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Abstract

This paper describes an approximate analytical method for evaluating the average values
of throughput and buffer levels of closed production systems with finite buffers. The method
includes a new set of decomposition equations and a new building block model. We apply
it to a three-machine, three-buffer loop in which machines can fail in more than one mode.
The machines have deterministic processing times and geometrically distributed probabilities
of failure and repair. The numerical results of the method are close to those from a simulation.
The method performs well because it takes into account the correlation among the numbers
of parts in the buffers.

1 Introduction

1.1 Closed Loop Systems

LOOP is a material flow system that consists of work centers or machines separated by storage

areas (buffers) in which material travels from machine to buffer to machine in a fixed sequence
and returns to the first machine. An example is a manufacturing system, illustrated in Figure 1, in
which raw parts enter the system from outside and are loaded onto pallets or fixtures at a loading
station (machine M;). The pallets and the associated parts then visit buffer By, machine M,, ...,
M1, Bg-1.
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Figure 1: Illustration of a closed production line

Once all the operations have been performed, the part-pallet assembly goes to the unloading
station (Mj ) where the part is unloaded from its pallet. The finished part leaves the system, while
the empty pallet goes to the empty pallet buffer (By) to wait for a new raw part.

The total number of pallets in the system — the population — is constant since pallets are not
added or removed from the production line. For the pallets, the production line is closed. The
production rate of parts is the same as the rate at which pallets travel through each workstation,
and the distribution of parts in the system is the same as the distribution of pallets, except for the
empty pallet buffer.

Examples of closed loop production lines with pallets or fixtures can be observed in automotive
fabrication, electronic component assembly, food packaging, and consumer manufacturing indus-
tries. Such loops are common where work pieces are loaded onto a support in order to ensure
accuracy and stability during operations.

In addition, loops occur in production systems controlled by CONWIP (constant work-in-process
— Hopp and Roof 1998, Hopp and Spearman 1996, Spearman, Woodruff, and Hopp 1990); base-
stock; PAC (production authorization cards — Buzacott and Shantikumar 1992, Buzacott and
Shantikumar 1993); the control point policy (CPP) (Gershwin 2000); and other policies. There
is a single loop like that of Figure 1 in a line controlled by CONWIP; in other cases, there are
multiple loops. In systems controlled with such policies tokens or production authorization cards
behave similarly to the pallets as described above, and the number of tokens (or another quantity)
is constant either within the whole system or within a specific portion of the system.

1.2 Related Literature

Although several analytical methods have been developed for the analysis of open production lines
(Dallery and Gershwin 1992), little work has been done on closed lines with unreliable machines and
finite buffers. See the references in Tolio and Gershwin (1998). Frein, Commault, and Dallery (1996)
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proposed an analytical method for the performance evaluation of closed lines that is an extension of
the decomposition method developed for open lines. However, this method does not fully capture
the correlation that exists among the numbers of parts in each buffer of the system. The effects of
this correlation increase when the number of machines decreases. As a result, the method is more
accurate for larger systems than for smaller ones. By contrast, the method described here is better
suited to small systems because its complexity increases as the system grows.

1.3 Contribution

This paper is a summary of the major results of Maggio (2000) and Matta and Tolio (2003). It
presents an approximate analytical method for predicting the average throughput and average work
in process in each buffer of a loop system. New decomposition equations are proposed for analyzing
the behavior of a generalization of the Buzacott model, ie a discrete time, discrete state system
which is synchronous, with unreliable machines and finite buffers. These new equations take into
account the relationship between the maximum numbers of parts in the buffers and the propagation
of interruptions of flow in the system. This relationship is due to the constant population. To do
this we extend the multi-failure-mode approach of Tolio and Matta (1998) and Tolio, Gershwin,
and Matta (2002). While the algorithm in this paper is only suited for three-machine systems, we
describe approaches for extending it to systems of much greater size and complexity.

1.4 Outline

The class of systems that we model and analyze, and the important features of their behavior
that require a new approach, are described in detail in Section 2. The decomposition technique is
presented in Section 3. Unfortunately, the method grows in complexity as the size of the system
increases, so we specialize it to three-machine, three-buffer systems in Section 4. Section 5 contains
numerical results from the method and we conclude in Section 6.

2 Description of the system

2.1 Assumptions and Notation
2.1.1 Machines

We denote machine i by M; and its downstream buffer by B; (i = 1,..., K). We do not distinguish
among parts, pallets, and tokens. We model the system as though the items neither enter nor leave,
and we refer to the items as parts. There is therefore nothing special about M, Mg, or Bx. We
use modulo K arithmetic in treating the indices that refer to machines and buffers, so M, is the
machine downstream of My and Mg, is the same as M,,.

The model we are considering is the same as the transfer line model of Tolio and Matta (1998)
except for the loop structure. Processing times of each machine are equal and deterministic. A
common fixed amount of time is required to perform each operation. Time is scaled so that each
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operation takes one time unit. We assume, also, that all the machines start their operations at the
same instant. Transportation takes negligible time compared to the operation time.

Machines are unreliable and may have more than one failure mode; F; represents the number of
failure modes of machine M;. At the beginning of each time step an operational machine M; has
a probability p;; of failing in mode j (j = 1,..., F;). On the other hand, at the beginning of each
time step, if machine M; is down in mode j, it has a probability r;; of being repaired. Therefore
the quantity p;; represents the probability that machine M; enters failure mode j and r;; is the
probability of machine M; being repaired in one time step while it is down due to a mode j failure.

As a consequence, the time to failure and the time to repair are geometrically distributed. By
convention, repairs and failures occur at the beginnings of time steps and changes in the buffer
levels (the amounts of material in the buffers) take place at the ends of time steps. Models with
deterministic processing times and geometrically distributed times to failure and times to repair are
referred as synchronous models (Dallery and Gershwin 1992) or Buzacott models.

We deal with unreliable machines that have operation-dependent failures (ODFs) (Buzacott and
Hanifin 1978, Dallery and Gershwin 1992). That is, a machine can fail only while it is working.

2.1.2 Buffers

Buffers are finite; buffer B; can hold a maximum of N; parts. If B; is full, M; is not allowed to
operate and is said to be blocked; if B; is empty, M, is starved and cannot operate. If M; and
M; 1 both operate during a time step, the level of B; is unchanged. If neither M; nor M;,, operate,
the level of B; is also unchanged. If M; operates and M;,; does not operate during a time step, the
level of the buffer increases by 1 at the end of the time step, ie, after the machine repair/failure
states are changed. Similarly if M; does not operate and M;,; does during a time step, the level of
the buffer decreases by 1 at the end of the time step.

2.1.3 Population

We assume that the number of parts in the system NP — the population —is constant. We also
assume that the population is greater than the size of the largest buffer and smaller than the sum
of all the buffer sizes minus the size of the largest buffer. That is, assume B,, is the largest buffer.
Then N, = max; N; = N™&*

NP > Nmax (1)
K K
Np<2Ni—NmaX: Z N; (2)
=1 i=1
i £z

These assumptions are not restrictive since there is no benefit from increasing the size a buffer
which can already hold all the parts; and there is no benefit from increasing the population if it can
already fill up all the buffers except one. Simulation experience shows that when (1) is violated,
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a small increase in NP gives a large increase in production rate; and when (2) is violated, a small
decrease in N? gives a large increase in production rate.
From (1) and (2),

K
Nm2X < N N; (3)
i=1
i £z
That is, the size of the largest buffer is smaller than the sum of the sizes of the other buffers®.

Let us analyze the implications of these assumptions. Suppose machine M; is down. If the
duration of the failure is long, buffer B; becomes empty causing the starvation of M; ;. If the
duration is long enough, the starvation can propagate to all machines further downstream but
can never reach machine M; ; since we have assumed in equation (1) that not all parts can be
contained in B;_;. On the other hand if machine M; is down, upstream buffer B; ; continues to
receive pieces from M; ;. If the duration of the failure of M; is long enough, B; ; becomes full,
causing the blocking of M; ;. The blocking can propagate to all upstream machines but it can
never reach machine M, since we have assumed that all the parts cannot fill all the buffers except
one, according to equation (2).

2.2 Disturbance propagation

When a machine in a open production line fails, starvation could propagate to all the machines
downstream of it, and blocking could propagate to all the upstream machines. The propagation
of blocking and starvation in a loop is different, and this difference requires a different kind of
decomposition.

In a loop, the set of machines to which starvation and blockage can propagate depends on the
sizes of the buffers and the population. Consider machines M;, M; and buffers B;, B;i1, ..., Bp_1
between them. If the sum of the buffer sizes between M; and M, is greater than the loop population
NP, machine M, can never block machine M; because it cannot fill B;. A failure of M), however,
could cause the starvation of M;, because all the parts can be contained in the buffers between M;
and My, and so B; ; would be empty.

If the loop population NP is greater than the sum of the buffer sizes between M; and My, a
very long failure of machine M), will block M; because all the buffers that are upstream of Mj and
downstream of M; will be full. Because this will leave some parts in buffer B;_;, a long failure of
M, cannot starve M;.

To summarize

Tf (3) is violated but (1) is not, then the loop is equivalent to a tandem production system (a transfer line)
comprised of all the machines and buffers except B,, appearing in the same sequence as in the the loop, in which
M 41 is the first machine and M, is the last.



Maggio, Matta, Gershwin, Tolio ... FINITE BUFFERS February 14, 2003

If Zk ! N; > NP then a very long failure of M) will not block M;;
but it will starve M;.

If Zk ! N; < NP then a very long failure of M) will block M;;
but it will not starve M;.

2.3 Thresholds

We can refine our understanding of the machines that could possibly be starved or blocked by a
given machine. Suppose that machine M, cannot cause the blockage of machine M;. That is,

k—1
NP < Z NJ
j=i
Note that a long failure of Mj will cause M; to be starved. Suppose also that M; cannot cause the
starvation of machine M; ;. Then,

k—1
NP > Z Nj.
j=it+1
If My, fails for a very long time, then buffers B;.1, ..., By_1 will be full, and buffers By, ..., B;_;
will be empty. Buffer B; will have

Zk—Np ZN>0

Jj=i+1

parts. This is feasible because

k—1 k—1

j=i+1 j=t

Now, suppose that at some time ¢, M; is starved and there are n;(t) < L; parts in B;. More
specifically, M; is starved due to the long failure of another machine and that machine is currently
still down. Here, we argue that M} cannot be that machine.

If the cause of the starvation was a failure of My, then buffers By, ..., B;_1 would be empty.
All the parts would be in buffers B;, ..., Br_;. However, this is impossible. If all the buffers except
B; were full, there would be a total of

k—1
4+ > N
j=it1

parts in buffers B;, ..., Bx_1. But this is less than N? and there are no parts in the other buffers.
We can therefore conclude that a failure of M} was not the cause of the starvation.
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Figure 2: Decomposition method

This leads us to conclude that if M; is starved and the level of the parts in buffer B; is less than
a certain threshold, then machine M; cannot be the cause of the starvation. For the same reason, if
there are too many parts (a number greater than a certain threshold) in buffer B;_;, then M; can
not be blocked by machine Mj.

3 Solution methodology

3.1 Outline of the method

In decomposition methods like that of Gershwin (1987), Gershwin (1994), and Tolio and Matta
(1998), the system to be analyzed (often called the original system or real system) is approximated
by a set of two-machine lines (or building blocks) in which there is one two-machine line for each
buffer in the system. Building block ¢, which corresponds to buffer B;, is composed of an upstream
machine M*(i), a downstream machine M?(i), and a buffer B(i). (In a loop, the number of buffers
is the same as the number of machines, so ¢ = 1, ..., K.) Buffer B(i) is the same size as B;. M"(i)
and M¢<(i) are often called pseudo-machines. A six-machine loop decomposed into six building
blocks is shown in Figure 2.

The pseudo-machines approximate the aggregate behavior of portions of the line up- and down-
stream of buffer B;. The basic idea of the decomposition method is to find the failure and repair
parameters of the pseudo-machines, so that the material flow into and out of the buffer of each
building block closely matches the flow of parts into and out of the corresponding buffer of the real
system. In other words, consider an observer inside B; who is able to see material entering and
leaving the buffer but nothing else. We seek models of M*(i) and M?(i) such that he will believe
us if we tell him that he is in B(7) of building block i.

7
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The flow of parts into buffer B; (when the buffer is not full) will stop when M; fails and when M;
becomes starved (ie, B; ; becomes empty) due to a failure of one of the upstream machines. The
observer who believes he is in B(7) does not make such a distinction; he thinks that all interruptions
of flow into B(i) (when it is not full) are due to failures of M"(i).

Following Tolio and Matta (1998), we allow all the machines — those in the real system, and
those in the building blocks — to have many failure modes. The modes of each of the building
blocks will be the same as some of the modes of the real machines. Some of the failure modes of
M"(i) are the same as those of M;. We call them local modes. The other modes of M"(i) are the
failure modes of M;_; and all other machines that can starve ;. We call them remote modes?.
The observer sees the remote modes whenever B;_; is empty>.

Similarly, the flow out of the real buffer B; stops (when B; is not empty) if its downstream
machine M;,; is not able to work. This happens if M, fails or if it is blocked (ie, buffer B;; is
full) due to a failure of one of the further downstream machines. We assign M%(i) a set of local
modes, which correspond to the failure modes of M, and a set of remote modes, which correspond
to the modes of M, 5 and all other machines that can block M;,;.

The problem then reduces to finding local and remote probabilities of failure and repair of the
machines making up each building block, in order that the behavior of the flow into and out of the
buffer B(i) of two-machine line i closely matches that into and out of buffer B; of the real system.
If we can find all these parameters, we can determine the average throughput and buffer levels of
the two—machine lines, and these will be close to the corresponding values of the real system (as
indicated by the simulation comparisons in Section 5).

As indicated in Section 3.4.1, the probabilities of local failure and repair of two—machine line
¢ are the same as those of the real machines adjacent to buffer B;. Determining the probabilities
of remote failures is more complex because the intervening buffers sometimes prevent failures from
propagating.

3.2 Thresholds

Consider building block 4, shown in Figure 3. If machine M;,; can be blocked by machine My, M (i)
has a remote failure mode kj that corresponds to failure mode j of machine My, j = 1, ..., F. Among
the unknown quantities that we must determine is the remote failure probability pgj (¢). If My
cannot be blocked by Mj, then pf (i) = 0.

In previous decompositions, the probabilities of failure pgj(i) were unknown quantities that were
independent of the number of parts in B(i). In this case, however, the threshold behavior discussed
in Section 2.2 causes some of the probabilities to depend on the buffer level. As a result, a new
two—machine model is required, which is described in Section 3.3.

For ¢ and k such that M;,; cannot be blocked by M} for any level of the buffer, pzj (1) = 0.
For 7 and k such that M, ; can be blocked by M, for every level of the buffer, pzj (¢) is a positive
quantity — which we assume is independent of buffer level — that must be determined.

2In earlier papers by Tolio and his co-authors, the local and remote modes were called real and virtual modes.
3Omniscient modelers know which modes are local and which are remote, when B; ; is empty and when B; is
full, but the observer does not.
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Figure 3: Illustration of a loop system and one of its building blocks

But for some 7 and k, the finite population N? implies that if buffer B; has too many parts, the
remaining parts are not enough to fill all the buffers between M;,; and M. Therefore, if the level
of the buffer is greater than a threshold, I¢(i), a failure of M cannot be the cause of blocking of
machine M, so pzj(i) is 0. Machine M, could produce blocking on machine M;,; (and therefore
it could contribute a failure mode to M%(i)) only if the level of buffer B(i) is less than or equal to
14(7).

A similar argument holds for the starvation of M;. Suppose that machine M; can be starved
by machine M,. This means that A/"(i) has a remote failure mode that has probability pY,(i) of
occurring (where j indicates one of the failure modes of the real machine M,, j = 1,..., F,). If
buffer B; has too few parts, the remaining parts are too many to be contained in all the buffers
space between M;,; and M,. Therefore M; cannot be starved due to a failure of machine M,, since
the buffers between M, and M, cannot all be empty. More precisely, buffer B;_; cannot be empty
due to machine M, being failed for a time long enough to make all the buffers between M, and M;
empty. This observation leads us to say that p};(i) = 0 if the number of parts in B(i) is less than
a threshold (%(¢). This symbol represents the threshold for the upstream machine M*(7) related to
a failure of machine M,. Machine M, could produce starvation at machine M; (and therefore it
could affect M"(7)) only if the level of buffer B(i) is greater than or equal to [%(i).

The threshold I¢(i) represents the largest number of parts in buffer B; that allows all the buffers
between M, and Mj to be full at the same time. In that case all the buffers between M, and M;
would be empty. Similarly, threshold [}'(7) represents the smallest number of parts that allows all
the buffers between M and M; to be empty. Therefore, since machine M;,; cannot be blocked by
M; and M; cannot be starved by M;,; (due to assumptions (1) and (2)), the two thresholds are the
same, and we can simplify the notation:

k(i) = [5(3) = L (i) (4)
Let n(t) be the number of parts in buffer B(i) at time t. To summarize,

o if n(t) < (i) then M“(i) cannot be down in the remote mode that corresponds to failure
mode j of machine Mj. Therefore py;(i) = 0.

e if n(t) > I (i), the probability p{;(i) is independent of n(t), and is an unknown to be deter-
mined.

e if n(t) > lx(¢) then M%(i) cannot be down in the remote mode that corresponds to failure
mode j of machine M. Therefore pf(i) = 0.

9
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o if n(t) < [x(i), the probability p{;(i) is independent of n(t), and is an unknown to be deter-
mined.

Finally, if n(t) = lx(7) and all the buffers between M;,; and M} are full, then all the other buffers
between M), and M; must be empty. Also, if n(t) = Ix(i) and the downstream machine M%(3) is
down in the remote mode corresponding to a mode j failure of machine M, then the upstream
machine M" (i) must be down in its remote mode that corresponds to the same failure kj. Similarly
if M*(7) is down in remote mode kj and n(t) = I, (i), then M?(i) must be down in its remote mode
that corresponds to a mode j failure of M. That is, when n(t) = (i) either M“(i) and M%(i) are
both down due to mode kj, or neither one is.

We define the quantity ¥ (v, w) as the sum of the buffer sizes between M, and M,, in the direction
of flow, or

w—1
U(v,w) = Z N, (5)
The threshold is
(i) = NP —W(i+1,k) (6)

The value of the threshold does not depend on the failure type but only on the buffer sizes between
machines M;,; and M) and on the number of parts in the system, N?.

3.3 Properties of the building block
3.3.1 Assumptions

In this section, we describe the two—machine line model that is used in the proposed solution
method. A new model of the two-machine line is needed because of the thresholds described in
Section 3.2. Thresholds — or any kind of buffer-level dependent failure probabilities — did not
appear in earlier models of two—machine lines.

Each two—machine line is composed of two machines and one buffer. The first machine M*(i) is
never starved and the second M%(i) is never blocked. Machines are unreliable and they have failure
probabilities that may depend on the level of the buffer. We distinguish between two kinds of
failures: those which can only occur for some values of the buffer level, or BLD (buffer level depen-
dent?); and those which do not depend on the level of the buffer, or BLI (buffer level independent).
All previous models in literature deal only with BLI failures.

When the level of the buffer is zero, the downstream machine cannot work since it is starved, and
consequently it cannot fail. Therefore when the buffer is empty, the downstream machine cannot
fail in any mode, BLI or BLD. Similarly, when the level of the buffer is equal to the buffer size (i.e.
when the buffer is full), the upstream machine cannot work since it is blocked. Therefore when the
buffer is full, the upstream machine cannot fail in any BLI or BLD mode.

4We use this general term although we are interested in only one specific kind of dependence: where the probability
is determined by whether the level is above or below a threshold.

10
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The numbers of BLD modes for the upstream and downstream machines are the same for the
class of two-machine lines we study. To see this, assume that we are considering two-machine line
1, which corresponds to buffer B; in the original system. Each BLD mode of the upstream machine
M*(i) is a remote mode that corresponds to a specific mode j of a specific machine Mj, of the
real system. When M fails in mode j, it causes machine M; to be starved if the number of parts
in buffer B; is greater than a threshold, and that starvation appears to the observer in B; as if
M*"(i) is down in the mode we are considering. When the level is below the threshold, M; cannot
be starved in that way, and so it appears that M"(i) cannot fail. At the same time, M;; can be
blocked by My, so it appears that M%(4) can fail in the mode we are considering. If the level exceeds
the threshold, M<(i) cannot fail in that mode. Therefore, for each BLD mode of M"(i), there is a
corresponding BLD mode of M9(i), and the two modes have the same threshold.

Modes with the same threshold can be grouped. The size of each group from the upstream
machine is the same as that for the corresponding group from the downstream machine with same
threshold. The upstream machine cannot fail in a BLD mode when the number of work-pieces in
the buffer is less than its threshold. In the same way the downstream machine cannot fail in a BLD
mode when the number of work-pieces in the buffer is greater than its threshold.

The upstream machine cannot be down in any BLD mode k£j when the level of the buffer is less
than the threshold [;. On the other hand, when the level of the buffer is greater than the threshold
[, the downstream machine cannot be down in any BLD mode kj.

Finally, when the level of the buffer is equal to the threshold, either [, and one of the two
machines is down in BLD mode kj then the other machine is not able to process a part because it
is also down in mode BLD £kj. Taking into account these constraints, it is possible to derive a set
of transition equations for the two—machine line.

In the following, we simplify notation by suppressing the index ¢, which elsewhere indicates
which building block we are referring to.

3.3.2 States

The system is be modeled as a discrete time, discrete state Markov chain. The state of the system
is indicated by s(t) = (n(t), au(t), aq(t)) where:

e n(t) represents the level of the buffer at time ¢ (n = 1,..., N; where N is the buffer size.)

e «,(t) represents the state of the upstream machine M™ at time ¢ and can assume the following

values:
1
Oy = Pj
Akj
where

* 1 means that the machine is up, i.e. it is able to work and process a part.

* p; means that the machine is down in BLI mode j, j =1,..., F}\.

11
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* Ap; means that the machine is down in BLD mode £j. The index k indicates a group of
failure modes with the same threshold [, while j represents one of the F); different BLD
modes of type k.

o ay(t) represents the state of the downstream machine M? at time ¢ and can assume the
following values:
1
Qg =1 Pj
Akj

* 1 means that the machine is up, i.e. it is able to work and process a part.
* pj means that the machine is down in BLI mode j, j = 1,..., F{.

* Ap; means that the machine is down in BLD mode kj. The index k indicates the group of
failure modes with the same threshold [, while j represents one of the F); (this number
is equal to that of the upstream machine) different BLD modes of type k.

The transition equations are derived in Maggio (2000). As usual, they are used to determine the
steady state probability p(n, ay, «g) of each state. Then the performance measures — the average
throughput and the average buffer levels — can be calculated.

3.3.3 Performance Measures

E" is the probability that a part passes through the upstream machine in one time unit. It is given
by the sum of the probabilities of the states in which the upstream machine is able to process a
part. This happens when the machine is not down or not blocked (since the first machine of a
two—machine line cannot be starved). Therefore E* can be defined as

E" = Z%p(n, 1,%) = 2 Zp(n, 1, ag) (7)

n=0 o4

where the symbol * represents a summation over all the states of the machine (up or down either
in a BLD or BLI mode).

E“ is the probability that a part passes through the second machine in a time unit. Therefore
it represents the sum of the probabilities of the states in which the downstream machine is able
to process a part. This happens when the machine is not down or not starved, since it cannot be
blocked. Thus E? can be defined as

N

B =" [p(n, %, 1)] (8)

n=1
Material is conserved, since we do not consider any mechanism for creation or destruction of
material. Therefore E* and E¢ must be equal in steady state. Conservation of flow in the system

can be expressed as
E=F"=E! (9)

12
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where F is the average throughput of the two-machine line. The average buffer level of the two—
machine line is

n= z_:onp(n,*,*) (10)

Other important performance measures include the probabilities of blocking and starvation. The
probability of finding the buffer empty (the probability of starvation of the second machine) is

P* =p(0,%,1) (11)
while the probability of finding the buffer full (the probability of blocking of the first machine) is

P’ = p(N, 1, %) (12)

3.3.4 Other Probability Measures

We define some quantitis that appear the decomposition equations. £y, is defined to be the proba-
bility of the upstream machine being operational and the number of parts in the buffer being greater
than or equal to the threshold [j:

N—-1

El?k = Z p(na 17 *) (13)

n:lk

Similarly, E% is the probability of the downstream machine being operational and the number
of parts in the buffer being less than or equal to the threshold [.
Ui
Ef. =Y p(n,+1) (14)

n=1

The probability of M* being down in BLD mode k7 is

N
Xi; = D p(n, A, %) (15)
n=0

Because the upstream machine cannot fail in a BLD mode if the number of parts in the buffer is
less than the threshold, we must have

Ih—1

Z: p(n, Agj, %) =0 (16)

Therefore the probability of M* being down in mode BLD kj when the buffer level is greater than
or equal to [ is

N
X;ij = Z p(n, Ak, %) = Xlgj (17)

n:lk
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The probability of M? being down in mode BLD kj is

N
Xi; = p(n, %, Aij) (18)

n=0

Because the downstream machine cannot fail in a BLD mode if the number of parts in the buffer is
greater than the threshold, we can write

iV: p(n, %, Agj) =0 (19)

n=lp+1

Therefore the probability of A¢ being down in mode BLD kj when the buffer level is less than or
equal to [ is

Uk
ngj = Zp(na *, )\kj) = X;cij (20)
n=0

The probabilities that the buffer is empty due to the upstream machine being down respectively in
BLI mode j and in BLD mode kj are

Pjs :p(oapja*) (21)

Finally, the probabilities that the buffer is full due to the downstream machine being down respec-
tively in BLI mode j and in BLD mode kj are:

P} = p(N, , p;) (23)

P,fj = p(N, %, Ag)) (24)

3.4 Decomposition Equations

The decomposition method works by constructing two—machine lines in which the behavior of the
flow into and out of the buffer closely matches that of a corresponding buffer in the real line. To do
this, we must carefully select the parameters of each two-machine line. In this section, we derive a
set of equations that these parameters must satisfy to create the desired behavior.

3.4.1 Local failures

According to the definition of local failures (Section 3.1), the probabilities of local failures of machine
M*™(i) and their repairs are equal to those of machine M; of the original system, The parameter
pi;(i) represents the probability of machine A/*(i) failing in mode 4j. This mode reproduces the
interruption of flow into buffer B; caused by M; being down in mode j. The parameter r};(i) repre-
sents the probability of the resumption of flow due to M; being repaired from failure j. Therefore
we can write

pi; (i) = pij (25)

14
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Similarly for machine M%(i). The value p{,, ;(i) represents the local failure probability of ma-
chine M4 (i) and reproduces the interruption of flow out of buffer B; caused by M;,; being down in

mode j. The value r{,;(i) represents the probability of the resumption of flow due to M;;; being
repaired from failure j. Thus,

p;'i+1,j(i) = Pit1,j (27)
Tzd—l—l,j(i) =Tit1,5 (28)

3.4.2 Remote failures

Repair probabilities We must still determine the parameters of the remote failures of M (i)
and M9 (7). To find the probabilities of repair, recall that failure propagation occurs through a set of
full buffers or a set of empty buffers. When the remote machine is repaired, this set of buffers is no
longer all full or all empty, and we assume that flow into or out of the buffer resumes instantaneously.
That is, we ignore the time required for repairs to propagate®. Then we observe that the probability
of recovering from a remote failure is equal to the probability of repairing the failed machine which
caused the interruption of flow. This is because we are assuming that all repair time distributions
are geometric (ie, memoryless), and because the unblocking of the downstream machine occurs at
essentially the same time as the repair of the machine that caused the blockage (and similarly for
the end of the starvation of the upstream machine). This repair probability does not depend on the
condition of the system and is constant. The remote repair probabilities are therefore

T (i) = T (29)
rin; (i) = o (30)

Failure probabilities Failures, by contrast, do not propagate almost instantaneously. Time is
required for the intervening buffers to fill or empty, and some failures will not propagate the whole
distance because the repair occurs before the propagation reaches M; or M, ;. Consequently the
remote failure probabilities (pj;(i) and pf;()) are unequal to the failure probabilities (py;) of the
real machines that cause the failures — in fact, they are smaller. We are not able to write simple
equations for these quantities; we must find them indirectly by using properties of the original
system.

For every failure there is a repair. Consequently, the steady-state probability of entering a failure
state is equal to the probability of leaving that state. Suppose that M"(i) is down in remote mode

>This is equivalent to assuming that the number of machines in the network is much smaller than the mean
time to repair of each machine. All decomposition methods with discrete material of which we are aware make an
approximation like this, although not always explicitly. In continuous material systems, by contrast, the propagation
of repairs is instantaneous. For example, consider a system in which all the machines have the same operation rate.
If machine M; is down and machines M;, M;1, and M;, 2, are up and buffers B;, B;;1, and B; o are empty, B;i3
will gain material immediately after M; is repaired.

15
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kj. For this to happen, the number of parts in buffer B(i) must be greater than or equal to I, (7).
The probability of leaving this condition is therefore Xjj (i) times the remote repair probability
ri; (@), or Xgi(4) ri; (i)

Now let us consider the probability of M"(i) entering remote failure mode kj. Such a failure
can happen only if buffer B(7) contains at least (i) parts. The probability that M*(i) is up and
there are at least (i) parts in buffer B(i) is Ef.(i). Therefore, the probability that M"(i) enters
mode kj is Ey (i) p;(i), so

By (i) pi; (1) = Xgg(7) 75(2) (31)

Here E}.(7) is not the total throughput, but only the portion of it when the number of parts
in the buffer is greater than or equal to I (7). Ej, (i) represents the probability that the upstream
machine is able to process a part and n > [,(7).

Similarly for the downstream machine: M%(i) cannot fail in remote mode kj when n > I, (i),
and when it is down, the number of parts cannot exceed this threshold. Therefore, for M9 (i) to
be down in mode kj, the number of parts in buffer B(i) must be less than or equal to [;(i). The
probability of leaving this condition is therefore X, ;(i)rf; (7).

The probability of M4 (i) failing in this remote mode is the probability that it is up and the level
of the buffer is less than or equal to I, (i), E% (i), times the probability it fails in remote mode kj
when a failure is possible, which is pf;(i). Therefore

E!fk(i)pﬁj (i) = ngj (i)rgj (4) (32)
The event that the upstream machine M"(i) is down due to a mode j failure of machine Mj
is the event that that buffer B;_; is empty due that failure. Thus the probability that M*(i) is

down in the remote failure mode k7 is the probability that B;_; is empty because of the failure j
of machine My, or, if k #£i—1

Xy (1) = P;(i = 1) (33)
If £ =17 —1 this reduces to
XP ) = Pyi— 1) (34

Similar considerations apply to the downstream machine M?(i). The event that M?(4) is down
in the remote mode due to the failure j of machine My, is the event that buffer B, is full because of
the failure j of machine Mj. The probability of this event is the same as the probability of blocking
in building block ¢ + 1. Therefore, if k # @ + 2,

Xi(6) = PL(i+1) (35)

If £ =1+ 2, this becomes
Xty i) = P+ 1) (36)
Note that at the same time that the observer in B(i) sees a kj failure of M?(i), the observer in

B(i+1) sees a kj failure of M4(i + 1) if k # i+ 1. This is because both failures are due to a mode
j failure of machine My, and if buffer B;,; is full due to that event, B;, 5 must also be full.

16



Maggio, Matta, Gershwin, Tolio ... FINITE BUFFERS February 14, 2003

3.5 Final Decomposition Equations

Using equations (17), (20), (29), (30), (33), (34), (35), and (36) in (31) and (32) we can determine
the remaining unknown parameters. After some simplification, they become, for i =1, ..., K:

Ps(i—1)
“o = g (1) = rpa: for k=171—1; 37
P() =~ 5 i) =ng fork=i—1; (37
L Pi-1) _ _
U = 8 g (1) = rp.; for k —1; 38
Dy (2) E;;Lk (Z) Tkj> Tkj (Z) Tkjs or 7é Q ) ( )
Pi(i+1
=20 =y k=it (39)
Eak(z)
PP (i+1
sy =D L g ferk£ity (10)
Eak(l)
for remote failures, and
pi; (i) = pij rii(i) =13 (41)
{11,0) = Pig g (0) = Ty (42
Diyq5\0 Dit1,j Tit1,j i+1,7

for local failures. These equations are a set of independent nonlinear equations for calculating the
unknown building block parameters. Conceptually, they may be solved iteratively: start with an
initial guess for the unknown failure probabilities that appear on the right sides of these equations.
Using this guess, evaluate the left sides, and this is the new guess of the unknowns for the unknowns.
However, carrying this out involves some difficulties that are discussed in the next section.

3.6 Issues in the application of the decomposition equations

Just as in earlier decomposition methods, the solution of equations (37)-(42) involves the evaluation
of certain quantities (P;(i—1), Ep (i), etc.) by using the steady-state probability distribution of the
two-machine line. However, this is more difficult than in the past because of the thresholds discussed
in Sections 3.2 and 3.3. Some failure probabilities depend on whether the buffer levels are above or
below a threshold. This makes the two-machine line transition equations more complex than earlier
versions. Worse, a further complication comes from the fact that there may be more than one
threshold for some two-machine lines. To simplify the analysis we restrict our attention in the next
section to three-machine loops with no more than one threshold in each building block. A much
more general approach for dealing with this issue — and analyzing much more complex systems —
is described in Werner (2001), Gershwin and Werner (2002), Levantesi (2001) and Gershwin and
Levantesi (2002).
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4 Application to Three-Machine Three-Buffer Loops

The general analysis of the previous section is specialized here to determine the performance mea-
sures of a loop composed of three machines and three buffers, with one failure mode for each
machine. See Figure 4.

—C,

M, 3

Figure 4: Three-machine loop.

The three-machine loop is decomposed, as shown in Figure 5, into three two-machine building
blocks. The remote failure modes of the upstream machine of a building block represents the effect
of starvation in the real line. However, since each real machine can be starved due to the failure of
only one other real machine (because of the assumptions of Section 2.1.3), we have only one remote
failure mode for each upstream machine. Each upstream machine M"(i) therefore has one local
failure mode, the same as that of the real machine M, immediately upstream of buffer B; , and one
remote failure mode (that of M;_;). Similarly, the downstream machine M?(4) has one local failure
mode, the failure mode of machine M; ; and one remote failure mode (that of M; 5), since each
machine can be blocked due to the failure of only one other machine. (Recall that M; | and M;
are the same machine.)

From (6), the threshold /(7) for building block i, due to the failure of machine M, (ie M;_,), is

1(1) = liy2(i) = N? — Ny (43)

Since the population of parts N? is subject to equations (1) and (2) and since the size of the largest
buffer observes equation (3), the threshold must satisfy

0<1(i) < N; (44)

Note that there is exactly one threshold per buffer. This is because of the assumptions of Section
2.1.3) and because we are restricting our analysis to three-machine loops. It is not generally true.
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M)

M{(2)
M 2 B 1
\ ML)

B(2) My

N~ e

MY{3)

mt2)

Figure 5: Decomposition method for three-machine three-buffer loops

4.1 Building Block

A complete description of the two-machine line is presented in Maggio (2000), in which the transition

equations are described in detail.
In this version of the two machine line, there are 9(N + 1) states (n, a1, a2), where

in which, as in Section 3.3.2, 1 is the operational state, p; is the BLI down state, and \; is the BLD
down state. There is one BLI and one BLD state in each line, and only one threshold.

0<n<N
a;=1or p;or )\

The state space is divided (in most cases) into five groups:

the lower boundary states: 0 <n <1
the lower internal states: 2 <n <[ —2
the threshold neighboring states: | —1 <n <I[+1

the upper internal states: [ +2 <n < N —2

e the upper boundary states: N —1<n <N

In the lower boundary states (as in all earlier models) we have to take into account that when
the level of the buffer n is equal to zero, the downstream machine cannot fail since it is starved.
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In the upper boundary states (as in all earlier models), when n is equal to the buffer size N the
upstream machine cannot fail since it is blocked. In the threshold neighboring states when n is
equal to the threshold [, if one of the machines is down in the remote mode, then the other machine
is also not able to process a part.

These three phenomena are separate from one to another only if the threshold is not equal to
0,1, N —1 or N. If the threshold assumes any of these values then two of the phenomena will occur
at the same states and special versions of the equations are necessary.

The transition equations for all states other than the threshold neighboring states are the same as
those in Tolio, Gershwin, and Matta (2002). The threshold state transition equations are provided
in Maggio (2000).

4.2 Decomposition equations

The local failure parameters are given by (41) and (42). The following equations are related only
to remote failures and follow from (37) and (39).

P = ggi; s (1)
p(2) = gg; " (46)
BO) = (47)
W = 28 ()
W = (40
W = T (50

4.3 An Algorithm

The decomposition equations are nonlinear. Here, we describe an algorithm for solving them.

0. Imitialization: for each of the three two—machine lines into which the loop is decomposed, the

known parameters (pi(i), p(i), r4(i), ri(i), r§(i) and r§(i)) are specified and initial guesses

for the unknowns (p4(7), p¢(7)) are chosen®.

SFor example, the initial guesses may be set to the failure probabilities of the machine (M; ) not adjacent to
the buffer (B;) whose building block is being initialized. The unknown p¥ (i) represents the probability that machine
Mo is down and its downstream buffer B;, o is empty while pi(i) represents the probability that M, is down and
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1. Evaluate the two-machine lines. Calculate E%(i), E¥(i), P*(i) and P(i).
2. Evaluate p4(i) and p¢(i) using (37)-(40).

3. Steps 1 and 2 are repeated until the termination condition is satisfied, that is until the remote
probabilities converge. The termination condition is satisfied when the relative change in the
six unknown parameters are all less than a specified quantity.

In our experience, which is described in Section 5, the algorithm is fast and accurate.

5 Numerical Results

In this section we examine the results of the analytical method and we compare them with those
obtained from simulation. Of special interest is the effect of the number of parts on the production
rate or throughput of the line. These results show that there exists an optimal number N of parts
which maximizes the throughput of the line (as illustrated in Figure 6).

throughput vs population

o
3

throughput
©o o o o o
N w »~ (5] (2]

o

o

15 20 25 30 35
population

p1 0.06 0.1
p2  0.03 2 07
3 0.04 3 0.2

Figure 6: Throughput from simulation as function of the number of parts

o
o 4
o

N1 7
N2 10
N3 13

It has been shown (Perros 1990, Dallery and Towsley 1991) that for loops with identical machines,
the curve is symmetric and the optimal population N is equal to half the sum of all the buffer sizes
of the system. (See also Han and Park 2002.) Below the optimal number, the limited number of
parts causes frequent starvation, and above it the system becomes congested and blockage occurs
often. By solving the decomposition equations, we obtained the expected shape for the curve of the
production rate as a function of the number of parts, as shown in Figure 7 for both a symmetrical
and an asymmetrical loop.

Unlike other analytical methods, this algorithm does not check whether conservation of flow is
satisfied. In Table 1 we display the the throughput of each building block and we compare them

its upstream buffer B;;1 is full. The remote probabilities of failure are actually smaller than the failure probabilities
of M, but this is a reasonable initial guess.
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N1 =30 p1=0.055 r1=0.333
N2 =30 p2=0.055 r2=0.333
N3 =30 p3=0.055 r3=0.333

throughput vs number of parts
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Figure 7: Analytical throughput as function of the number of parts
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with that from simulation. Although the throughputs are different from one other, they are all very
close to that from simulation.

Numerous experiments on different kinds of three-machine loop systems were carried out to
test the accuracy, convergence reliability, and speed of the technique. We take an average of the
throughputs of the building blocks and compare them with those obtained from a discrete event
simulation. To ensure statistical significance, the length of simulation was chosen to be 10,000, 000
time units. The first set of experiments (Examples 1 — 4) considers symmetrical closed loop systems,
that is, lines in which the machines are identical and the buffers have the same size. The second set
(Examples 5 and 6) considers closed loop systems with identical machines but buffers with different
sizes. The third set (Example 7) examines a loop with three different machines and identical buffers
and the last set of runs (Example 8) deals with a completely asymmetrical closed line.

In Tables 3-15 numerical results of the analytical method are compared with those from simu-
lation over a range of a different number of parts, while Table 2 provides the input parameters of
the examples.

From a comparison of the analytical results with those from simulation, it can be seen that
the method proposed seems to be fairly accurate. The error for the throughput is less then 0.8%
for large buffers, but it increases to 1.24% for small buffers as illustrated in Table 7. The error in
the average buffer level is almost always less than 3%, but it increases when the machines are not
balanced or the buffers are different from one another. Furthermore we observed that the procedure
converged in every case.

6 Conclusions and further research

6.1 Summary and Observations

This research was motivated by the need for a fast and accurate tool to evaluate the performance
of small closed-loop material flow systems. We described in this paper an analytical model of the
phenomena that occur in closed lines, and a decomposition method for predicting performance
measures. This method provides quick results with generally small errors for three-machine, three-
buffer loop systems. The error, compared with simulation, is small both for the average throughput
and for the average buffer levels. We believe that similar results could be obtained by applying the
method to loops with more than three machines. See Section 6.2.

The structure of the building block, however, suggests that the way in which the threshold
affects the behavior of the two-machine line might cause difficulties for larger systems. As the
number of machines increases, the number of thresholds that could appear in a given buffer also
increases. Many of them will not affect the behavior of the two—machine line since they will be
greater than the buffer size or negative. The feasible thresholds, those that are positive and less
than the buffer size, however, lead to more complex behavior for states in which the number of parts
is equal to a threshold. Since the number of thresholds in each buffer increases with the number
of machines, boundary states and states adjacent to thresholds will more frequently overlap and
special transition equations must be developed for these cases. As loops become larger, the building
block equations become more complex since they must mode all the possible interactions between
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the threshold-neighboring states and the boundary states. These difficulties might be overcome by
simplifying the phenomena due to the thresholds. Therefore, further research should extend the
method to larger loop systems, using simplified two—machine line models.

6.2 Future Work

An approach to mitigating this difficulty is reported in Werner (2001), Gershwin and Werner (2002),
Levantesi (2001) and Gershwin and Levantesi (2002). Gershwin and Werner (2002) eliminate the
threshold issue in large closed loop systems by breaking up buffers at thresholds and introducing
reliable machines between the new smaller buffers. All feasible thresholds are thereby moved to
states in which buffers are empty or full. Simulation and other results suggest that the method
works well.

Gershwin and Levantesi (2002) extend this method to systems with multiple closed loops. The
method again works well, but substantial effort is required to analyze the ranges of blocking and
starvation in the more complex network.
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N3 45 p3 0.005 r3 0.02

% error of the | % error of the | % error of the
throughput | throughput first building |second building| third building
Number tg:;’t“gﬂiﬁ’;;gf of second | of third Thr?r‘(’)?:p“t block block block
of Parts block building building simulation throughput throughput throughput
block block compared with | compared with | compared with
simulation simulation simulation
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85 0.661580 0.687355 | 0.672327 | 0.67058 -1.342% 2.502% 0.261%
86 0.661730 0.687198 | 0.672354 | 0.67328 -1.715% 2.067% -0.138%
87 0.661863 0.687029 | 0.672368 | 0.67417 -1.826% 1.907% -0.267%
88 0.661976 0.686848 | 0.672367 | 0.67145 -1.411% 2.293% 0.137%
89 0.662072 0.686654 | 0.672353 | 0.67063 -1.276% 2.389% 0.257%
90 0.662148 0.686449 | 0.672325 | 0.67364 -1.706% 1.901% -0.195%
91 0.662205 0.686232 | 0.672282 | 0.67087 -1.292% 2.290% 0.210%
92 0.662242 0.686004 | 0.672225 | 0.67169 -1.407% 2131% 0.080%
93 0.662259 0.685764 | 0.672153 | 0.67234 -1.499% 1.997% -0.028%
94 0.662255 0.685515 | 0.672066 | 0.67167 -1.402% 2.061% 0.059%
95 0.662230 0.685255 | 0.671963 | 0.67206 -1.463% 1.963% -0.014%
96 0.662182 0.684984 | 0.671844 | 0.67446 -1.820% 1.560% -0.388%
97 0.662112 0.684705 | 0.671709 | 0.67354 -1.697% 1.658% -0.272%
98 0.662019 0.684415 | 0.671558 | 0.67273 -1.592% 1.737% -0.174%
99 0.661900 0.684117 | 0.671388 | 0.67189 -1.487% 1.820% -0.075%
100 0.661757 0.683811 | 0.671200 | 0.67241 -1.584% 1.696% -0.180%
101 0.661587 0.683496 | 0.670993 | 0.67074 -1.365% 1.902% 0.038%

Table 1: Conservation of flow
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Maggio, Matta, Gershwin, Tolzo

FINITE BUFFERS

February 14, 2003

example 1

p1 0.02 r1 0.3 N1 14

p2 0.02 r2 0.3 N2 14

p3 0.02 r3 0.3 N3 14
example 2

p1 0.03 r1 0.4 N1 12

p2 0.03 r2 04 N2 12

p3 0.03 3 0.4 N3 12
example 3

p1 0.03 r1 0.2 N1 18

p2 0.03 r2 0.2 N2 18

p3 0.03 r3 0.2 N3 18
example 4

p1 0.04 r1 0.2 N1 8

p2 0.04 r2 0.2 N2 8

p3 0.04 r3 0.2 N3 8
example 5

p1 0.07 r1 0.3 N1 20

p2 0.07 r2 0.3 N2 25

p3 0.07 r3 0.3 N3 27
example 6

p1 0.01 r1 0.1 N1 10

p2 0.01 r2 0.1 N2 12

p3 0.01 r3 0.1 N3 15
example 7

p1 0.07 r1 0.5 N1 16

p2 0.01 r2 0.3 N2 16

p3 0.06 3 0.7 N3 16
example 8

p1 0.01 r1 0.03 N1 70

p2 0.009 r2 0.06 N2 58

p3 0.005 r3 0.02 N3 45
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.. FINITE BUFFERS

February 14, 2003

population

population
16

population
16
17
18
19
20
21

population
16

0.905282
0.906746
0.907755
0.908417
0.908793
0.908915
0.908793
0.908417
0.907755
0.906746
0.905282

analytical Avg B1

5.41860
5.74971
6.06967
6.38293
6.69234
7.00000
7.30766
7.61707
7.93033
8.25029
8.58140

analytical Avg B2

5.41860
5.74971
6.06967
6.38293
6.69234
7.00000
7.30766
7.61707
7.93033
8.25029
8.58140

analytical Avg B3

5.41860
5.74971
6.06967
6.38293
6.69234
7.00000
7.30766
7.61707
7.93033
8.25029
8.58140

analytical throughput

throughput simulation
0.90446
0.90539
0.90591
0.90671
0.90686
0.90693
0.90683
0.90658
0.90602
0.90519
0.90426

AvgB1 simulation
5.34880
5.67220
5.99120
6.33850
6.64800
6.98900
7.32370
767270
7.98900
8.33280
8.65770

AvgB2 simulation
5.34080
5.65770
6.00570
6.30790
6.65530
7.00530
7.33630
7.66250
8.01750
8.34600
8.68610

AvgB3 simulation
5.31020
5.66990
6.00300
6.35340
6.69660
7.00550
7.33980
7.66470
7.99330
8.32110
8.65610

% error
0.091%
0.150%
0.204%
0.188%
0.213%
0.219%
0.216%
0.203%
0.191%
0.172%
0.113%

% error
1.305%
1.366%
1.310%
0.701%
0.667%
0.157%
0.219%
0.725%
0.734%
0.990%
0.881%

% error
1.457%
1.626%
1.065%
1.189%
0.557%
0.076%
0.390%
0.593%
1.087%
1.147%
1.205%

% error
2.041%
1.408%
1.111%
0.465%
0.064%
0.079%
0.438%
0.621%
0.788%
0.851%
0.863%

Table 3: Example 1: Numerical results for a symmetrical loop
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February 14, 2003

population
14

population
14

population
1

population
1

analytical throughput

analytical Avg B1

analytical Avg B2

analytical Avg B3

throughput simulation

0.900133 0.898460
0.901805 0.899690
0.902835 0.900520
0.903399 0.900800
0.903580 0.901000
0.903399 0.900840
0.902835 0.900330
0.901805 0.899460
0.900133 0.898470

AvgB1 simulation

4.759880 4.674100
5.082600 4.983500
5.393360 5.345000
5.697990 5.643700
6.000000 6.012400
6.302010 6.327400
6.606640 6.663500
6.917400 7.008400
7.240120 7.336200

AvgB2 simulation

4.759880 4.661700
5.082600 5.019200
5.393360 5.339800
5.697990 5.684400
6.000000 5.999800
6.302010 6.346600
6.606640 6.672600
6.917400 7.004200
7.240120 7.322000

AvgB3 simulation

4.759880 4.664000
5.082600 4.997200
5.393360 5.315100
5.697990 5.671800
6.000000 5.987700
6.302010 6.325900
6.606640 6.663700
6.917400 6.987300
7.240120 7.341600

% error
0.186%
0.235%
0.257%
0.289%
0.286%
0.284%
0.278%
0.261%
0.185%

% error

1.835%
1.989%
0.905%
0.962%
0.206%
0.401%
0.853%
1.298%
1.310%

% error

2.106%
1.263%
1.003%
0.239%
0.003%
0.703%
0.989%
1.239%
1.118%

% error

2.056%
1.709%
1.472%
0.462%
0.205%
0.378%
0.856%
1.000%
1.382%

Table 4: Example 2: Numerical results for a symmetrical loop
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.. FINITE BUFFERS

February 14, 2003

population
20

population
20

population
20

population
20

0.804356
0.806614
0.808347
0.809660
0.810624
0.811283
0.811669
0.811796

analytical Avg B1

6.708880
7.056700
7.393370
7.722280
8.045820
8.365660
8.683300
9.000000

analytical Avg B2

6.708880
7.056700
7.393370
7.722280
8.045820
8.365660
8.683300
9.000000

analytical Avg B3

6.708880
7.056700
7.393370
7.722280
8.045820
8.365660
8.683300
9.000000

analytical throughput

throughput simulation
0.804310
0.805470
0.806770
0.807580
0.808010
0.808590
0.809040
0.809120

AvgB1 simulation
6.694600
6.993400
7.305400
7.659800
7.970100
8.375700
8.684200
9.006800

AvgB2 simulation
6.678900
7.062300
7.348300
7.673600
8.063900
8.338000
8.647200
9.038600

AvgB3 simulation
6.626400
6.944200
7.346200
7.666500
7.965900
8.286200
8.668500
8.954500

% error
0.006%
0.142%
0.195%
0.258%
0.324%
0.333%
0.325%
0.331%

% error
0.213%
0.905%
1.204%
0.816%
0.950%
0.120%
0.010%
0.075%

% error
0.449%
0.079%
0.613%
0.634%
0.224%
0.332%
0.417%
0.427%

% error
1.245%
1.620%
0.642%
0.728%
1.003%
0.959%
0.171%
0.508%

Table 5: Example 3: Numerical results for a symmetrical loop
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population
28

population
28
29
30
31
32
33
34

population

population

0.811669
0.811283
0.810624
0.80966

0.808347
0.806614
0.804356

analytical Avg B1

9.3167
9.63434
9.95418
10.2777
10.6066
10.9433
11.2911

analytical Avg B2

9.3167
9.63434
9.95418
102777
10.6066
10.9433
11.2911

analytical Avg B3

9.3167
9.63434
9.95418
10.2777
10.6066
10.9433
11.2911

analytical throughput

throughput simulation
0.80887
0.80857
0.808
0.80737
0.80655
0.80545
0.80428

AvgB1 simulation
9.3373
9.6444
9.9907

10.31
10.649
10.985
11.355

AvgB2 simulation
9.3701
9.7015
9.9685
10.324
10.679
11.064
11.335

AvgB3 simulation
9.2925
9.6539

10.04
10.364
10.67
10.95
11.308

% error
0.346%
0.336%
0.325%
0.284%
0.223%
0.145%
0.009%

% error
0.221%
0.104%
0.366%
0.313%
0.398%
0.380%
0.563%

% error
0.570%
0.692%
0.144%
0.448%
0.678%
1.091%
0.387%

% error
0.260%
0.203%
0.855%
0.833%
0.594%
0.061%
0.149%

Table 6: Example 3: Numerical results for a symmetrical loop
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February 14, 2003

population

10

analytical throughput

0.7190
0.7208
0.7214
0.7208
0.7190

analytical Avg B1
3.3286
3.6659
4.0000
4.3341
4.6714

analytical Avg B2
3.3286
3.6659
4.0000
4.3341
4.6714

analytical Avg B3
3.3286
3.6659
4.0000
4.3341
46714

throughput simulation
0.7107
0.7119
0.7128
07121
0.7108

AvgB1 simulation
3.3315
3.6691
4.0005
4.3324
4.6595

AvgB2 simulation
3.3283
3.6639
3.9992
4.3386
4.6700

AvgB3 simulation
3.3400
3.6668
4.0002
4.3288
4.6704

% error
1.168%
1.249%
1.211%
1.228%
1.154%

% error
0.088%
0.088%
0.012%
0.040%
0.256%

% error
0.008%
0.053%
0.020%
0.103%
0.031%

% error
0.342%
0.026%
0.005%
0.123%
0.022%

Table 7: Example 4: Numerical results for a symmetrical loop
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population analytical throughput throughput simulation % error
29 0.76846 0.76731 0.15%
30 0.76976 0.76823 0.20%
31 0.77074 0.76862 0.28%
32 0.77148 0.76913 0.31%
33 0.77202 0.76935 0.35%
34 0.77238 0.76979 0.34%
population analytical Avg B1 AvgB1 simulation % error
29 8.76392 8.64930 1.33%
30 9.00128 8.91360 0.98%
31 9.22403 9.09020 147%
32 9.43501 9.35410 0.86%
33 9.63619 9.56500 0.74%
34 9.82921 9.79480 0.35%
35 10.01560 9.96430 0.51%
population analytical Avg B2 AvgB2 simulation % error
29 11.09070 10.97300 1.07%
30 11.65050 11.41400 2.07%
31 12.17340 12.05200 1.01%
32 12.66930 12.52200 1.18%
33 13.14350 13.00900 1.03%
34 13.59880 13.45900 1.04%
35 14.03770 13.90700 0.94%
population analytical Avg B3 AvgB3 simulation % error
29 9.46171 9.37720 0.90%
30 9.70548 9.67220 0.34%
31 9.95236 9.85690 097%
32 10.20670 10.12300 0.83%
33 10.47170 10.42500 0.45%
34 10.74960 10.74600 0.03%
35 11.04260 11.12700 -0.76%

Table 8: Example 5: Numerical results for a loop with balanced machines and different buffer sizes
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population analytical throughput throughput simulation % error
36 0.77267 0 0.383%
37 0.77260 0.76980 0.364%
38 0.77239 0.76985 0.330%
39 0.77203 0.76947 0.332%
40 0.77149 0.76891 0.336%
41 0.77075 0.76861 0.279%
42 0.76976 0.76791 0.241%
43 0.76843 0.76724 0.156%
population analytical Avg B1 AvgB1 simulation % error
36 10.19760 10.18100 0.163%
37 10.37570 10.39300 -0.166%
38 10.55190 10.60900 -0.538%
39 10.72760 10.74300 -0.143%
40 10.90410 10.99800 -0.854%
41 11.08310 11.20400 -1.079%
42 11.26590 11.37300 -0.942%
43 11.45450 11.52100 -0.577%
population analytical Avg B2 AvgB2 simulation % error
36 11.35290 11.44600 -0.813%
37 11.68070 11.78300 -0.868%
38 12.02770 12.17400 -1.202%
39 12.39530 12.63900 -1.928%
40 12.78460 12.96900 -1.422%
41 13.19890 13.34100 -1.065%
42 13.64150 13.81600 -1.263%
43 14.11970 14.22900 -0.768%
population analytical Avg B3 AvgB3 simulation % error
36 14.46210 14.37100 0.634%
37 14.87150 14.82200 0.334%
38 15.26790 15.21600 0.341%
39 15.65300 15.61600 0.237%
40 16.02930 16.03100 -0.011%
41 16.40110 16.45400 -0.322%
42 16.77480 16.80900 -0.203%
43 17.16130 17.24900 -0.508%

Table 9: Example 5: Numerical results for a loop with balanced machines and different buffer sizes
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population
17
18
19
20

population
17
18
19
20

population
17
18
19
20

population
17
18
19
20

analytical throughput

0.822956
0.823172
0.823172
0.822956

analytical Avg B1

4.989790
5.294450
5.5697060
5.898380

analytical Avg B2

4.683890
5.016340
5.351500
5.690140

analytical Avg B3

7.270310
7.672930
8.073750
8.473760

throughput simulation

0.818910
0.818740
0.819400
0.818580

AvgB1 simulation

4.959900
5.206400
5.465700
5.770000

AvgB2 simulation

4.831000
5.178300
5.479200
5.758000

AvgB3 simulation

7.209000
7.615100
8.055000
8.471900

% error
0.4941%
0.5413%
0.4603%
0.5346%

% error
0.6026%
1.6912%
2.4034%
2.2250%

% error
3.0451%
3.1277%
2.3306%
1.1785%

% error
0.8505%
0.7594%
0.2328%
0.0220%

Table 10: Example 6: Numerical results for a loop with balanced machines and different buffer sizes

population
18

18

18

analytical throughput

0.881964
0.882456
0.882752
0.882932
0.883036
0.883087

analytical Avg B1

1.914760
1.936500
1.955920
1.977110
2.003710
2.039760

analytical Avg B2

4.904660
5.687940
6.498960
7.326210
8.159880
8.991230

analytical Avg B3

11.273900
11.559400
11.763100
11.907400
12.008700
12.079400

throughput simulation

0.875030
0.875300
0.875670
0.875910
0.875810
0.875880

AvgB1 simulation

1.923800
1.960400
1.991300
2.032200
2.082800
2.179000

AvgB2 simulation

4.762900
5.502600
6.309400
7.128300
7.950000
8.811900

AvgB3 simulation

11.313000
11.536000
11.699000
11.839000
11.967000
12.008000

% error
0.7924%
0.8175%
0.8088%
0.8017%
0.8251%
0.8228%

% error
-0.4699%
-1.2191%
-1.7767%
-2.7109%
-3.7973%
-6.3901%

% error
2.9763%
3.3682%
3.0044%
2.7764%
2.6400%
2.0351%

% error
-0.3456%
0.2028%
0.5479%
0.5778%
0.3485%
0.5946%

Table 11: Example 7: Numerical results for a loop with unbalanced machines and equal buffer sizes
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population

population
24

population
24

population
24

analytical throughput

0.88309
0.88306
0.88298
0.88283
0.88257
0.88210
0.88122

analytical Avg B1
2.09062
2.16415
2.27270
2.43708
2.69469
3.11665
3.83966

analytical Avg B2
9.81202
10.61400
11.38810
12.12360
12.80680
13.41710
13.92140

analytical Avg B3
12.12830
12.16180
12.18510
12.20190
12.21590
12.23140
12.25570

throughput simulation
0.87585
0.87579
0.87578
0.87563
0.87546
0.87553
0.87528

AvgB1 simulation
2.26850
2.40270
2.57630
2.75910
3.06380
3.44700
3.93740

AvgB2 simulation
9.64680
10.47100
11.25800
12.01400
12.71300
13.30400
13.78400

AvgB3 simulation
12.08400
12.12600
12.16500
12.22600
12.22300
12.24800
12.27700

% error
0.827%
0.830%
0.822%
0.822%
0.812%
0.751%
0.678%

% error
-7.841%
-9.928%

-11.784%

-11.671%

-12.047%
-9.584%
-2.482%

% error
1.713%
1.366%
1.156%
0.912%
0.738%
0.850%
0.997%

% error
0.367%
0.295%
0.165%
-0.197%
-0.058%
-0.136%
-0.173%

Table 12: Example 7: Numerical results for a loop with unbalanced machines and equal buffer sizes
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population

population

population

population

analytical throughput

0.672239
0.672457
0.672657
0.672839
0.673003
0.673150
0.673280
0.673395
0.673493
0.673575

analytical Avg B1

15.710500
16.058200
16.410900
16.768700
17.131800
17.500200
17.874000
18.253200
18.638000
19.028300

analytical Avg B2

30.107800
30.642700
31.176900
31.710400
32.242900
32.774300
33.304600
33.833500
34.361000
34.886800

analytical Avg B3

25.268900
25.411000
25.547400
25.678500
25.804700
25.926400
26.043900
26.157500
26.267700
26.374600

throughput simulation
0.671600
0.671250
0.672870
0.672170
0.671410
0.672520
0.672850
0.671760
0.673340
0.672570

AvgB1 simulation
16.284600
16.653400
17.138400
17.542400
17.686100
18.052600
18.490700
18.990000
19.241000
19.592000

AvgB2 simulation
30.450800
31.013100
31.330600
31.883200
32.571400
33.108400
33.414000
33.921600
34.543000
34.938700

AvgB3 simulation
25.264400
25.333400
25.530900
25.574300
25.742300
25.838800
26.095100
26.088300
26.215900
26.469100

% error
0.0952%
0.1799%
-0.0317%
0.0995%
0.2372%
0.0936%
0.0639%
0.2433%
0.0227%
0.1495%

% error
-3.5254%
-3.5740%
-4.2449%
-4.4105%
-3.1341%
-3.0599%
-3.3352%
-3.8799%
-3.1339%
-2.8772%

% error
-1.1264%
-1.1943%
-0.4906%
-0.5420%
-1.0086%
-1.0091%
-0.3274%
-0.2597%
-0.5269%
-0.1485%

% error
0.0178%
0.3063%
0.0646%
0.4074%
0.2424%
0.3390%
-0.1962%
0.2653%
0.1976%
-0.3570%

Table 13: Example 8: Numerical results for a loop with unbalanced machines and different buffer

sizes
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population analytical throughput throughput simulation % error
82 0.673643 0.669830 0.5692%
83 0.673695 0.672410 0.1912%
84 0.673732 0.672830 0.1340%
85 0.673754 0.670580 0.4733%
86 0.673761 0.673280 0.0714%
87 0.673753 0.674170 -0.0618%
88 0.673730 0.671450 0.3396%
89 0.673693 0.670630 0.4567%
90 0.673641 0.673640 0.0001%
91 0.673573 0.670870 0.4029%
population analytical Avg B1 AvgB1 simulation % error
82 19.424300 19.718400 -1.4915%
83 19.825900 20.314800 -2.4066%
84 20.233200 20.721500 -2.3565%
85 20.646300 21.150800 -2.3853%
86 21.065100 21.564700 -2.3167%
87 21.489700 22.004000 -2.3373%
88 21.920100 22.313400 -1.7626%
89 22.356400 22.581200 -0.9955%
90 22.798500 23.278300 -2.0611%
91 23.246600 23.613000 -1.5517%
population analytical Avg B2 AvgB2 simulation % error
82 35.411000 35.747300 -0.9408%
83 35.933300 36.116900 -0.5083%
84 36.453600 36.524500 -0.1941%
85 36.971900 37.090600 -0.3200%
86 37.487900 37.531600 -0.1164%
87 38.001600 38.146700 -0.3804%
88 38.512800 38.543100 -0.0786%
89 39.021500 39.270400 -0.6338%
90 39.527500 39.509700 0.0451%
91 40.030600 40.055500 -0.0622%
population analytical Avg B3 AvgB3 simulation % error
82 26.478700 26.534200 -0.2092%
83 26.580100 26.568100 0.0452%
84 26.679300 26.753900 -0.2788%
85 26.776300 26.758400 0.0669%
86 26.871600 26.903600 -0.1189%
87 26.965400 26.849200 0.4328%
88 27.057900 27.143300 -0.3146%
89 27.149300 27.148200 0.0041%
90 27.240000 27.211800 0.1036%
91 27.330100 27.331300 -0.0044%

Table 14: Example 8: Numerical results for a loop with unbalanced machines and different buffer
sizes
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population analytical throughput throughput simulation % error
92 0.673490 0.671690 0.2680%
93 0.673392 0.672340 0.1565%
94 0.673279 0.671670 0.2395%
95 0.673149 0.672060 0.1621%
96 0.673003 0.674460 -0.2160%
97 0.672842 0.673540 -0.1036%
98 0.672664 0.672730 -0.0098%
99 0.672468 0.671890 0.0861%
100 0.672256 0.672410 -0.0229%
101 0.672025 0.670740 0.1916%
population analytical Avg B1 AvgB1 simulation % error
92 23.700500 23.985100 -1.1866%
93 24.160400 24.302100 -0.5831%
94 24.626300 24.905200 -1.1198%
95 25.098200 25.188700 -0.3593%
96 25.576200 25.829100 -0.9791%
97 26.060200 26.468100 -1.5411%
98 26.550500 26.654800 -0.3913%
99 27.046900 27.036000 0.0403%
100 27.549700 27.576600 -0.0975%
101 28.058800 27.755600 1.0924%
population analytical Avg B2 AvgB2 simulation % error
92 40.530900 40.550700 -0.0488%
93 41.028200 41.082200 -0.1314%
94 41.522300 41.530400 -0.0195%
95 42.013300 41.972300 0.0977%
96 42.501000 42.385200 0.2732%
97 42.985300 42.525900 1.0803%
98 43.466200 43.280400 0.4293%
99 43.943500 43.752900 0.4356%
100 44.417300 44.111300 0.6937%
101 44.887400 44.720800 0.3725%
population analytical Avg B3 AvgB3 simulation % error
92 27.419800 27.464100 -0.1613%
93 27.509500 27.615500 -0.3838%
94 27.599400 27.564200 0.1277%
95 27.689600 27.838900 -0.5363%
96 27.780400 27.785600 -0.0187%
97 27.872100 28.005900 -0.4778%
98 27.964800 28.064600 -0.3556%
99 28.058900 28.211000 -0.5392%
100 28.154600 28.312000 -0.5559%
101 28.252000 28.523400 -0.9515%

Table 15: Example 8: Numerical results for a loop with unbalanced machines and different buffer
sizes
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