Analysis of Loop Networks by Decomposition

Stanley B. Gershwin Nicola Maggio Andrea Matta Tullio Tolio Loren Werner

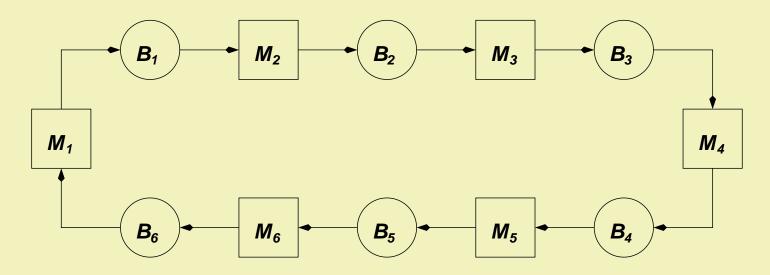
May 22, 2001

Copyright © 2001 Stanley B. Gershwin. All rights reserved.

Outline

- Introduction
- Tolio Decomposition of a Line
- Extension to Loops
- Thresholds
- Transformation
- Numerical Results
- Conclusions

Problem Statement



- ullet Finite buffers $(0 \leq n_i(t) \leq N_i)$.
- Closed loop fixed population $(\sum_i n_i(t) = N)$.
- Buzacott model (deterministic processing time; geometric up and down times). Repair probability = r_i failure probability = p_i .
- Goal: calculate production rate and inventory distribution.

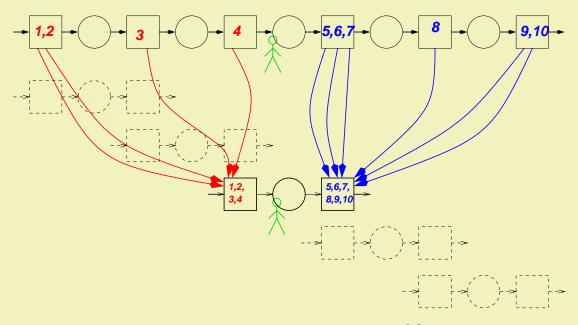
Motivation

- Limited pallets/fixtures.
- CONWIP (or hybrid).
- Extension to more complex systems and policies.

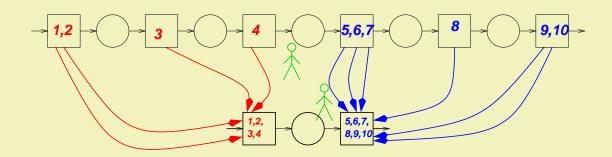
- Frein, Commault, Dallery (1996):
 - * Treat the loop as a line in which the first machine and the last are the same.
 - * In the resulting decomposition, one equation is missing.
 - \star The missing equation is replaced by the population constraint $(\sum_i \bar{n}_i(t) = N)$.
 - ★ Accuracy good for large systems, not so good for small systems.
 - ★ Accuracy good for intermediate-size populations; not so good for very small or very large populations.

Related Work

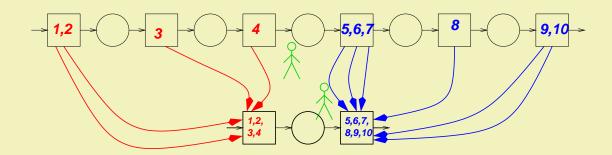
- Hypothesis: The reason for the accuracy behavior of the Frein-Commault-Dallery method is the correlation in the buffers.
 - ★ The number of parts in the system is actually constant.
 - * Frein-Commault-Dallery treats the population as random, with a specified mean.
- Therefore, we develop an approach that treats the population as constant.



 There is an observer in each buffer who is told that he is actually in the buffer of a two-machine line.

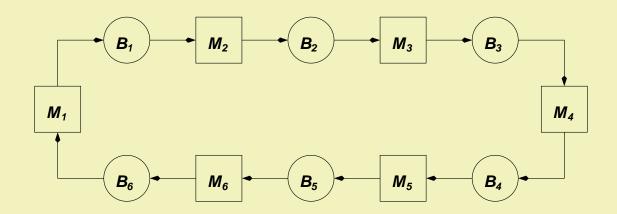


- Each machine in the original line may and in the two-machine lines must have multiple failure modes.
- For each failure mode downstream of a given buffer, there is a corresponding mode in the downstream machine of its two-machine line.
- Similarly for upstream modes.



- The downstream failure modes appear to the observer after propagation through blockage.
- The upstream failure modes appear to the observer after propagation through starvation.
- The two-machine lines are more complex that in earlier decompositions but the decomposition equations are simpler.

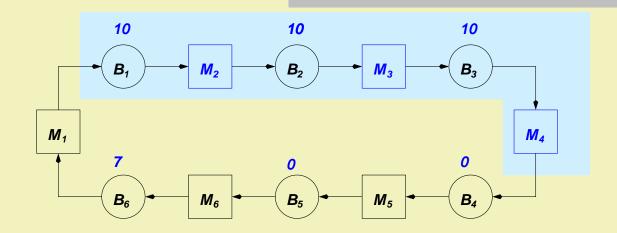
- A set of decomposition equations are formulated.
- They are solved by a Dallery-David-Xie-like algorithm.
- The results are a little more accurate than earlier methods.



- The range of blocking of a machine is the set of all machines that could block it if they stayed down for a long enough time.
- The range of starvation of a machine is the set of all machines that could starve it if they stayed down for a long enough time.

Ranges

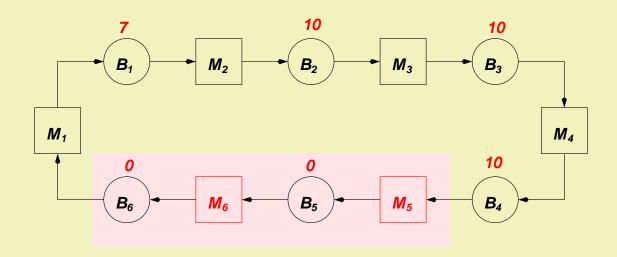
Range of Blocking



- All buffer sizes are 10.
- Population is 37.
- If M_4 stays down for a long time, it will block M_1 .
- Therefore M_4 is in the range of blocking of M_1 .
- ullet Similarly, M_2 and M_3 are in the range of blocking of M_1 .

Ranges

Range of starvation



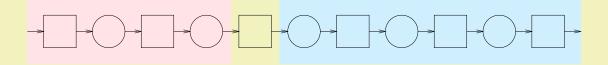
- ullet If M_5 stays down for a long time, it will starve M_1 .
- ullet Therefore M_5 is in the range of starvation of M_1 .
- ullet Similarly, M_6 is in the range of starvation of M_1 .

Small populations

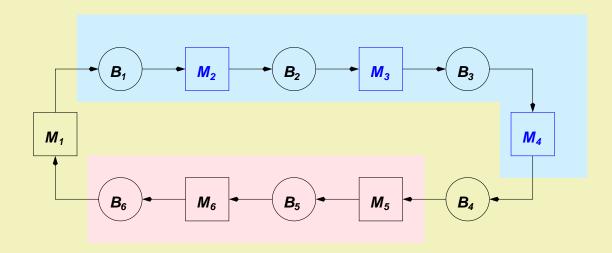
- If the population is smaller than the largest buffer, at least one machine will never be blocked.
- However, that violates the assumptions of the two-machine lines.
- We can reduce the sizes of the larger buffers so that no buffer is larger than the population. This does not change performance.

Small populations

Line

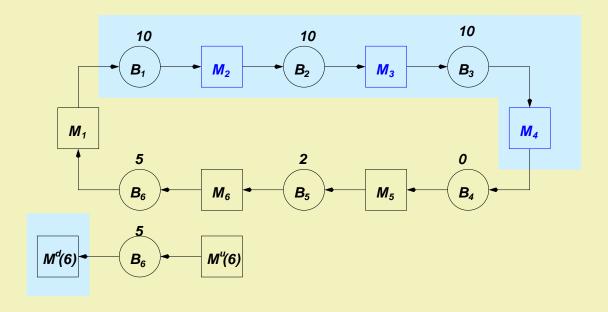


- The range of blocking of a machine in a line is the entire downstream part of the line.
- The range of starvation of a machine in a line is the entire upstream part of the line.



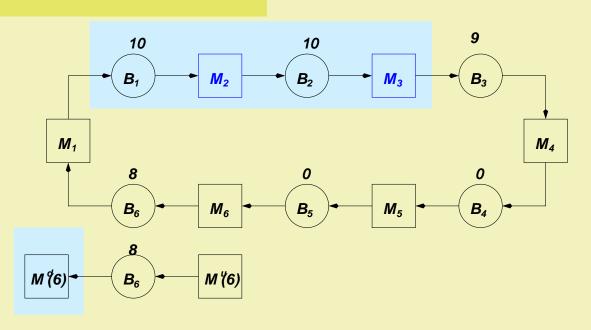
- Use the Tolio decomposition, but adjust the ranges of blocking and starvation accordingly.
- However, this does not take into account the local information that the observer has.

Thresholds



- ullet The B_6 observer knows how many parts there are in his buffer.
- If there are 5, he knows that the modes he sees in $M^d(6)$ could be those corresponding to the modes of M_1 , M_2 , M_3 , and M_4 .

Thresholds

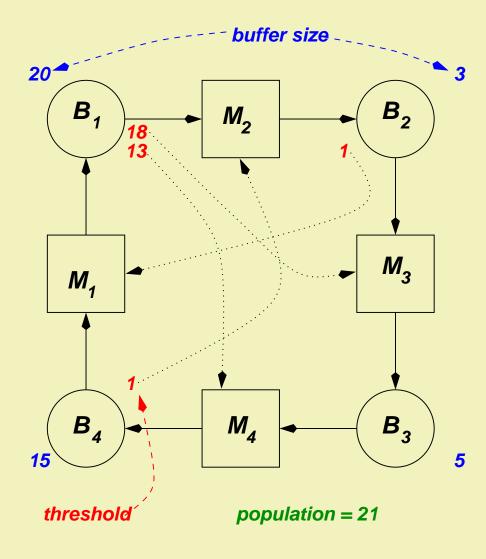


- However, if there are 8, he knows that the modes he sees in $M^d(6)$ could only be those corresponding to the modes of M_1 , M_2 , and M_3 ; and not those of M_4 .
- The transition probabilities of the two-machine line therefore depend on whether the buffer level is less than 7 or not.

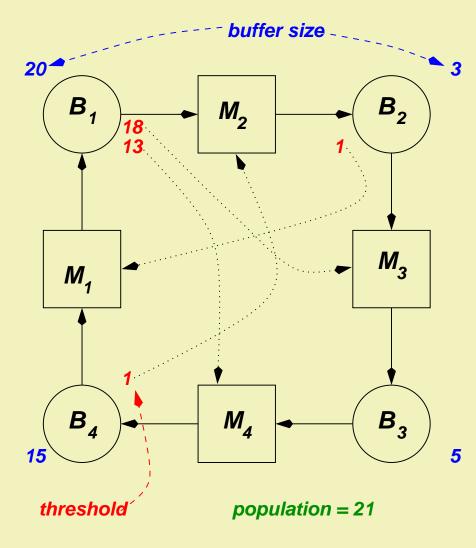
Thresholds

- The same issue arises for starvation.
- In general, there can be more than one threshold in a buffer.
- Consequently, this makes the two-machine line very complicated.
- We analyzed three-machine loops, to keep the complexity limited, and found very good agreement with simulation.

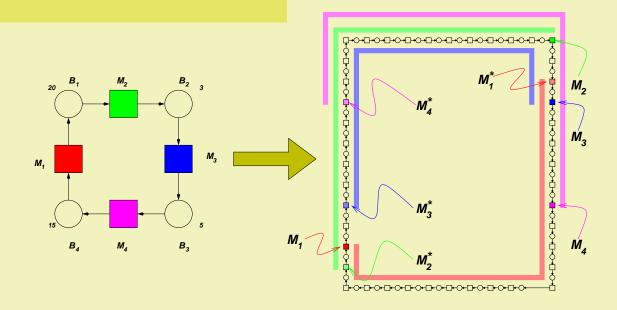
- Purpose: to avoid the complexities caused by thresholds.
- Idea: Wherever there is a threshold in a buffer, break up the buffer into smaller buffers separated by perfectly reliable machines.



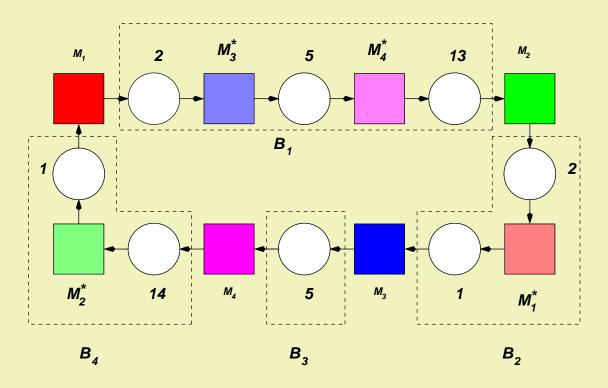
- ullet When M_1 fails for a long time, B_4 and B_3 fill up, and there is one part in B_2 . Therefore there is a threshold of 1 in B_2 .
- ullet When M_2 fails for a long time, B_1 fills up, and there is one part in B_4 . Therefore there is a threshold of 1 in B_4 .
- ullet When M_3 fails for a long time, B_2 fills up, and there are 18 parts in B_1 . Therefore there is a threshold of 18 in B_1 .



- ullet When M_4 fails for a long time, B_3 and B_2 fill up, and there are 13 parts in B_1 . Therefore there is a threshold of 13 in B_1 .
- *Note:* B_1 has two thresholds and B_3 has none.
- Note: The number of thresholds equals the number of machines.



- Break up each buffer into a sequence of buffers of size 1 and reliable machines.
- Count backwards from each real machine the number of buffers equal to the population.
- Identify the reliable machine the count ends at.



 Collapse all the sequences of unmarked reliable machines and buffers of size 1 into larger buffers.

- Ideally, this would be equivalent to the original system.
- However, the reliable machines cause a delay, so transformation is not exact for the discrete/ deterministic case.
- This transformation is exact for continuous-material machines.

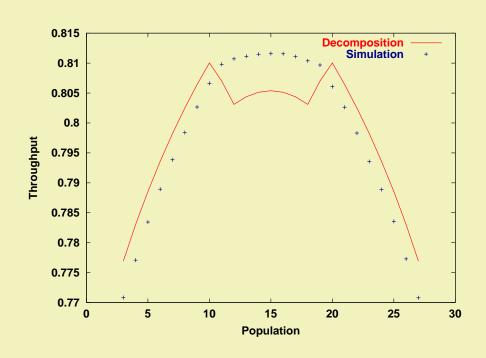
Accuracy

- Many cases were compared with simulation:
 - * Three-machine cases: all throughput errors under 1%; buffer level errors averaged 3%, but were as high as 10%.
 - * Six-machine cases: mean throughput error 1.1% with a maximum of 2.7%; average buffer level error 5% with a maximum of 21%.
 - ★ Ten-machine cases: mean throughput error 1.4% with a maximum of 4%; average buffer level error 6% with a maximum of 44%.

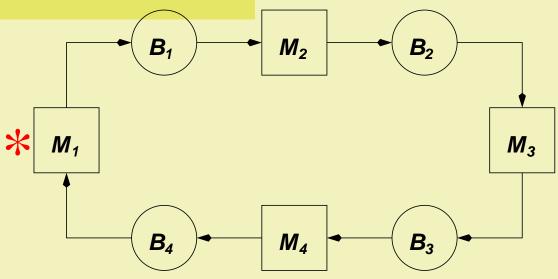
Other algorithm attributes

- Convergence reliability: almost always.
- Speed: execution time increases rapidly with loop size.
- Maximum size system: 18 machines. Memory requirements grow rapidly also.

The Batman Effect



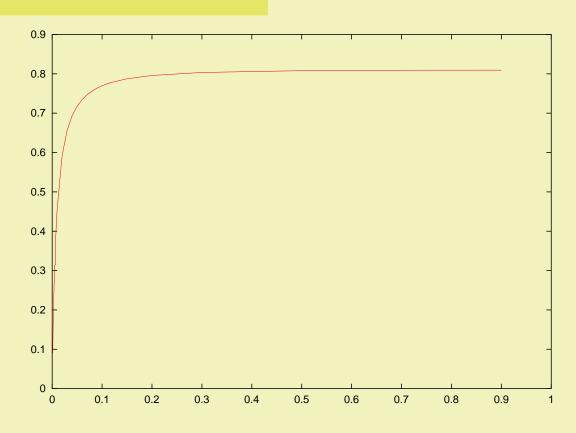
- Error is very small, but there are apparent discontinuities.
- This is because we cannot deal with buffers of size 1, and because we do not need to introduce reliable machines in cases where there would be no thresholds.



- ullet All buffer sizes 10. Population 15. Identical machines except for M_1 .
- ullet Observe average buffer levels and production rate as a function of r_1 .

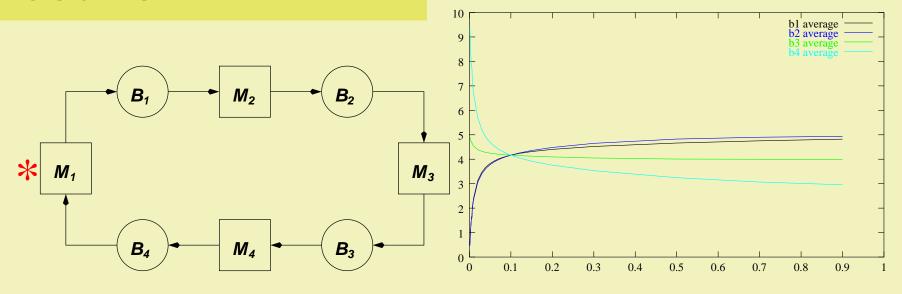
Behavior

Numerical Results



Usual saturating graph.

Behavior



- ullet When r_1 is small, M_1 is a bottleneck, so B_4 holds 10 parts, B_3 holds 5 parts, and the others are empty.
- ullet As r_1 increases, material is more evenly distributed. When $r_1=0.1$, the network is totally symmetrical.

Conclusions

- Method is accurate.
- Further research:
 - ★ Extend to other models, especially continuous material.
 - ★ Make algorithm faster by eliminating unnecessary modes from the two-machine lines.
 - * Extend to more complex systems.