/f

1 + (p + g)/r + g/f
(8)

The effective production rate, the production rate of good parts only, is

PE = µP (1) = µ
1

1 + (p + g)/r + g/f
(9)

The yield is

PE

PE + PT

=
P (1)

P (1) + P (−1)
=

f

f + g
(10)
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2.2 2-Machine-1-Buffer continuous model

A flow (or transfer) line is a manufacturing system with a very special
structure. It is a linear network of service stations or machines (M1, M2, ...,
Mk) separated by buffer storages (B1, B2, ..., Bk−1). Material flows from
outside the system to M1, then to B1, then to M2, and so forth until it
reaches Mk, after which it leaves. Figure 3 depicts a flow line. The rectangles
represent machines and the circles represent buffers.

M B M B M B M B M1 1 2 2 3 3 4 4 5

Fig. 3 Five-Machine Flow Line

2-machine-1-buffer (2M1B) models should be studied first. Then a de-
composition technique, that divides a long transfer line into multiple 2-
machine-1-buffer models, could be developed. (See [14].) Among the various
modeling techniques for the 2M1B case, including deterministic, exponen-
tial, and continuous models, the continuous material line model is used for
this research because it can handle deterministic but different operation
times at each operation. This is an extension of the continuous material se-
rial line modeling of [10] by adding another machine failure state. Figure 4
shows the 2M1B continuous model where the machines, buffer and discrete
parts are represented as valves, a tank, and a continuous fluid.

M

M

M
M

B 

B 

1 2
2

1

Fig. 4 Two-Machine-One-Buffer Continuous Model

We assume that an inexhaustible supply of workpieces is available up-
stream of the first machine in the line, and an unlimited storage area is
present downstream of the last machine. Thus, the first machine is never
starved, and the last machine is never blocked. Also, failures are assumed
to be operation dependent (ODF).

Finally, we assume that each machine works on a different feature. For
example, the two machines may be making two different holes. We do not
consider cases where the both machines work on the same hole, in which
the first machine does a roughing operation and the second does a finishing
operation. This allows us to assume that the failures of the two machines
are independent.
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2.3 Infinite buffer case

An infinite buffer case is a special 2M1B line in which the size of the buffer
(B) is infinite. This is an extreme case in which the first machine (M1)
never suffers from blockage. To derive expressions for the total production
rate and the effective production rate, we observe that when there is infinite
buffer capacity between two machines (M1, M2), the total production rate
of the 2M1B system is a minimum of the total production rates of M1 and
M2. The total production rate of machine i is given by (8), so the total
production rate of the 2M1B system is

P∞
T = min

[

µ1(1 + g1/f1)

1 + (p1 + g1)/r1 + g1/f1
,

µ2(1 + g2/f2)

1 + (p2 + g2)/r2 + g2/f2

]

(11)

The probability that machine Mi does not add non-conformities is

Yi =
Pi(1)

Pi(1) + Pi(−1)
=

fi

fi + gi

(12)

Since there is no scrap and rework in the system, the system yield be-
comes

f1f2

(f1 + g1)(f2 + g2)
(13)

As a result, the effective production rate is

P∞
E =

f1f2

(f1 + g1)(f2 + g2)
P∞

T (14)

The effective production rate evaluated from (14) has been compared
with a discrete-event, discrete-part simulation. Table 1 shows good agree-
ment. The parameters for these cases are shown in Appendix B.

Table 1 Validation of Infinite Buffer Case

Case # P∞
E (Analytic) P∞

E (Simulation) %Difference

1 0.762 0.761 0.17
2 0.708 0.708 0.00
3 0.657 0.657 0.00
4 0.577 0.580 -0.50
5 0.527 0.530 -0.42
6 0.745 0.745 0.01
7 0.762 0.760 0.30
8 1.524 1.522 0.14
9 0.762 0.762 0.00
10 1.524 1.526 -0.13

As indicated in Section 2.1, the detection of quality failures due to ma-
chine M1 need not occur at that machine. For example, the inspection of
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the feature that M1 works on could take place at an inspection station at
M2, and this inspection could trigger a repair of M1. (We call this quality
information feedback. See Section 4.) In that case, the MTTD of M1 (and
therefore f1) will be a function of the amount of material in the buffer. We
return to this important case in Section 4.

2.4 Zero buffer case

The zero buffer case is one in which there is no buffer space between the
machines. This is the other extreme case where blockage and starvation take
place most frequently.

In the zero-buffer case in which machines have different operation times,
whenever one of the machines stops, the other one is also stopped. In ad-
dition, when both of them are working, the production rate is min[µ1, µ2].
Consider a long time interval of length T during which M1 fails m1 times
and M2 fails m2 times. If we assume that the average time to repair M1 is
1/r1 and the average time to repair M2 is 1/r2, then the total system down
time will be close to D = m1

r1

+ m2

r2

. Consequently, the total up time will be
approximately

U = T − D = T − (
m1

r1
+

m2

r2
) (15)

Since we assume operation-dependent failures, the rates of failure are
reduced for the faster machine. Therefore,

pb
i = pi

min(µ1, µ2)

µi

, gb
i = gi

min(µ1, µ2)

µi

, and f b
i = fi

min(µ1, µ2)

µi

(16)

The reduction of pi is explained in detail in [10]. The reductions of gi

and fi are done for the same reasons.
Table 2 lists the possible working states α1 and α2 of M1 and M2. The

third column is the probability of finding the system in the indicated state.
The fourth and fifth columns indicate the expected number of transitions
to down states during the time interval from each of the states in column 1.

Table 2 Zero-Buffer States, Probabilities, and Expected Numbers of Events

α1 α2 Probability π(α1, α2) Em1(α1, α2) Em2(α1, α2)

1 1
fb
1

fb
1
+gb

1

fb
2

fb
2
+gb

2

pb
1Uπ(1, 1) pb

2Uπ(1, 1)

1 -1
fb
1

fb
1
+gb

1

gb
2

fb
2
+gb

2

pb
1Uπ(1,−1) f b

2Uπ(1,−1)

-1 1
gb
1

fb
1
+gb

1

fb
2

fb
2
+gb

2

fb
1Uπ(−1, 1) pb

2Uπ(−1, 1)

-1 -1
gb
1

fb
1
+gb

1

gb
2

fb
2
+gb

2

fb
1Uπ(−1,−1) f b

2Uπ(−1,−1)
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From Table 2, the expectations of m1 and m2 are

Em1 =
∑1

α1=−1

∑1

α2=−1
Em1(α1, α2) =

Ufb
1
(pb

1
+gb

1
)

fb
1
+gb

1

Em2 =
∑1

α1=−1

∑1

α2=−1
Em2(α1, α2) =

Ufb
2
(pb

2
+gb

2
)

fb
2
+gb

2

(17)

By plugging them into equation (15), we find total production rate:

P 0
T =

min[µ1, µ2]

1 +
fb
1
(pb

1
+gb

1
)

r1(fb
1
+gb

1
)

+
fb
2
(pb

2
+gb

2
)

r2(fb
2
+gb

2
)

(18)

The effective production rate is

P 0
E =

fb
1fb

2

(fb
1 + gb

1)(f
b
2 + gb

2)
P 0

T (19)

The comparison with simulation is shown in in Table 3. The parameters
of the cases are shown in Appendix B.

Table 3 Zero Buffer Case

Case # P 0
E(Analytic) P 0

E(Simulation) %Difference

1 0.657 0.662 -0.73
2 0.620 0.627 -1.15
3 0.614 0.621 -1.03
4 0.529 0.534 -0.99
5 0.480 0.484 -0.77
6 0.647 0.651 -0.57
7 0.706 0.712 -0.91
8 1.377 1.406 -2.10
9 0.706 0.711 -0.77
10 1.377 1.380 -0.22

3 2-Machine-1-Finite-Buffer Line

The two-machine line is the simplest non-trivial case of a production line.
In the existing literature on the performance evaluation of systems in which
quality is not considered, two-machine lines are used in decomposition ap-
proximations of longer lines. (See [10].)

We define the model here and show the solution technique in Appendix
A.

3.1 State definition

The state of the 2M1B line is defined as (x, α1, α2) where
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? x: the total amount of material in buffer B, 0 ≤ x ≤ N ,
? α1: the state of M1. (α1 = −1, 0, or 1),
? α2: the state of M2. (α2 = −1, 0, or 1)

The parameters of machine Mi are µi, ri, pi, fi, gi and the buffer size is
N .

3.2 Model development

3.2.1 Internal transition equations When buffer B is neither empty nor
full, its level can rise or fall depending on the states of adjacent machines.
Since it can change only a small amount during a short time interval, it is
natural to use differential equations to describe its behavior. The probability
of finding both machines at state 1 with a total storage level between x and
x + δx at time t + δt is given by f(x, 1, 1)δt, where

f(x, 1, 1, t + δt) = {1 − (p1 + g1 + p2 + g2)δt}f(x + (µ2 − µ1)δt, 1, 1)
+r2δtf(x − µ1δt, 1, 0) + r1δtf(x + µ2δt, 0, 1) + o(δt)

(20)

This is because if both machines are at state 1 at time t and the storage
level is between x and x + (µ2 − µ1)δt, then there should be no failures
before t + δt to get f(x, 1, 1)δt. The probability of not having any failures
between t and t + δt is

{1 − (p1 + g1)δt}{1 − (p2 + g2)δt} ' {1 − (p1 + g1 + p2 + g2)δt} (21)

Probabilities for transitions from the states (x − µ1δt, 1, 0) and (x +
µ2δt, 0, 1) to (x, 1, 1) can be found similarly. After linearizing and letting
δt → 0, this equation becomes

∂f(x, 1, 1)

∂t
= (µ2 − µ1)

∂f(x, 1, 1)

∂x
− (p1 + g1 + p2 + g2)f(x, 1, 1) + r2f(x, 1, 0)

+r1f(x, 0, 1) (22)

In steady state ∂f
∂t

= 0. Then, we have

(µ2−µ1)
df(x, 1, 1)

dx
−(p1+g1+p2+g2)f(x, 1, 1)+r2f(x, 1, 0)+r1f(x, 0, 1) = 0 (23)

In the same way, the eight other internal transition equations for the
probability density function are

p2f(x, 1, 1)−µ1
df(x, 1, 0)

dx
−(p1+g1+r2)f(x, 1, 0)+f2f(x, 1,−1)+r1f(x, 0, 0) = 0

(24)
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g2f(x, 1, 1) + (µ2 − µ1)
df(x, 1,−1)

dx
− (p1 + g + f2)f(x, 1,−1) + r1f(x, 0,−1) = 0

(25)

p1f(x, 1, 1)+µ2
df(x, 0, 1)

dx
−(r1+p2+g2)f(x, 0, 1)+r2f(x, 0, 0)+f1f(x,−1, 1) = 0

(26)

p1f(x, 1, 0) + p2f(x, 0, 1) − (r1 + r2)f(x, 0, 0) + f2f(x, 0,−1) + f1f(x,−1, 0) = 0
(27)

p1f(x, 1,−1)+g2f(x, 0, 1)−(r1+f2)f(x, 0,−1)+µ2
df(x, 0,−1)

dx
+f1f(x,−1,−1) = 0

(28)

g1f(x, 1, 1)− (p2 + g2 + f1)f(x,−1, 1) + (µ2 − µ1)
df(x,−1, 1)

dx
+ r2f(x,−1, 0) = 0

(29)

g1f(x, 1, 0)−µ1
df(x,−1, 0)

dx
−(r2+f1)f(x,−1, 0)+p2f(x,−1, 1)+f2f(x,−1,−1) = 0

(30)

g1f(x, 1,−1)+ g2f(x,−1, 1) + (µ2 −µ1)
df(x,−1,−1)

dx
− (f1 + f2)f(x,−1,−1) = 0

(31)

3.2.2 Boundary transition equations While the internal behavior of the
system can be described by probability density functions, there is a nonzero
probability of finding the system in certain boundary states. For example,
if µ1 < µ2 and both machines are in state 1, the level of storage tends to
decrease. If both machines remain operational for enough time, the storage
will become empty (x = 0). Once the system reaches state (0, 1, 1), it will
remain there until a machine fails. There are 18 probability masses for
boundary states (P (N, α1, α2) and P (0, α1, α2) where α1 = −1, 0 or 1, and
α2 = −1, 0 or 1) and 22 boundary equations for the µ1 = µ2 case.

To arrive at state (0, 1, 1) at time t + δt when µ1 = µ2, the system may
have been in one of two states at time t. It could have been in state (0, 1, 1)
without any of operational failures and quality failures for both of machines.
It could have been in state (0, 0, 1) with a repair of the first machine. (The
second machine could not have failed since it was starved). If the second
order terms are ignored,

P (0, 1, 1, t + δt) = {1 − (p1 + g1 + pb
2 + gb

2)δt}P (0, 1, 1) + r1P (0, 0, 1) (32)



14 Jongyoon Kim, Stanley B. Gershwin

After the usual analysis, (32) becomes

∂P (0, 1, 1)

∂t
= (p1 + g1 + pb

2 + gb
2)P (0, 1, 1) + r1P (0, 0, 1) (33)

In steady state

−(p1 + g1 + pb
2 + gb

2)P (0, 1, 1) + r1P (0, 0, 1) = 0 (34)

There are 21 other boundary equations derived similarly for µ1 = µ2

[14]:

P (0, 1, 0) = 0 (35)

gb
2P (0, 1, 1) − (p1 + g1 + fb

2 )P (0, 1,−1) + r1P (0, 0,−1) = 0 (36)

p1P (0, 1, 1) − r1P (0, 0, 1) + µ2f(0, 0, 1) + f1P (0,−1, 1) + r2P (0, 0, 0) = 0 (37)

−(r1 + r2)P (0, 0, 0) = 0 (38)

p1P (0, 1,−1) − r1P (0, 0,−1) + µ2f(0, 0,−1) + f1P (0,−1,−1) = 0 (39)

g1P (0, 1, 1) − (f1 + pb
2 + gb

2)P (0,−1, 1) = 0 (40)

P (0,−1, 0) = 0 (41)

g1P (0, 1,−1) + gb
2P (0,−1, 1) − (f1 + fb

2 )P (0,−1,−1) = 0 (42)

−(pb
1 + gb

1 + p2 + g2)P (N, 1, 1) + r2P (N, 1, 0) = 0 (43)

p2P (N, 1, 1)−r2P (N, 1, 0)+µ1f(N, 1, 0)+f2P (N, 1,−1)+r1P (N, 0, 0) = 0 (44)

g2P (N, 1, 1) − (pb
1 + gb

1 + f2)P (N, 1,−1) = 0 (45)

P (N, 0, 1) = 0 (46)

−(r1 + r2)P (N, 0, 0) = 0 (47)

P (N, 0,−1) = 0 (48)

gb
1P (N, 1, 1) − (f b

1 + g2 + p2)P (N,−1, 1) + r2P (N,−1, 0) = 0 (49)
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−r2P (N,−1, 0) + µ1f(N,−1, 0) + f2P (N,−1,−1) + p2P (N,−1, 1) = 0 (50)

gb
1P (N, 1,−1) + g2P (N,−1, 1) − (f b

1 + f2)P (N,−1,−1) = 0 (51)

µ1f(0, 1, 0) = r1P (0, 0, 0) + pb
2P (0, 1, 1) + f b

2P (0, 1,−1) (52)

µ1f(0,−1, 0) = pb
2P (0,−1, 1) + f b

2P (0,−1,−1) (53)

µ2f(N, 0, 1) = r2P (N, 0, 0) + pb
1P (N, 1, 1) + f b

1P (N,−1, 1) (54)

µ2f(N, 0,−1) = pb
1P (N, 1,−1) + g2P (N, 0, 1) + f b

1P (N,−1,−1) (55)

3.2.3 Normalization In addition to these, all the probability density func-
tions and probability masses must satisfy the normalization equation:

∑

α1=−1,0,1

∑

α2=−1,0,1





N
∫

0

f(x, α1, α2)dx + P (0, α1, α2) + P (N, α1, α2)



 = 1 (56)

3.2.4 Performance measures After finding all probability density functions
and probability masses, we can calculate the average inventory in the buffer
from

x =
∑

α1=−1,0,1

∑

α2=−1,0,1





N
∫

0

xf(x,α1, α2)dx + NP (N, α1, α2)



 (57)

The total production rate is

PT = P 1
T =

∑

α2=−1,0,1

µ1

[

N
∫

0

{f(x,−1, α2) + f(x, 1, α2)}dx + P (0, 1, α2) + P (0,−1, α2)

]

+µ2{P (N, 1,−1) + P (N, 1, 1) + P (N,−1,−1) + P (N,−1, 1}
(58)

The rate at which machine M1 produces good parts is

P 1
E =

∑

α2=−1,0,1

µ1[

N
∫

0

f(x, 1, α2)dx + P (0, 1, α2)] + µ2{P (N, 1,−1) + P (N, 1, 1)}

(59)
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The probability that the first machine produces a non-defective part
is then Y1 = P 1

E/PT . Similarly, the probability that the second machine
finishes its operation without adding a bad feature to a part is Y2 = P 2

E/PT ,
where

P 2
E =

∑

α1=−1,0,1

µ2[

N
∫

0

f(x, α1, 1)dx + P (N, α1, 1)] + µ1{P (0,−1, 1) + P (0, 1, 1)}

(60)

Therefore, the effective production rate is

PE = Y1Y2PT (61)

3.3 Validation

The 2M1B systems with the same machine speed (µ1 = µ2) are solved
in Appendix A. As we have indicated, we represent discrete parts in this
model as a continuous fluid and time as a continuous variable. We compare
analytical and simulation results in this section. In the simulation, both
material and time are discrete. Details are presented in [14].
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Fig. 5 Validation of the intermediate buffer size case

Figure 5 shows the comparison of the effective production rate and the
average inventory from the analytic model and the simulation. 50 cases are
generated by changing machines and buffer parameters and % errors are
plotted in the vertical axis. The parameters for theses cases are given in
Appendix B. The % error in the effective production rate is calculated from

PE%error =
PE(A) − PE(S)

PE(S)
× 100(%) (62)
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where PE(A) and PE(S) are the effective production rates estimated from
the analytical model and the simulation respectively. But the % error in the
average inventory is calculated from

InvE%error =
InvE(A) − InvE(S)

0.5 × N
× 100(%) (63)

where InvE(A) and InvE(S) are average inventory estimated from the an-
alytical model and the simulation respectively and N is a buffer size1.

The average absolute value of the % error in the effective production
rate estimation is 0.76% and it is 1.89% for average inventory estimation.

4 Quality Information Feedback

Factory designers and managers know that it is ideal to have inspection
after every operation. However, it is often costly to do this. As a result,
factories are usually designed so that multiple inspections are performed at a
small number of stations. In this case, inspection at downstream operations
can detect bad features made by upstream machines. We call this quality
information feedback. A simple example of the quality information feedback
in 2M1B systems is when M1 produces defective features but does not have
inspection and M2 has inspection and it can detect bad features made by
M1. In this situation, as we demonstrate below, the yield of a line is a
function of the size of buffer. This is because when buffer gets larger, more
material can accumulate between an operation (M1) and the inspection
of that operation (M2). All such material will be defective if a persistent
quality failure takes place. In other words, if buffer is larger, there tends to
be more material in the buffer and consequently more material is defective.
In addition it takes longer to have inspections after finishing operations. We
can capture this phenomenon with the adjustment of a transition probability
rate of M1 from state -1 to state 0.

Let us define f q
1 as a transition rate of M1 from state -1 to state 0 when

there is a quality information feedback and f1 as the transition rate without
the quality information feedback. The adjustment can be done in a way that

the yield of M1 is the same as
Z

g

1

Z
g

1
+Zb

1

where

? Zb
1: the expected number of bad parts generated by M1 while it stays in

state -1.
? Zg

1 : the expected number of good parts produced by M1 from the mo-
ment when M1 leaves the -1 state to the next time it arrives at state
-1.

1 This is an unbiased way to calculate the error in average inventory. If it were
calculated in the same way as the error in the effective production rate, the error
would depend on the relative speeds of the machines. This is because there will
be a lower error when the buffer is mostly full (ie, when M1 is faster than M2)
and a higher error when the buffer is empty (when M1 is faster than M2).
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From (10), the yield of M1 is

P (1)

P (1) + P (−1)
=

f q
1

f q
1 + g1

(64)

Suppose that M1 has been in state 1 for a very long time. Then all
parts in the buffer B are non-defective. Suppose that M1 goes to state -1.
Defective parts will then begin to accumulate in the buffer. Until all the
parts in the buffer are defective, the only way that M1 can go to state 0
is due to its own inspection or its own operation failure. Therefore, the
probability of a transition to 0 before M1 finishes a part is

f1

µ1
≡ χ11

Eventually all the parts in the buffer are bad so that defective parts reach
M2. Then, there is another way that M1 can move to state 0 from state
-1: quality information feedback. The probability that the inspection at M2

detects a nonconformity made by M1 is

χ21 ≡
h21

µ2

where 1/h21 is the mean time until the inspection at M2 detects a bad part
made by M1 after M2 receives the bad part.

The expected value of the number of bad parts produced by M1 before
it is stopped by either operational failures or quality information feedback
is

Zb
1 = [χ11 + 2χ11(1 − χ11) + 3χ11(1 − χ11)

2 + . . . + wχ11(1 − χ11)
w−1]

+[(w + 1)(1 − χ11)
wχ21 + (w + 2)(1 − χ11)

w+1χ21(1 − χ21) + . . .] (65)

where w is average inventory in the buffer B. This is an approximate for-
mula since we simply use the average inventory rather than averaging the
expected number of bad parts produced by M1 depending on different in-
ventory levels wi. After some mathematical manipulation,

Zb
1 =

1 − (1 − χ11)
w

χ11
− w(1 − χ11)

w

+
(1 − χ11)

wχ21[(w + 1) − w(1 − χ11)(1 − χ21)]

[1 − (1 − χ11)(1 − χ21)]2
(66)

On the other hand, Zg
1 is given as

Zg
1 =

µ1

p1 + g1
+

p1

p1 + g1

µ1

p1 + g1
+ (

p1

p1 + g1
)
2
(

µ1

p1 + g1
) . . . =

µ1

g1
(67)

By setting
f

q

1

f
q

1
+g1

=
Z

g

1

Z
g

1
+Zb

1

we have
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f q
1 =

µ1

1−(1+wχ11)(1−χ11)w

χ11

+ (1−χ11)wχ21[1+w(χ21+χ11−χ21χ11)]
[1−(1−χ11)(1−χ21)]2

(68)

Since the average inventory is a function of f q
1 and f q

1 is dependent on
the average inventory, an iterative method is required to determine these
values.
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Fig. 6 Validation of the quality information feedback formula

Figure 6 shows the comparison of the effective production rate and the
average inventory from the analytic model and the simulation. 50 cases are
generated by selecting different machine and buffer parameters and % er-
rors are plotted in the y-axis. The parameters for theses cases are given in
Appendix B. % errors in the effective production rate and average inven-
tory are calculated using equations (62) and (63) respectively. The average
absolute value of the % error in PE and x estimations are 1.01% and 3.67%
respectively.

5 Insights From Numerical Experimentation

In this section, we perform a set of numerical experiments to provide in-
tuitive insight into the behavior of production lines with inspection. The
parameters of all the cases are presented in Appendix B.

5.1 Beneficial buffer case

5.1.1 Production rates Having quality information feedback means having
more inspection than otherwise. Therefore, machines tend to stop more fre-
quently. As a result, the total production rate of the line decreases. However,
the effective production rate can increase since added inspections prevent
the making of defective parts. This phenomenon is shown in Figure 7. Note
that the total production rate PT without quality information feedback is
consistently higher than PT with quality information feedback regardless of
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Fig. 7 Production Rates with/without Quality Information Feedback

buffer size and the opposite is true for the effective production rate PE . Also
it should be noted that in this case, both the total production rate and the
effective production rate increase with buffer size, with or without quality
information feedback.

5.1.2 System yield and buffer size Even though a larger buffer increases
both total and effective production rates in this case, it decreases yield. As
explained in Section 4, the system yield is a function of the buffer size if
there is quality information feedback. Figure 8 shows system yield decreasing
as buffer size increases when there is quality information feedback. This
happens because when the buffer gets larger, more material accumulates
between an operation and the inspection of that operation. All such material
will be defective when the first machine is at state -1 but the inspection at
the first machine does not find it. This is a case in which a smaller buffer
improves quality, which is widely believed to be generally true. If there is no
quality information feedback, then the system yield is independent of the
buffer size (and is substantially less).

5.2 Harmful buffer case

5.2.1 Production rates Typically, increasing the buffer size leads to higher
effective production rate. This is the case in Figure 7. But under certain
conditions, the effective production rate can actually decrease as buffer size
increases. This can happen when

? The first machine produces bad parts frequently: this means g1 is large.
? The inspection at the first machine is poor or non-existent and inspection

at the second machine is reliable: this means h1 � h2 or f1−p1 � f2−p2.
? There is quality information feedback.
? The isolated production rate of the first machine is higher than that of

the second machine:

µ1
1 + g1/f1

1 + (p1 + g1)/r1 + g1/f1
> µ2

1 + g2/f2

1 + (p2 + g2)/r2 + g2/f2
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Fig. 9 Total Production Rate and Effective Production Rate

Figure 9 shows a case in which a buffer size increase leads to a lower
effective production rate. Note that even in this case, total production rate
monotonically increases as buffer size increases.

5.2.2 System Yield The system yield for this case is shown in Figure 10.
Note that the yield decreases dramatically as the buffer size increases. In
this case, the decrease of the system yield is more than the increase of the
total production rate so that the effective production rate monotonically
decreases as buffer size gets bigger.

5.3 How to improve quality in a line with persistent quality failures

There are two major ways to improve quality. One is to increase the yield of
individual operations and the other is to perform more rigorous inspection.
Having extensive preventive maintenance on manufacturing equipment and
using robust engineering techniques to stabilize operations have been sug-
gested as tools to increase yield of individual operations. Both approaches
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increase the Mean Time to Quality Failure (MTQF) (i.e. decrease g). On
the other hand, the inspection policy aims to detect bad parts as soon as
possible and prevent their flow toward downstream operations. More rig-
orous inspection decreases the mean time to detect (MTTD) (i.e. increases
h and therefore increases f). It is natural to believe that using only one
kind of method to achieve a target quality level would not give the most
cost efficient quality assurance policy. Figure 11 indicates that the impact
of individual operation stabilization on the system yield decreases as the
operation becomes more stable. It also shows that effect of improving in-
spection (MTTD) on the system yield decreases. Therefore, it is optimal to
use a combination of both methods to improve quality.
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5.4 How to increase productivity

Improving the stand-alone throughput of each operation and increasing the
buffer space are typical ways to increase the production rate of manufactur-
ing systems. If operations are apt to have quality failures, however, there
may be other ways to increase the effective production rate: increasing the
yield of each operation and conducting more extensive inspections. Stabi-
lizing operations, thus improving the yield of individual operations, will
increase effective throughput of a manufacturing system regardless of the
type of quality failure. On the other hand, reducing the mean time to detect
(MTTD) will increase the effective production rate only if the quality failure
is persistent but it will decrease the effective production rate if the quality
failure is Bernoulli. This is because the quality of each part is independent
of the others when the quality failure is Bernoulli. Therefore, stopping the
line does not reduce the number of bad parts in the future.

In a situation in which machines produce defective parts frequently and
inspection is poor, increasing inspection reliability is more effective than
increasing buffer size to boost the effective production rate. Figure 12 shows
this. Also, in other situations in which machines produce defective parts
frequently and inspection is reliable, increasing machine stability is more
effective than increasing buffer size to enhance effective production rate.
Figure 13 shows this phenomenon.
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Fig. 12 Mean Time to Detect and Effective Production Rate

6 Future Research

The 2-Machine-1-Buffer (2M1B) model with µ1 6= µ2 is analyzed in [14].
This case is more challenging because the number of roots of the internal
transition equations depends on parameters of machine. A more general
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Fig. 13 Quality Failure Frequency and Effective Production Rate

2M1B model with multiple-yield quality failures (a mixture of Bernoulli-
and persistent-type quality failures) should also be studied. A long line
analysis using decomposition is under the development. Refer to Kim [14]
for more detailed information.
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Appendix

A Solution technique

It is natural to assume an exponential form for the solution to the steady
state density functions since equations (23)–(31) are coupled ordinary linear
differential equations. A solution of the form eλxKα1

1 Kα2

2 worked success-
fully in the continuous material two-machine line with perfect quality [10].
Therefore, a solution of a form

f(x, α1, α2) = eλxG1(α1)G2(α2) (69)
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is assumed here. This form satisfies the transition equations if all of the
following equations are met. Equations (23)–(31) become, after substituting
(69),

{(µ2 −µ1)λ− (p1 + g1 + p2 + g2)G1(1)G2(1)}+ r2G1(1)G2(0)+ r1G1(0)G2(1) = 0
(70)

−{µ1λ + (p1 + g1 + r2)}G1(1)G2(0) + p2G1(1)G2(1) + f2G1(1)G2(−1)

+r1G1(0)G2(0) = 0 (71)

{(µ2 − µ1)λ− (p1 + g1 + f2)}G1(1)G2(−1) + g2G1(1)G2(1) + r1G1(0)G2(−1) = 0
(72)

{µ2λ − (r1 + p2 + g2)}G1(0)G2(1) + p1G1(1)G2(1) + r2G1(0)G2(0)

+f1G1(−1)G2(1) = 0 (73)

p1G1(1)G2(0) + p2G1(0)G2(1) − (r1 + r2)G1(0)G2(0) + f2G1(0)G2(−1)

+f1G1(−1)G2(0) = 0 (74)

{µ2λ − (r1 + f2)}G1(0)G2(−1) + p1G1(1)G2(−1) + g2G1(0)G2(1)

+f1G1(−1)G2(−1) = 0 (75)

{(µ2 − µ1)λ− (p2 + g2 + f1)}G1(−1)G2(1) + g1G1(1)G2(1) + r2G1(−1)G2(0) = 0
(76)

−{µ1λ + (r2 + f1)}G1(−1)G2(0) + g1G1(1)G2(0) + p2G1(−1)G2(1)

+f2G1(−1)G2(−1) = 0 (77)

{(µ2 − µ1)λ − (f1 + f2)}G1(−1)G2(−1) + g1G1(1)G2(−1) + g2G1(−1)G2(1) = 0
(78)

These are nine equations in seven unknowns (λ, G1(1), G2(0), G1(−1),
G2(1), G2(0), and G2(−1)). Thus, there must be seven independent equa-
tions and two dependent ones.

If we divide equations (70) – (78) by G1(0)G2(0) and define new param-
eters

Γi = pi
Gi(1)

Gi(0)
− ri + fi

Gi(−1)

Gi(0)
(79)

Ψi = −pi − gi + ri
Gi(0)

Gi(1)
(80)



Integrated Quality and Quantity Modeling of a Production Line 27

Θi = −fi + gi
Gi(1)

Gi(−1)
(81)

then equations (70)–(78) can be rewritten as

Γ1 + Γ2 = 0 (82)

−µ2λ = Γ1 + Ψ2 (83)

µ1λ = Γ2 + Ψ1 (84)

(µ1 − µ2)λ = Ψ1 + Ψ2 (85)

(µ1 − µ2)λ = Θ1 + Θ2 (86)

µ1λ = Γ2 + Θ1 (87)

−µ2λ = Γ1 + Θ2 (88)

(µ1 − µ2)λ = Ψ2 + Θ1 (89)

(µ1 − µ2)λ = Ψ1 + Θ2 (90)

From equations (82)–(90), it is clear that only seven equations are in-
dependent. After much mathematical manipulation [14], these equations
become

0 = {(M+r1)(µ1N−1)−f1}
2

(f1−p1)(µ1N−1)

− {(p1+g1−f1)+r1(µ1N−1)}{(M+r1)(µ1N−1)−f1}
(f1−p1)(µ1N−1)

− r1

(91)

0 = {(−M+r2)(µ2N−1)−f2}
2

(f2−p2)(µ2N−1)

− {(p2+g2−f2)+r2(µ2N−1)}{(−M+r2)(µ2N−1)−f2}
(f2−p2)(µ2N−1)

− r2 = 0

(92)

where

p1
G1(1)

G1(0)
− r1 + f1

G1(−1)

G1(0)
= −

(

p2
G2(1)

G2(0)
− r2 + f2

G2(−1)

G2(0)

)

= M (93)

1
µ1

(

1 + 1

G1(1)/G1(0)+
G1(−1)/G1(0)

)

=

1
µ2

(

1 + 1

G2(1)/G2(0)+
G2(−1)/G2(0)

)

= N

(94)
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Fig. 14 Plot of Equations (91) and (92)

Now all the equations and unknowns are simplified into two unknowns
and two equations. By solving equations (91) and (92) simultaneously we
can calculate M and N . An example of these equations is plotted in Figure
14. Equation (91) is represented with lighter lines and equation (92) is shown
as darker lines. The intersections of the two sets of lines are the solutions
of the equations.

These are high order polynomial equations for which no general analyti-
cal solution exists. A numerical approach is required to find the roots of the
equations. A special algorithm to find the solutions has been developed [14]
based on the characteristics of the equations. Once we find roots of equations

(91) and (92), we can get ratios Gi(1)
Gi(0)

and Gi(−1)
Gi(0)

(i = 1, 2) from equation

(94). By setting G1(0) = G2(0) = 1, we can calculate G1(1), G1(−1), G2(1),
and G2(−1). After some mathematical manipulation, we find that λ can be
expressed as

λ =
−p1 − g1 + r1/G1(1) − p1G1(1) + r1 − f1G1(−1)

µ1
(95)

Therefore, we can get a probability density function f(x, α1, α2) corre-
sponding to an (M, N) pair. The number of roots in equations (91) and
(92) depends on machine parameters. There are only 3 roots when µ1 = µ2
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regardless of other parameters. Therefore, a general expression of the prob-
ability density function in this case is

f(x, α1, α2) = c1f1(x, α1, α2) + c2f2(x, α1, α2) + c3f3(x,α1, α2) (96)

where f1(x, α1, α2), f2(x, α1, α2), f3(x, α1, α2) are the roots of the equations
(91) and (92).

The remaining unknowns, including c1, c2, c3 and probability masses at
the boundaries, can be calculated by solving boundary equations ((34)–(55))
and the normalization equation (56) with fi(x, α1, α2) given by equation
(96).

B Machine Parameters for Numerical and Simulation

Experiments

Table 4 Machine Parameters for Infinite Buffer Case and Zero Buffer Case

Case # µ1 µ2 r1 r2 p1 p2 g1 g2 f1 f2

1 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2
2 1.0 1.0 0.3 0.3 0.005 0.005 0.05 0.05 0.5 0.5
3 1.0 1.0 0.2 0.05 0.01 0.01 0.01 0.01 0.2 0.2
4 1.0 1.0 0.1 0.1 0.05 0.005 0.01 0.01 0.2 0.2
5 1.0 1.0 0.1 0.1 0.01 0.01 0.05 0.005 0.2 0.2
6 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.5 0.1
7 2.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.5 0.1
8 3.0 2.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2
9 1.0 2.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2
10 2.0 3.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2

Table 5 Machine Parameters for Figures 7 and 8

µ1 µ2 r1 r2 p1 p2 g1 g2 f1 f2

1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.1 0.9

Table 6 Machine Parameters for Figures 9 and 10

µ1 µ2 r1 r2 p1 p2 g1 g2 f1 f2

2.0 2.0 0.5 0.1 0.005 0.05 0.5 0.005 0.02 0.9
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Table 7 Machine Parameters for Figure 11

µ1 µ2 r1 r2 p1 p2 g1 g2 f1 f2

1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2

Table 8 Machine Parameters for Figure 12

µ1 µ2 r1 r2 p1 p2 g1 g2

1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01

Table 9 Machine Parameters for Figure 13

µ1 µ2 r1 r2 p1 p2 f1 f2

1.0 1.0 0.1 0.1 0.01 0.01 0.2 0.2
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Table 10 Machine Parameters for Intermediate Buffer Case Validation

Case # µ1 µ2 r1 r2 p1 p2 g1 g2 f1 f2 N

1 1.0 1.0 0.1 0.1 0.01 0.01 0.02 0.01 0.1 0.2 30
2 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 5
3 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 10
4 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 15
5 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 20
6 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 25
7 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 35
8 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 40
9 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 45
10 0.5 0.5 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30
11 1.5 1.5 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30
12 2.0 2.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30
13 2.5 2.5 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30
14 3.0 3.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30
15 1.0 1.0 0.01 0.01 0.01 0.01 0.01 0.01 0.2 0.2 30
16 1.0 1.0 0.05 0.05 0.01 0.01 0.01 0.01 0.2 0.2 30
17 1.0 1.0 0.2 0.2 0.01 0.01 0.01 0.01 0.2 0.2 30
18 1.0 1.0 0.5 0.5 0.01 0.01 0.01 0.01 0.2 0.2 30
19 1.0 1.0 0.8 0.8 0.01 0.01 0.01 0.01 0.2 0.2 30
20 1.0 1.0 0.1 0.1 0.001 0.001 0.01 0.01 0.2 0.2 30
21 1.0 1.0 0.1 0.1 0.005 0.005 0.01 0.01 0.2 0.2 30
22 1.0 1.0 0.1 0.1 0.02 0.02 0.01 0.01 0.2 0.2 30
23 1.0 1.0 0.1 0.1 0.05 0.05 0.01 0.01 0.2 0.2 30
24 1.0 1.0 0.1 0.1 0.1 0.1 0.01 0.01 0.2 0.2 30
25 1.0 1.0 0.1 0.1 0.01 0.01 0.001 0.001 0.2 0.2 30
26 1.0 1.0 0.1 0.1 0.01 0.01 0.005 0.005 0.2 0.2 30
27 1.0 1.0 0.1 0.1 0.01 0.01 0.02 0.02 0.2 0.2 30
28 1.0 1.0 0.1 0.1 0.01 0.01 0.05 0.05 0.2 0.2 30
29 1.0 1.0 0.1 0.1 0.01 0.01 0.10 0.10 0.2 0.2 30
30 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.02 0.02 30
31 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.05 0.05 30
32 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.1 0.1 30
33 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.5 0.5 30
34 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.95 0.95 30
35 1.0 1.0 0.5 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30
36 1.0 1.0 0.01 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30
37 1.0 1.0 0.1 0.5 0.01 0.01 0.01 0.01 0.2 0.2 30
38 1.0 1.0 0.1 0.01 0.01 0.01 0.01 0.01 0.2 0.2 30
39 1.0 1.0 0.1 0.1 0.1 0.01 0.01 0.01 0.2 0.2 30
40 1.0 1.0 0.1 0.1 0.001 0.01 0.01 0.01 0.2 0.2 30
41 1.0 1.0 0.1 0.1 0.01 0.1 0.01 0.01 0.2 0.2 30
42 1.0 1.0 0.1 0.1 0.01 0.001 0.01 0.01 0.2 0.2 30
43 1.0 1.0 0.1 0.1 0.01 0.01 0.1 0.01 0.2 0.2 30
44 1.0 1.0 0.1 0.1 0.01 0.01 0.001 0.01 0.2 0.2 30
45 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.1 0.2 0.2 30
46 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.001 0.2 0.2 30
47 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.9 0.2 30
48 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.05 0.2 30
49 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.9 30
50 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.05 30
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Table 11 Machine Parameters for Quality Information Feedback Validation

Case # µ1 µ2 r1 r2 p1 p2 g1 g2 f1 f2 N

1 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.01 1.0 10
2 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.01 1.0 0
3 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.01 1.0 5
4 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.01 1.0 20
5 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.01 1.0 30
6 1.0 1.0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1.0 10
7 1.0 1.0 0.05 0.05 0.01 0.01 0.01 0.01 0.01 1.0 10
8 1.0 1.0 0.4 0.4 0.01 0.01 0.01 0.01 0.01 1.0 10
9 1.0 1.0 0.8 0.8 0.01 0.01 0.01 0.01 0.01 1.0 10
10 1.0 1.0 0.1 0.1 0.001 0.001 0.01 0.001 0.01 1.0 10
11 1.0 1.0 0.1 0.1 0.005 0.005 0.01 0.005 0.01 1.0 10
12 1.0 1.0 0.1 0.1 0.02 0.02 0.01 0.01 0.02 1.0 10
13 1.0 1.0 0.1 0.1 0.1 0.1 0.01 0.01 0.1 1.0 10
14 1.0 1.0 0.1 0.1 0.01 0.01 0.001 0.001 0.01 1.0 10
15 1.0 1.0 0.1 0.1 0.01 0.01 0.005 0.005 0.01 1.0 10
16 1.0 1.0 0.1 0.1 0.01 0.01 0.02 0.02 0.01 1.0 10
17 1.0 1.0 0.1 0.1 0.01 0.01 0.05 0.05 0.01 1.0 10
18 0.5 0.5 0.1 0.1 0.01 0.01 0.01 0.01 0.01 1.0 10
19 1.5 1.5 0.1 0.1 0.01 0.01 0.01 0.01 0.01 1.0 10
20 2.0 2.0 0.1 0.1 0.01 0.01 0.01 0.01 0.01 1.0 10
21 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.05 1.0 10
22 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 1.0 10
23 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.5 1.0 10
24 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.8 1.0 10
25 1.0 1.0 0.5 0.1 0.01 0.01 0.01 0.01 0.01 1.0 10
26 1.0 1.0 0.01 0.1 0.01 0.01 0.01 0.01 0.01 1.0 10
27 1.0 1.0 0.1 0.5 0.01 0.01 0.01 0.01 0.01 1.0 10
28 1.0 1.0 0.1 0.01 0.01 0.01 0.01 0.01 0.01 1.0 10
29 1.0 1.0 0.1 0.1 0.1 0.01 0.01 0.01 0.1 1.0 10
30 1.0 1.0 0.1 0.1 0.001 0.01 0.01 0.01 0.001 1.0 10
31 1.0 1.0 0.1 0.1 0.01 0.1 0.01 0.01 0.01 1.0 10
32 1.0 1.0 0.1 0.1 0.01 0.001 0.01 0.01 0.01 1.0 10
33 1.0 1.0 0.1 0.1 0.01 0.01 0.05 0.01 0.01 1.0 10
34 1.0 1.0 0.1 0.1 0.01 0.01 0.001 0.01 0.01 1.0 10
35 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.05 0.01 1.0 10
36 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.001 0.01 1.0 10
37 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.5 1.0 10
38 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 1.0 10
39 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.01 0.8 10
40 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.01 0.2 10


