# Transfer Lines and Decomposition Techniques

Stanley B. Gershwin

gershwin@mit.edu,http://web.mit.edu/manuf-sys

April 16, 2008

Politecnico di Milano

Copyright © 2008 Stanley B. Gershwin. All rights reserved.

## **Topics**

## **Overview**

- Basic issues manufacturing systems fundamentals
- Basic issues mathematics fundamentals
- Single-machine-factory behavior
- Factories with infinite buffers
- Factories without buffers
- Two-machine lines with buffers
- Long lines with buffers
- HP case
- Conclusion

## **Basic Issues**

- Frequent new product introductions.
- Product lifetimes often short.
- Process lifetimes often short.

This leads to short factory lifetimes and frequent building and rebuilding of factories.

There is little time for improving the factory after it is built; it must be built right.

## **Basic Issues**

#### **Consequent Needs**

- Tools to predict performance of proposed factory design.
- Tools for optimal real-time management (control) of factories.
- Manufacturing Systems Engineering professionals who understand factories as complex systems.

### **Basic Issues**

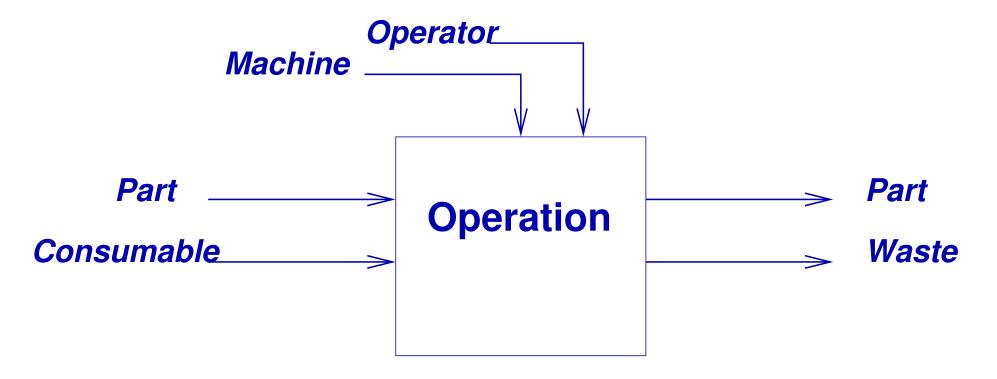
**Quantity, Quality, and Variability** 

- Quantity how much and when.
- Quality how well.

General Statement: Variability is the enemy of manufacturing.

## **Basic Issues**

#### **Operation**



Nothing happens until everything is present.

## **Basic Issues**

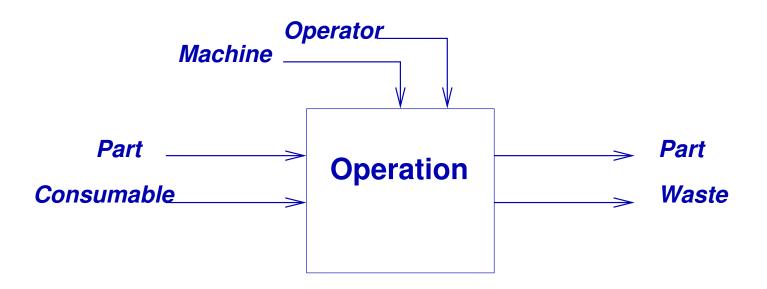
**Operation** 

Whatever does not arrive last must wait.

- Inventory: parts waiting.
- Under-utilization: machines waiting.
- *Idle work force:* operators waiting.

## **Basic Issues**

#### **Operation**



- Reductions in the availability, or ...
- Variability in the availability ...

... of any one of these items causes waiting in the rest of them and reduces performance of the system.

### **Basic Issues**

Randomness, Variability, Uncertainty

Uncertainty: Incomplete knowledge.

Variability: Change over time.

 Randomness: A specific kind of incomplete knowledge that can be quantified and for which there is a mathematical theory.

#### **Basic Issues**

Randomness, Variability, Uncertainty

- Factories are full of random events:
  - \* machine failures
  - ★ changes in orders
  - ★ quality failures
  - ★ human variability
- The economic environment is uncertain:
  - \* demand variations
  - \* supplier unreliability
  - \* changes in costs and prices

#### **Basic Issues**

Randomness, Variability, Uncertainty

Therefore, factories should be

designed and operated

to minimize the

• creation, propagation, or amplification

of uncertainty, variability, and randomness.

#### **Mathematics**

## **Basic Issues**

#### Markov processes

- A *Markov process* is a stochastic process in which the probability of finding X at some value at time  $t + \delta t$  depends only on the value of X at time t.
- Or, let  $x(s), s \leq t$ , be the history of the values of X before time t and let A be a possible value of X. Then

$$\mathsf{prob}\{X(t+\delta t) = A|X(s) = x(s), s \leq t\} = \mathsf{prob}\{X(t+\delta t) = A|X(t) = x(t)\}$$

## **Basic Issues**

#### **Mathematics**

Markov processes

• In words: if we know what X was at time t, we don't gain any more useful information about  $X(t + \delta t)$  by also knowing what X was at any time earlier than t.

#### States and transitions

Discrete state, discrete time

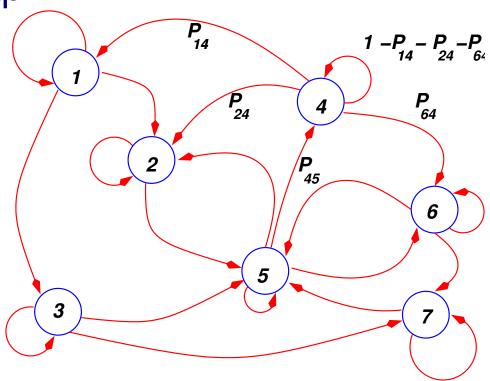
- States can be numbered 0, 1, 2, 3, ... (or with multiple indices if that is more convenient).
- Time can be numbered 0, 1, 2, 3, ... (or 0,  $\Delta$ ,  $2\Delta$ ,  $3\Delta$ , ... if more convenient).
- ullet The probability of a transition from j to i in one time unit is often written  $P_{ij}$ , where

$$P_{ij}=\mathsf{prob}\{X(t+1)=i|X(t)=j\}$$

#### States and transitions

Discrete state, discrete time

Transition graph



 $P_{ij}$  is a probability. Note that  $P_{ii} = 1 - \sum_{m,m 
eq i} P_{mi}$ .

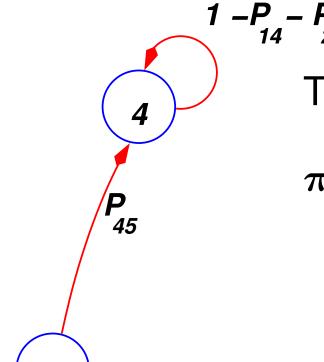
#### States and transitions

Discrete state, discrete time

- Define  $\pi_i(t) = \operatorname{prob}\{X(t) = i\}$ .
- ullet Transition equations:  $\pi_i(t+1) = \sum_j P_{ij}\pi_j(t)$ .
- Normalization equation:  $\sum_i \pi_i(t) = 1$ .

#### States and transitions

Discrete state, discrete time



Transition equation:

$$\pi_4(t+1) = \pi_5(t) P_{45}$$
 
$$+ \pi_4(t)(1 - P_{14} - P_{24} - P_{64})$$

#### States and transitions

Discrete state, discrete time

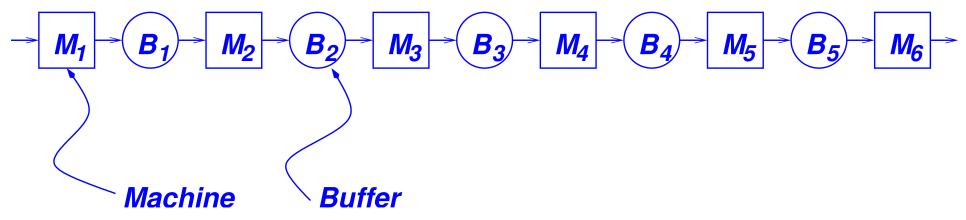
- Steady state:  $\pi_i = \lim_{t \to \infty} \pi_i(t)$ , if it exists.
- ullet Steady-state transition equations:  $\pi_i = \sum_j P_{ij} \pi_j$ .
- Alternatively, steady-state balance equations:

$$\pi_i \sum_{m,m 
eq i} P_{mi} = \sum_{j,j 
eq i} P_{ij} \pi_j$$

• Normalization equation:  $\sum_i \pi_i = 1$ .

#### Flow Line

... also known as a Production or Transfer Line.



- Machines are unreliable.
- Buffers are finite.
- Ideal for high-volume, low variety production.

In the following, we assume that there is a single product.

## **Flow Line**

Question: Why study flow lines? They are a very special case of manufacturing systems

Answer: Because they exhibit many of the important characteristics of any manufacturing system in a pure form.

They clarify the relationships among random variability and capacity, inventory, and quality.

Also, they still account for substantial economic activity.

#### **Performance Measures**

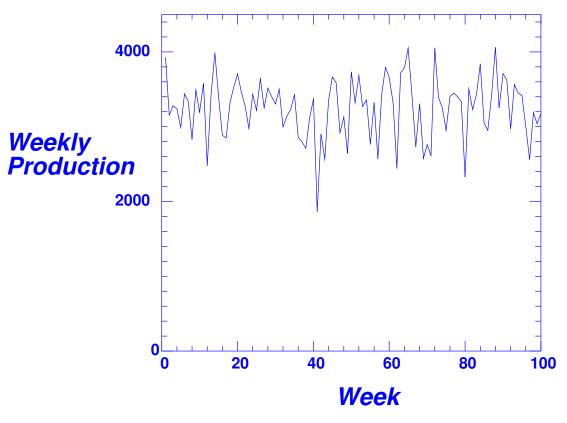
### Flow Line

- Production rate
- Inventory
- Lead Time

Means are always important. Sometimes standard deviations and percentiles are also important.

## **Output Variability**

## Flow Line



Production output from a simulation of a transfer line.

## Single Reliable Machine

If a machine is perfectly reliable, and its average operation time is  $\tau$ , then its maximum production rate is

 $rac{1}{ au}$ 

## **Failures and Repairs**

Machine is either up or down.

- MTTF = mean time to fail.
- MTTR = mean time to repair
- MTBF = MTTF + MTTR

## Single Unreliable

**Machine** 

#### **Production rate**

- If the machine is unreliable, and
  - $\star$  its average operation time is  $\tau$ ,
  - ★ its mean time to fail is MTTF,
  - ★ its mean time to repair is MTTR,

then its maximum production rate is

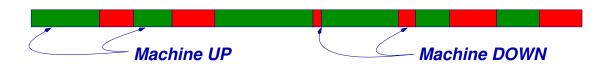
$$rac{1}{ au}\left(rac{\mathsf{MTTF}}{\mathsf{MTTF}}
ight) = rac{1}{ au}e$$

where

$$e = efficiency = rac{ ext{MTTF}}{ ext{MTTF} + ext{MTTR}}$$

#### **Production rate**

#### **Proof**



- Average production rate, while machine is up, is  $1/\tau$ .
- Average duration of an up period is MTTF.
- Average production during an up period is MTTF/au.
- Average duration of up-down period: MTTF + MTTR.
- Average production during up-down period: MTTF/ $\tau$ .
- Therefore, average production rate is  $(MTTF/\tau)/(MTTF + MTTR)$ .

#### **Production rate**

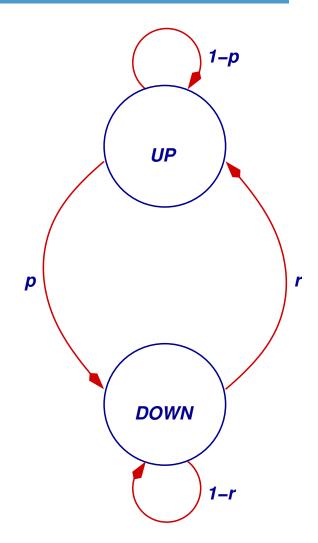
#### **Geometric Distributions**

If failure and repair times are geometrically distributed, then

$$p= au/\mathsf{MTTF}$$

$$r= au/\mathsf{MTTR}$$

$$e = \frac{r}{r+p}$$



#### **Production Rates**

- So far, the machine really has three production rates:
  - $\star 1/\tau$  when it is up (short-term capacity),
  - ★ 0 when it is down (short-term capacity),
  - $\star (1/\tau) (\text{MTTF/MTBF})$  on the average (long-term capacity).

$$- \boxed{M_1} - \boxed{M_2} - \boxed{M_2} - \boxed{M_3} - \boxed{M_3} - \boxed{M_4} - \boxed{M_5} - \boxed{M_5} - \boxed{M_6} - \boxed{M_6}$$

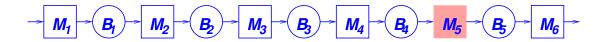
• Starvation: Machine  $M_i$  is starved at time t if Buffer  $B_{i-1}$  is empty at time t.

## Assumptions:

- A machine is not idle if it is not starved.
- The first machine is never starved.

#### **ODFs**

- Operation-Dependent Failures
  - ★ A machine can only fail while it is working not idle.
  - \* (When buffers are finite, idleness also occurs due to blockage.)
  - ★ IMPORTANT! MTTF must be measured in working time!
  - ★ This is the usual assumption.



- The production rate of the line is the production rate of the slowest machine in the line — called the bottleneck.
- Slowest means least average production rate, where average production rate is given by

$$rac{1}{ au_i}e_i$$

$$-\boxed{M_1} - \boxed{B_1} - \boxed{M_2} - \boxed{B_2} - \boxed{M_3} - \boxed{B_3} - \boxed{M_4} - \boxed{B_4} - \boxed{M_5} - \boxed{B_5} - \boxed{M_6}$$

Production rate is therefore

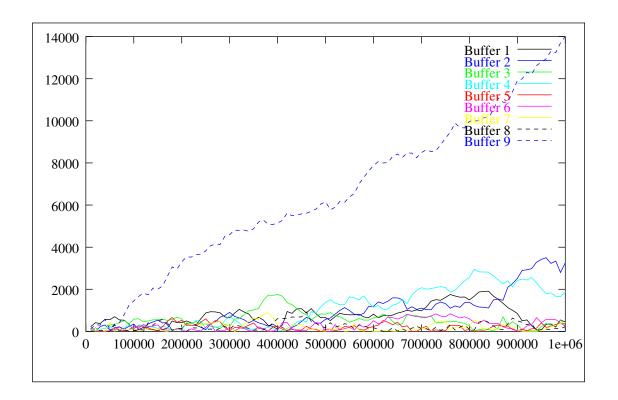
$$P = \min_i rac{1}{ au_i} \left( rac{\mathsf{MTTF}_i}{\mathsf{MTTF}_i + \mathsf{MTTR}_i} 
ight)$$

ullet and  $M_i$  is the bottleneck.

$$- \boxed{M_1} - \boxed{B_1} - \boxed{M_2} - \boxed{B_2} - \boxed{M_3} - \boxed{B_3} - \boxed{M_4} - \boxed{B_4} - \boxed{M_5} - \boxed{B_5} - \boxed{M_6}$$

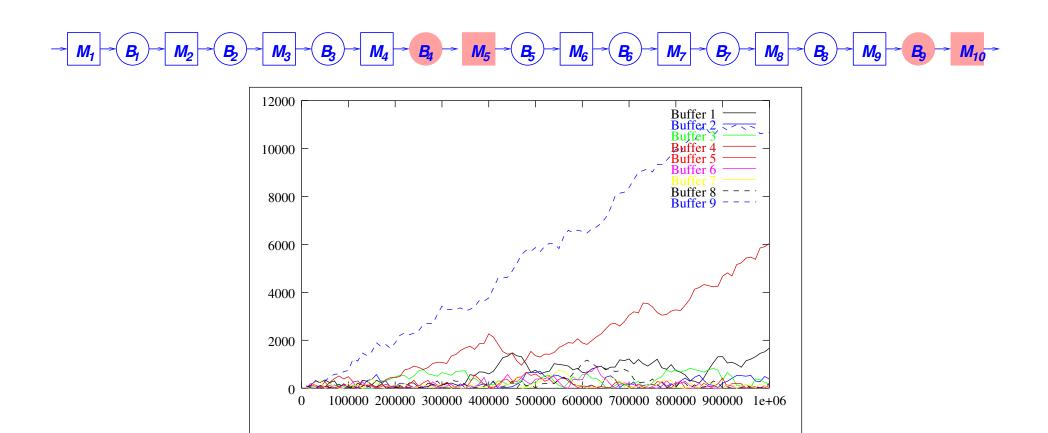
- The system is not in steady state.
- Inventory accumulates without limit in the buffer upstream of the bottleneck.
- A finite amount of inventory appears downstream of the bottleneck.





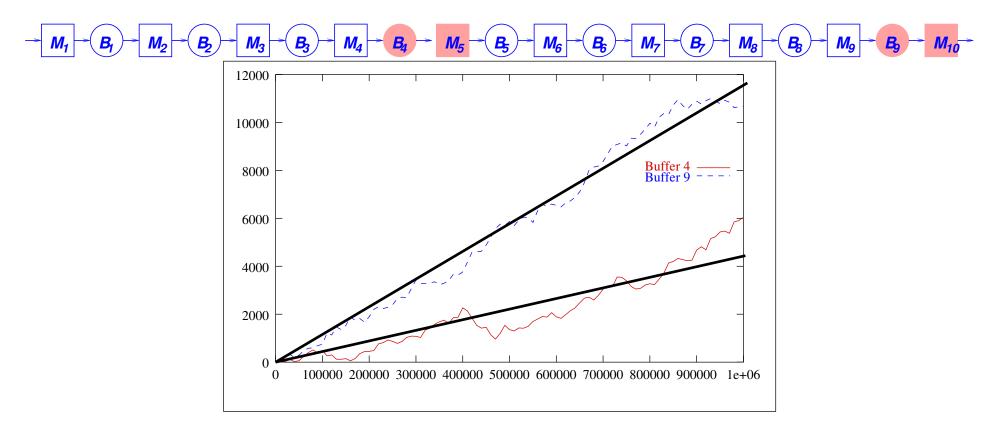


- The second bottleneck is the slowest machine upstream of the bottleneck. An infinite amount of inventory accumulates just upstream of it.
- A finite amount of inventory appears between the second bottleneck and the machine upstream of the first bottleneck.
- Et cetera.



A 10-machine line with bottlenecks at Machines 5 and 10.

# Infinite-Buffer Line



#### Question:

What are the slopes (roughly!) of the two indicated graphs?

### Infinite-Buffer Line

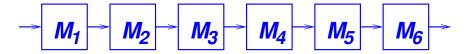
#### Questions:

- If we want to increase production rate, which machine should we improve?
- What would happen to production rate if we improved any other machine?

#### **Discussion**

# Infinite-Buffer Line

- If the buffers were finite, how would that affect the behavior and performance of the system?
- Is randomness the main issue here, or can it be summarized by an average?



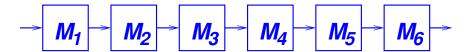
- If any one machine fails, or takes a very long time to do an operation, *all* the other machines must wait.
- Therefore the production rate is usually less usually much less – than that of the slowest machine.

equal operation times, unreliable machines

$$\rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow M_4 \rightarrow M_5 \rightarrow M_6 \rightarrow$$

- Assumption: Failure and repair times are geometrically distributed.
- Define  $p_i = \tau/\text{MTTF}_i$  = probability of failure during an operation.
- Define  $r_i = \tau/\text{MTTR}_i$  probability of repair during an interval of length  $\tau$  when the machine is down.

equal operation times, unreliable machines



#### Buzacott's Zero-Buffer Line Formula:

Let k be the number of machines in the line. Then

$$P = rac{1}{ au} \; rac{1}{1 + \displaystyle\sum_{i=1}^k rac{p_i}{r_i}}$$

equal operation times, unreliable machines

- ullet Note that P is a function of the ratio  $p_i/r_i$  and not  $p_i$  or  $r_i$  separately.
- The same statement is true for the infinite-buffer line.
- However, the same statement is not true for a line with finite, non-zero buffers.

#### Questions:

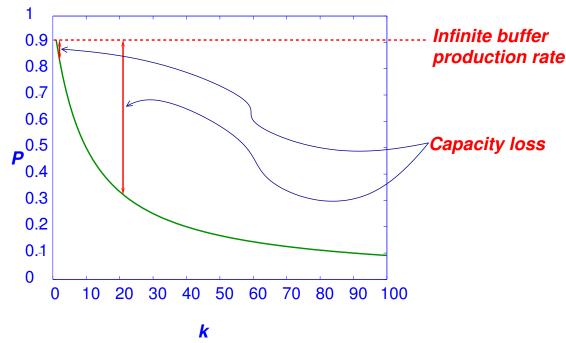
- If we want to increase production rate, which machine should we improve?
- What would happen to production rate if we improved any other machine?

#### **Discussion**

#### **Zero-Buffer Line**

- If the buffers were non-zero, how would that affect the behavior and performance of the system?
- Is randomness the main issue here, or can it be summarized by an average?

All machines are the same. As the line gets longer, the production rate decreases.





- Motivation for buffers: recapture some of the lost production rate.
- Cost
  - ★ in-process inventory/lead time
  - ★ floor space
  - ★ material handling mechanism



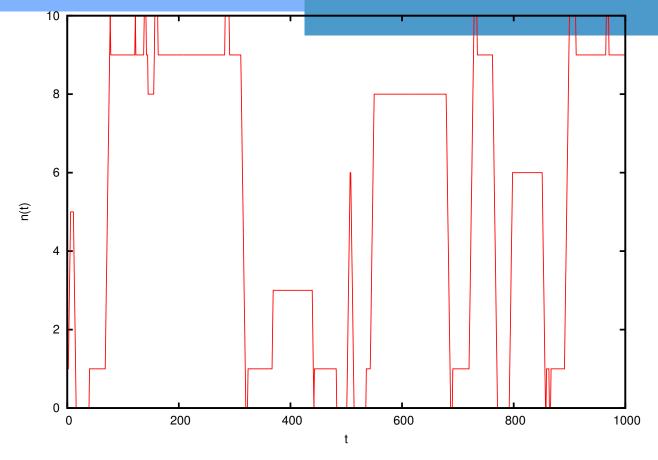
- Infinite buffers: delayed downstream propagation of disruptions(starvation).
- Zero buffers: instantaneous propagation in both directions.
- Finite buffers: delayed propagation in both directions.
  - ★ New phenomenon: blockage.
- Blockage: Machine  $M_i$  is blocked at time t if Buffer  $B_i$  is full at time t.

$$M_1 \longrightarrow B_1 \longrightarrow M_2 \longrightarrow B_2 \longrightarrow M_3 \longrightarrow B_3 \longrightarrow M_4 \longrightarrow B_4 \longrightarrow M_5 \longrightarrow B_5 \longrightarrow M_6 \longrightarrow$$

- Difficulty:
  - ★ No simple formula for calculating production rate or inventory levels.
- Solution:
  - \* Simulation
  - ★ Analytical approximation
  - ★ Exact analytical solution for two-machine lines only.



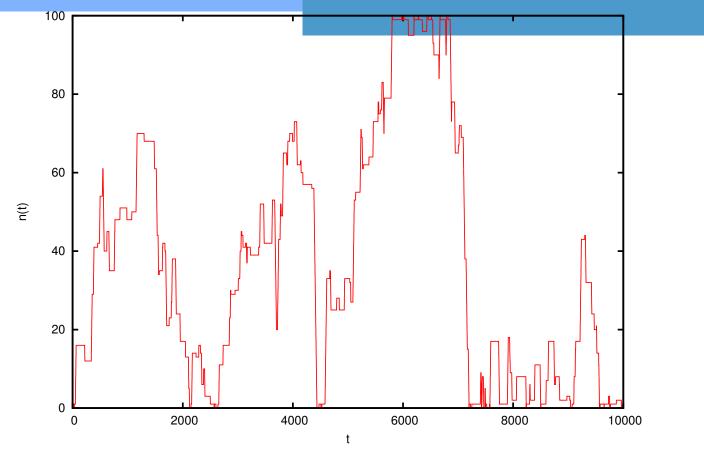
#### Simulations: Buffer Level vs. t



 $\mathsf{MTTR}_i = 10, \mathsf{MTTF}_i = 100, i = 1, 2; N = 10$ 



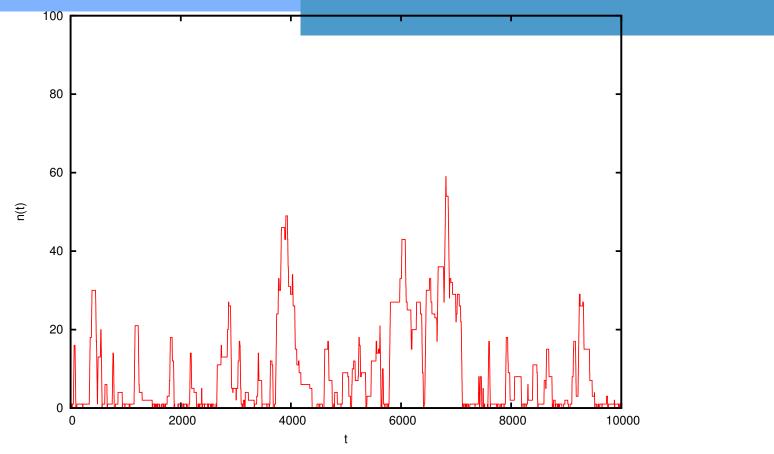
#### Simulations: Buffer Level vs. t



 $\mathsf{MTTR}_i = 10, \mathsf{MTTF}_i = 100, i = 1, 2; N = 100$ 



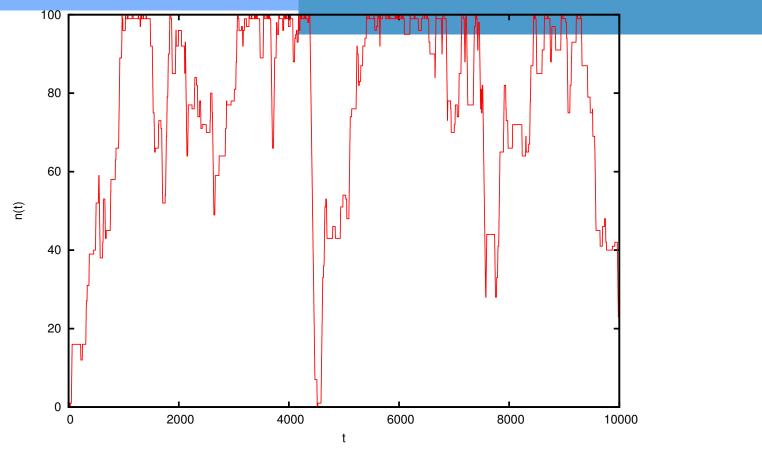
Simulations: Buffer Level vs. t



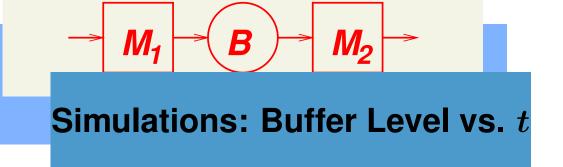
 $\mathsf{MTTR}_i = 10, i = 1, 2, \mathsf{MTTF}_1 = 50, \mathsf{MTTF}_2 = 100; N = 100$ 



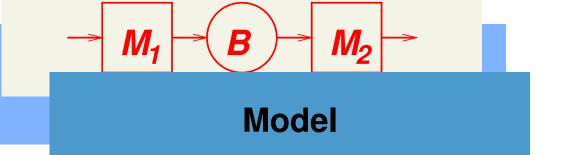
#### Simulations: Buffer Level vs. t



 $\mathsf{MTTR}_i = 10, i = 1, 2, \mathsf{MTTF}_1 = 100, \mathsf{MTTF}_2 = 50; N = 100$ 



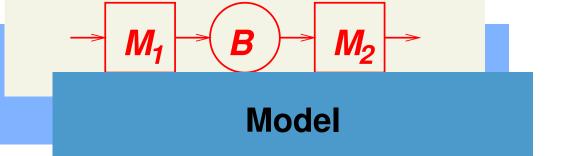
- How and why do the simulations differ?
- What are the consequences of the differences on the system performance?



- Exact solution is available to Markov process model.
- Discrete time-discrete state Markov process:

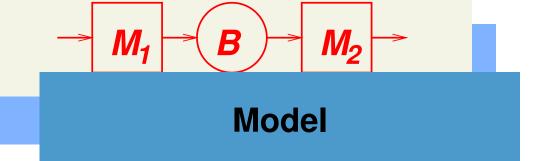
$$\mathsf{prob}\{X(t+1) = x(t+1) | X(t) = x(t),$$
  $X(t-1) = x(t-1), X(t-2) = x(t-2), ...\} =$ 

$$\mathsf{prob}\{X(t+1) = x(t+1) | X(t) = x(t)\}$$

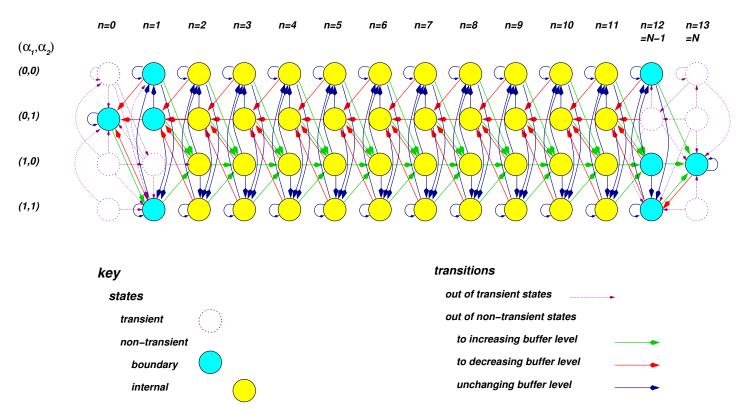


Here,  $X(t) = (n(t), \alpha_1(t), \alpha_2(t))$ , where

- n is the number of parts in the buffer; n = 0, 1, ..., N.
- ullet  $lpha_i$  is the repair state of  $M_i$ ; i=1,2.
  - $\star \alpha_i = 1$  means the machine is *up* or *operational*;
  - $\star \alpha_i = 0$  means the machine is down or under repair.



State Transition Graph for Deterministic Processing Time, Two-Machine Line



This is the model that was used to generate the graphs on the following slides.

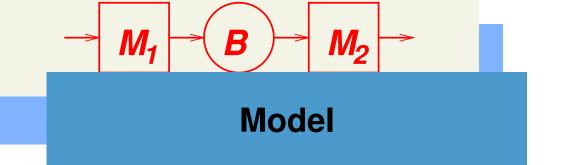


#### **Model**

production rate 
$$=P=\sum_{n=1}^{N}\sum_{lpha_1}\pi(n,lpha_1,1)$$
  $=\sum_{n=0}^{N-1}\sum_{lpha_2}\pi(n,1,lpha_2)$ 

Also, it can be shown that

$$P = rac{r_1}{r_1 + p_1} (1 - \mathsf{prob}(n = N)) = rac{r_2}{r_2 + p_2} (1 - \mathsf{prob}(n = 0))$$



#### Also

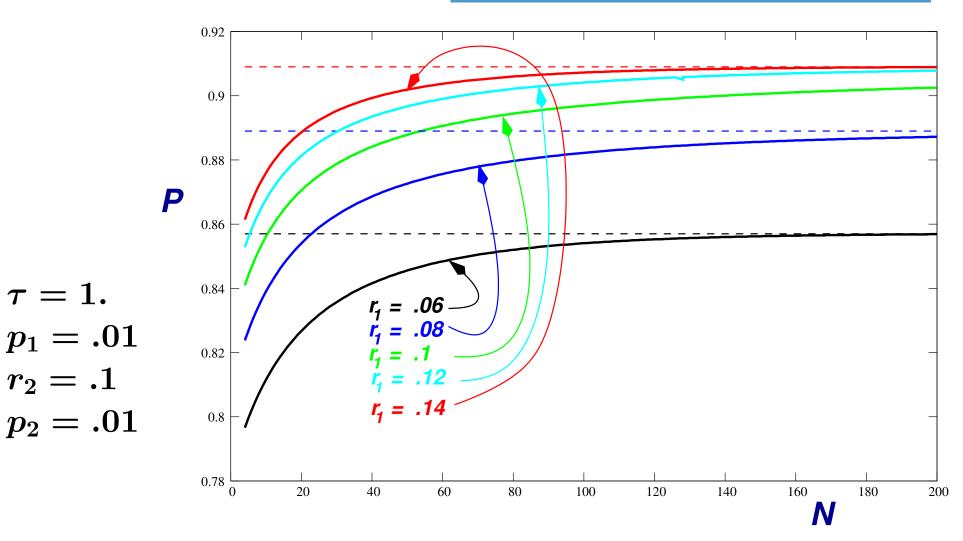
average inventory 
$$= ar{n} = \sum_{n=1}^N \sum_{lpha_1 = lpha_2} n\pi(n, lpha_1, lpha_2)$$

au = 1.

 $r_2 = .1$ 



#### **Production rate vs. Buffer Size**

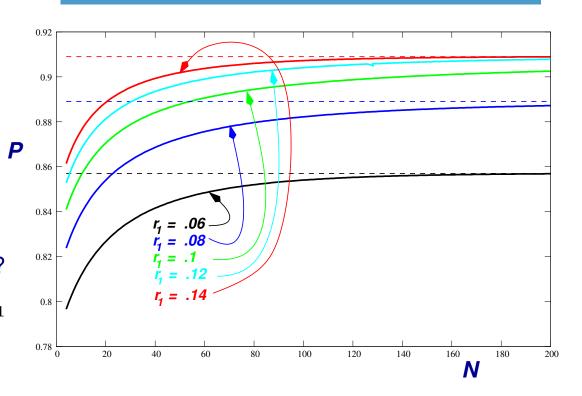




#### **Production rate vs. Buffer Size**

#### Discussion:

- Why are the curves increasing?
- Why do they reach an asymptote?
- What is P when N=0?
- What is the limit of P as  $N \to \infty$ ?
- ullet Why are the curves with smaller  $oldsymbol{r_1}$  lower?

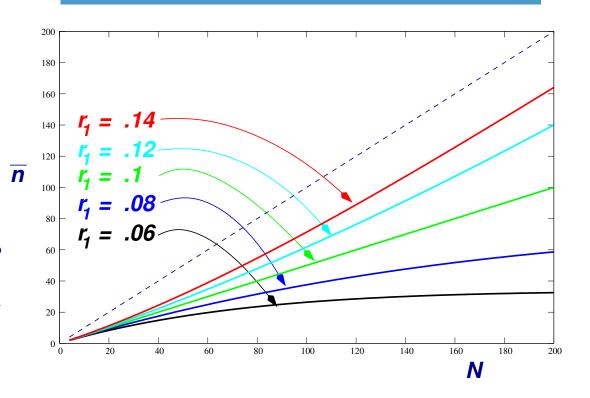




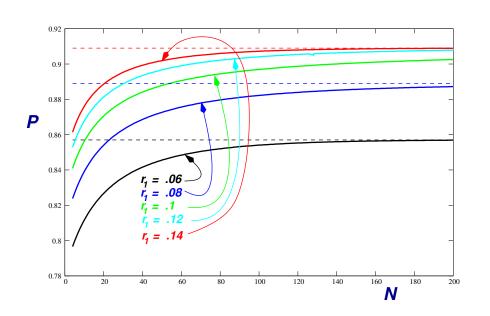
#### Average Inventory vs. Buffer Size

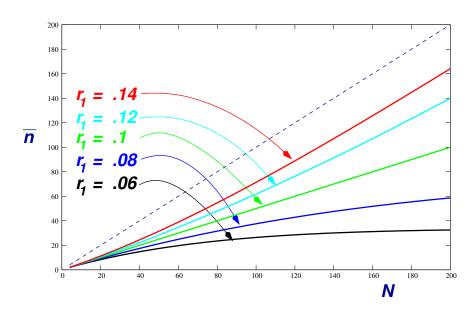
#### Discussion:

- Why are the curves increasing?
- Why different asymptotes?
- What is  $\bar{n}$  when N=0?
- What is the limit of  $\bar{n}$  as  $N \to \infty$ ?
- Why are the curves with smaller  $r_1$  lower?









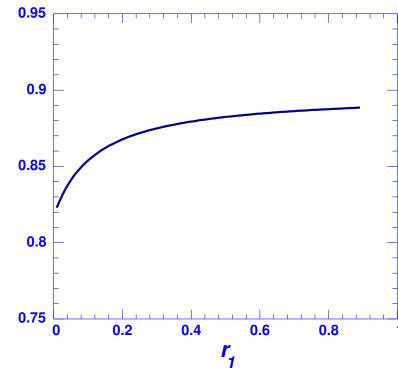
- What can you say about the optimal buffer size?
- ullet How should it be related to  $r_i$ ,  $p_i$ ?

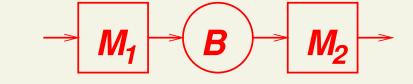


Should we prefer short, frequent, disruptions or long, infrequent, disruptions?

$$\bullet$$
  $r_2 = 0.8$ ,  $p_2 = 0.09$ ,  $N = 10$ 

- $ullet r_1$  and  $p_1$  vary together and  $rac{r_1}{r_1+p_1}=.9$
- Answer: evidently, short, frequent failures.
- Why?





#### Questions:

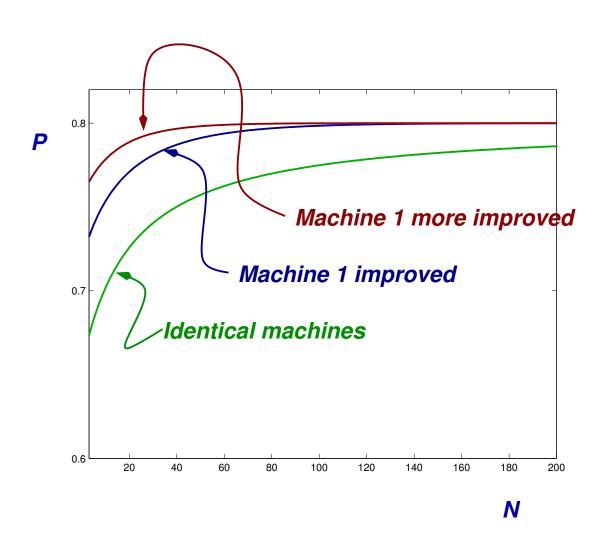
- If we want to increase production rate, which machine should we improve?
- What would happen to production rate if we improved any other machine?

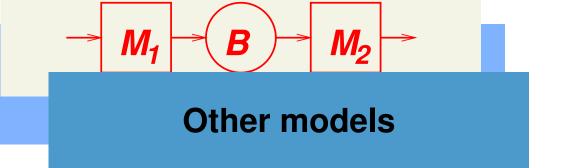
#### Discussion:

 Is randomness the main issue here, or can it be summarized by an average?



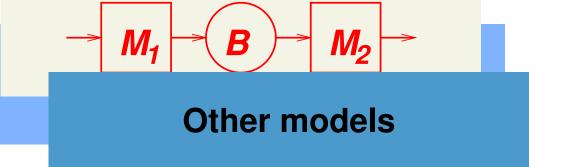
Improvements to non-bottleneck machine.





Exponential — discrete material, continuous time

- $\mu_i \delta t =$  the probability that  $M_i$  completes an operation in  $(t, t + \delta t)$ ;
- $p_i \delta t =$  the probability that  $M_i$  fails during an operation in  $(t, t + \delta t)$ ;
- $r_i \delta t =$  the probability that  $M_i$  is repaired, while it is down, in  $(t, t + \delta t)$ ;



Continuous — continuous material, continuous time

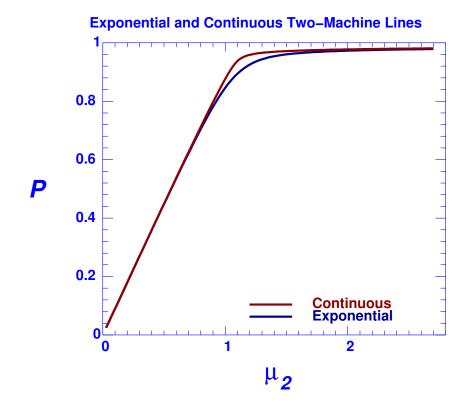
- $\mu_i \delta t =$  the amount of material that  $M_i$  processes, while it is up, in  $(t, t + \delta t)$ ;
- $ullet p_i \delta t =$  the probability that  $M_i$  fails, while it is up, in  $(t,t+\delta t)$ ;
- $r_i \delta t =$  the probability that  $M_i$  is repaired, while it is down, in  $(t, t + \delta t)$ ;

$$\begin{array}{c|c}
\hline
M_1 & B \\
\hline
\end{array}
M_2$$
Other models

$$\bullet$$
  $r_1 = 0.09$ ,  $p_1 = 0.01$ ,  $\mu_1 = 1.1$ 

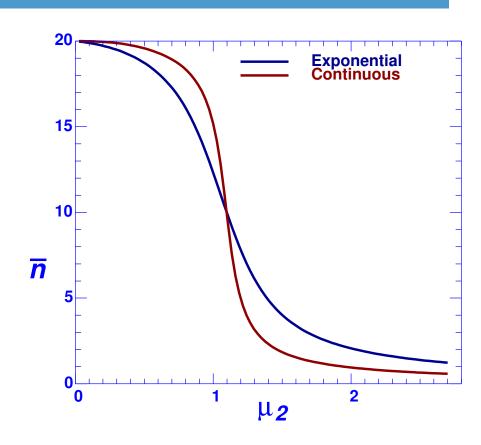
$$\bullet$$
  $r_2 = 0.08, p_1 = 0.009$ 

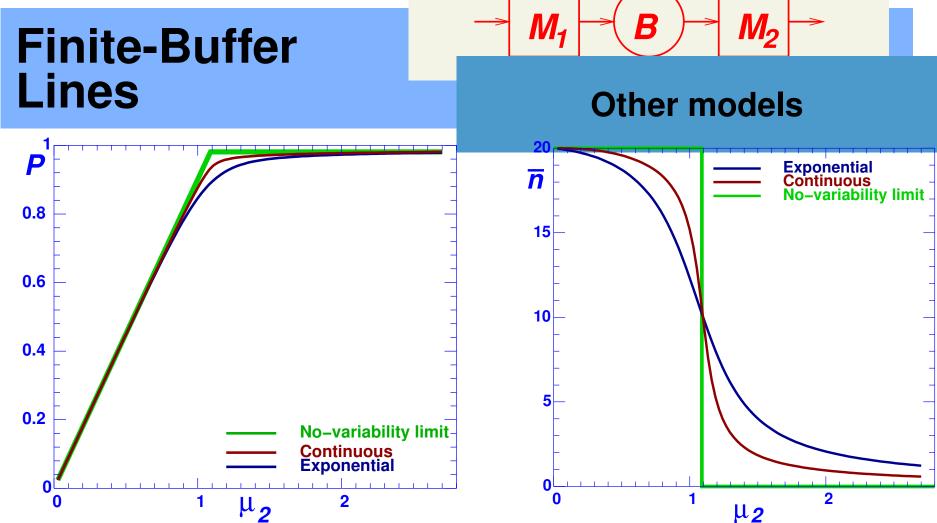
- N = 20
- Explain the shapes of the graphs.



 $M_1$  B  $M_2$  Other models

• Explain the shapes of the graphs.



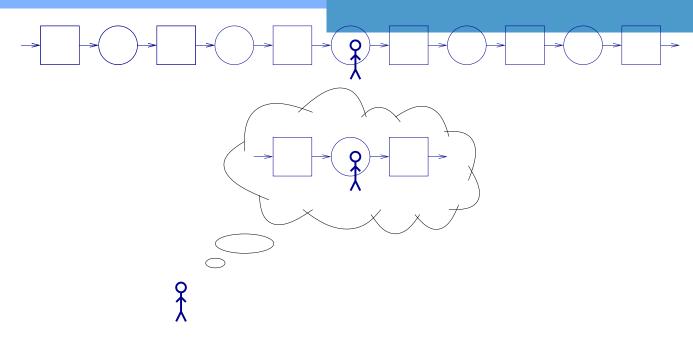


*No-variability limit:* a continuous model where both machines are reliable, and processing rate  $\mu'_i$  of machine i in the no-variability is the same as the isolated production rate of machine i in the other cases. That is,  $\mu'_i = \mu_i r_i/(r_i + p_i)$ .

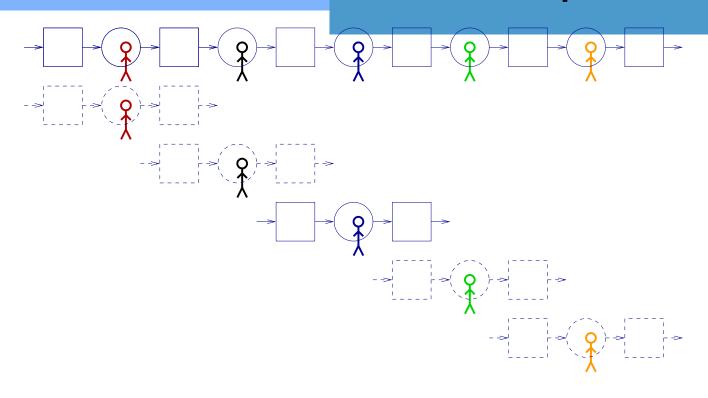


#### Difficulty:

- ★ No simple formula for calculating production rate or inventory levels.
- ★ State space is too large for exact numerical solution.
  - \* If all buffer sizes are N and the length of the line is k, the number of states is  $S = 2^k(N+1)^{k-1}$ .
  - \* if N=10 and  $k=20,\, S=6.41 imes 10^{25}$ .
- ★ Decomposition seems to work successfully.



- Conceptually: put an observer in a buffer, and tell him that he is in the buffer of a two-machine line.
- Question: What would the observer see, and how can he be convinced he is in a two-machine line?

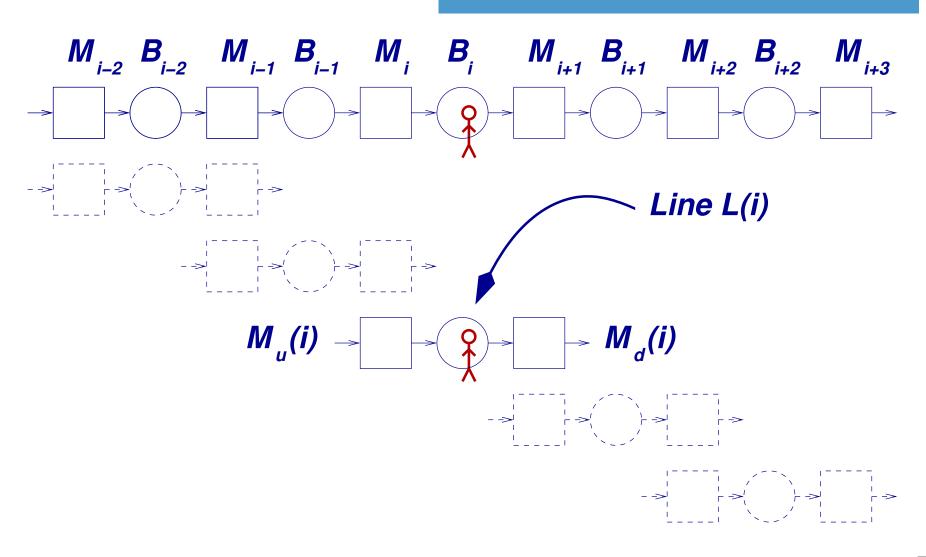


- Decomposition breaks up systems and then reunites them.
- Construct all the two-machine lines.



- Consider an observer in Buffer  $B_i$ .
  - \* Imagine the material flow process that the observer sees entering and the material flow process that the observer sees *leaving* the buffer.
- We construct a two-machine line L(i)
  - $\star$  ie, we find machines  $M_u(i)$  and  $M_d(i)$  with parameters  $r_u(i),\, p_u(i),\, r_d(i),\, p_d(i),\, ext{and } N(i)=N_i)$
  - such that an observer in its buffer will see almost the same processes.
- The parameters are chosen as functions of the behaviors of the other two-machine lines.







### **Decomposition**

There are 4(k-1) unknowns  $(r_u(i+1), p_u(i+1), r_d(i), p_d(i), i=1,...,k-1)$ . Therefore, we need

- ullet 4(k-1) equations, and
- an algorithm for solving those equations.

### **Equations**

- Conservation of flow, equating all production rates.
- Flow rate/idle time, relating production rate to probabilities of starvation and blockage.
- Resumption of flow, relating  $r_u(i)$  to upstream events and  $r_d(i)$  to downstream events.
- ullet Boundary conditions, for parameters of  $M_u(1)$  and  $M_d(k-1).$

## **Equations**

#### **Conservation of Flow**

$$P(i) = P(1), i = 2, \dots, k-1.$$

#### Note that

$$P(i) = P(r_u(i), p_u(i), r_d(i), p_d(i), N(i))$$

This is a set of k-2 equations.

## **Equations**

#### Flow Rate-Idle Time

$$P_i = e_i$$
 prob  $\left[ n_{i-1} > 0 ext{ and } n_i < N_i 
ight]$ 

where

$$e_i = rac{r_i}{r_i + p_i}$$

*Problem:* this expression involves a joint probability of two buffers taking certain values. But we only know how to calculate the probability of one buffer taking on a value at a time.

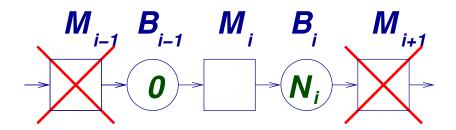
### **Equations**

#### Flow Rate-Idle Time

#### Observation:

prob 
$$(n_{i-1}=0 \text{ and } n_i=N_i)pprox 0.$$

#### Reason:



The only way to have  $n_{i-1}=0$  and  $n_i=N_i$  is if

- ullet  $M_{i-1}$  is down or starved for a long time
- ullet and  $M_i$  is up
- ullet and  $M_{i+1}$  is down or blocked for a long time
- ullet and to have exactly  $N_i$  parts in the two buffers.

## **Equations**

#### Flow Rate-Idle Time

#### Then

prob 
$$\left[ n_{i-1} > 0 ext{ and } n_i < N_i 
ight]$$

$$\approx 1 - \{ \text{ prob } (n_{i-1} = 0) + \text{ prob } (n_i = N_i) \}$$

#### **Therefore**

$$P_ipprox e_i\left[1-\ \mathsf{prob}\ (n_{i-1}=0)-\ \mathsf{prob}\ (n_i=N_i)
ight]$$

or

$$P(i) pprox e_i [1 - p_s(i-1) - p_b(i)]$$

## **Equations**

#### Flow Rate-Idle Time

Note that

$$P(i) = e_u(i) [1 - p_b(i)]$$
  
 $P(i-1) = e_d(i-1) [1 - p_s(i-1)]$ 

so the previous expression can be transformed to

$$oxed{ rac{p_d(i-1)}{r_d(i-1)} + rac{p_u(i)}{r_u(i)} = rac{1}{P(i)} + rac{1}{e_i} - 2, i = 2, \dots, k-1}$$

This is a set of k-2 equations.

## **Equations**

### **Resumption of Flow**

This is a long derivation, so we will jump to the equations:

$$X(i) = rac{p_s(i-1)r_u(i)}{p_u(i)E(i)}$$

and

$$r_u(i) = r_u(i-1)X(i) + r_i(1-X(i)), i = 2, \dots, k-1$$

This is a set of k-2 equations.

### **Equations**

### **Resumption of Flow**

And,

$$r_d(i-1) = r_d(i)Y(i) + r_i(1-Y(i)), i = 2, \dots, k-1$$

where

$$Y(i) = rac{p_b(i) r_d(i-1)}{p_d(i-1) E(i-1)}.$$

This is a set of k-2 equations. We now have 4(k-2)=4k-8 equations.

### **Equations**

### **Boundary Conditions**

 $M_d(1)$  is the same as  $M_1$  and  $M_d(k-1)$  is the same as  $M_k$ .

**Therefore** 

$$egin{aligned} r_u(1) &= r_1 \ p_u(1) &= p_1 \ r_d(k-1) &= r_k \ p_d(k-1) &= p_k \end{aligned}$$

This is a set of 4 equations. We now have 4(k-1) equations in 4(k-1) unknowns  $r_u(i)$ ,  $p_u(i)$ ,  $r_d(i)$ ,  $p_d(i)$ , i=1,...,k-1.

### **Equations**

#### **Boundary Conditions**

- All the quantities in these equations are
  - \* specified parameters, or
  - \* unknowns, or
  - \* functions of parameters or unknowns derived from the two-machine line analysis.
- This is a set of 4(k-1) equations in the same number of unknowns.

### **Algorithm**

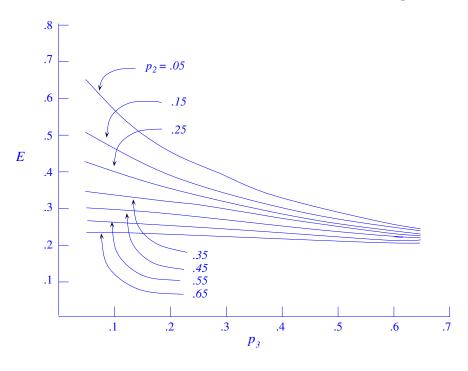
DDX algorithm: due to Dallery, David, and Xie (1988).

- 1. Guess the downstream parameters of L(1)  $(r_d(1),p_d(1))$ . Set i=2.
- 2. Use the equations to obtain the upstream parameters of L(i)  $(r_u(i), p_u(i))$ . Increment i.
- 3. Continue in this way until L(k-1). Set i=k-2.
- 4. Use the equations to obtain the downstream parameters of L(i). Decrement i.
- 5. Continue in this way until L(1).
- 6. Go to Step 2 or terminate.

### **Algorithm**

### **Examples**

Three-machine line – production rate.

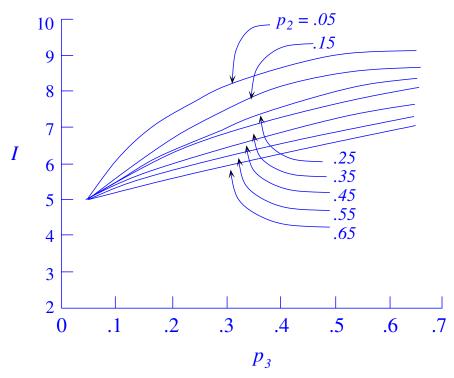


$$egin{aligned} r_1 &= r_2 = r_3 = .2 \ p_1 &= .05 \ N_1 &= N_2 = 5 \end{aligned}$$

### **Algorithm**

### **Examples**

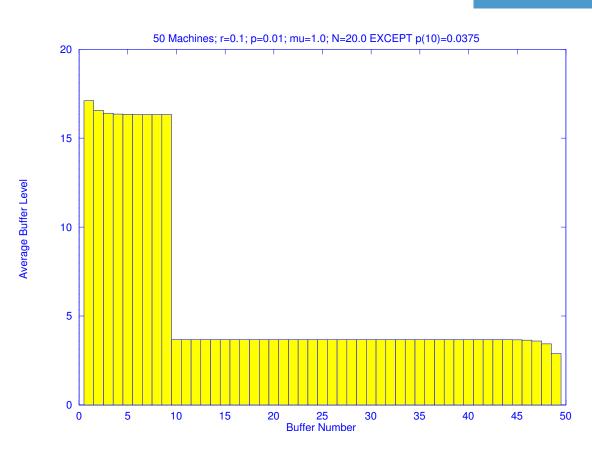
### Three-machine line – total average inventory



$$egin{aligned} r_1 &= r_2 = r_3 = .2 \ p_1 &= .05 \ N_1 &= N_2 = 5 \end{aligned}$$

## **Algorithm**

#### **Examples**



Effect of a bottleneck. Identical machines and buffers, except for  $M_{10}$ .

#### **Discussion**

# Finite-Buffer Lines

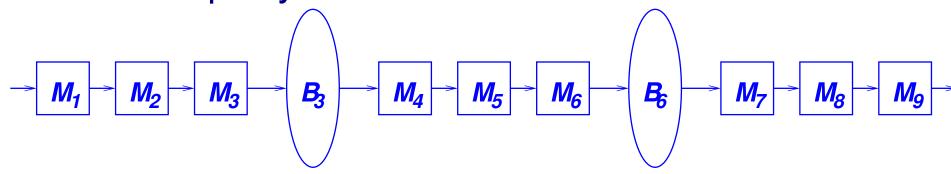
- Explain the shape.
- Is randomness the main issue here, or can it be summarized by an average?
  - \* What features of the graph are determined by the variability?
  - \* What features of the graph are determined by the bottleneck?

### Which has a higher production rate?

- 9-Machine line with two buffering options:
  - ★8 buffers equally sized; and

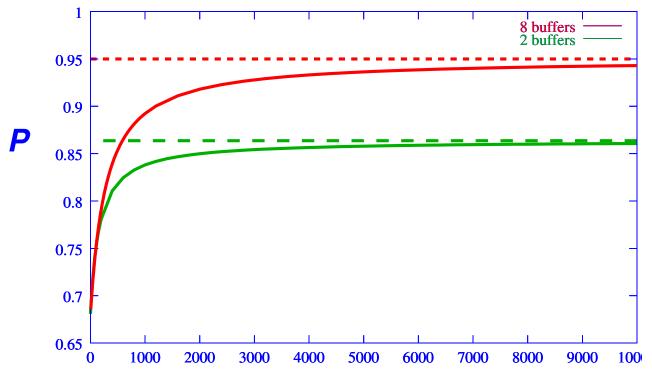
$$-\boxed{M_1} - \boxed{B_1} - \boxed{M_2} - \boxed{B_2} - \boxed{M_3} - \boxed{B_3} - \boxed{M_4} - \boxed{B_4} - \boxed{M_5} - \boxed{B_5} - \boxed{M_6} - \boxed{B_6} - \boxed{M_7} - \boxed{B_7} - \boxed{M_8} - \boxed{B_8} - \boxed{M_9}$$

★ 2 buffers equally sized.



#### **Discussion**

# Finite-Buffer Lines



- Continuous model; all machines have  $r=.019,\, p=.001,\, \mu=1.$
- What are the asymptotes?
- Is 8 buffers always faster?

Total Buffer Space

#### **Discussion**

Optimal buffer space distribution.

- Design the buffers for a 20-machine production line.
- The machines have been selected, and the only decision remaining is the amount of space to allocate for in-process inventory.
- The goal is to determine the smallest amount of in-process inventory space so that the line meets a production rate target.

### **Discussion**

Optimal buffer space distribution.

- The common operation time is one operation per minute.
- The target production rate is .88 parts per minute.

### **Discussion**

Optimal buffer space distribution.

• Case 1 MTTF= 200 minutes and MTTR = 10.5 minutes for all machines (P = .95 parts per minute).

#### **Discussion**

Optimal buffer space distribution.

- Case 1 MTTF= 200 minutes and MTTR = 10.5 minutes for all machines (P = .95 parts per minute).
- Case 2 Like Case 1 except Machine 5. For Machine 5, MTTF = 100 and MTTR = 10.5 minutes (P = .905 parts per minute).

#### **Discussion**

Optimal buffer space distribution.

- Case 1 MTTF= 200 minutes and MTTR = 10.5 minutes for all machines (P = .95 parts per minute).
- Case 2 Like Case 1 except Machine 5. For Machine 5, MTTF = 100 and MTTR = 10.5 minutes (P = .905 parts per minute).
- Case 3 Like Case 1 except Machine 5. For Machine 5, MTTF = 200 and MTTR = 21 minutes (P = .905 parts per minute).

### **Discussion**

Optimal buffer space distribution.

### Are buffers really needed?

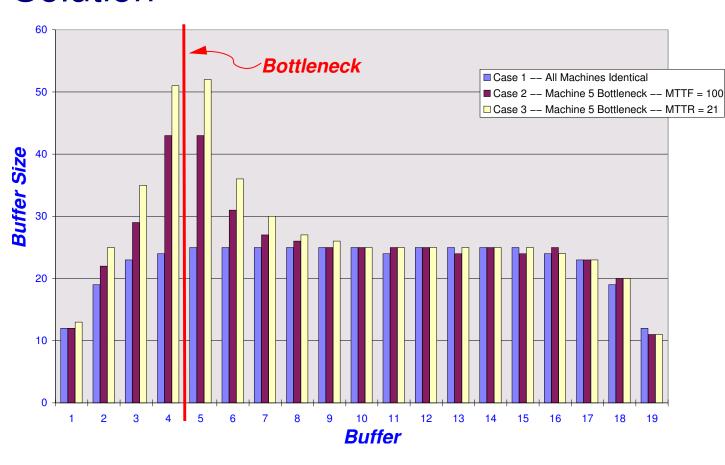
| Line   | Production rate with no buffers, |
|--------|----------------------------------|
|        | parts per minute                 |
| Case 1 | .487                             |
| Case 2 | .475                             |
| Case 3 | .475                             |

Yes. How were these numbers calculated?

#### **Discussion**

Optimal buffer space distribution.

### Solution



| Line   | Space |  |  |
|--------|-------|--|--|
| Case 1 | 430   |  |  |
| Case 2 | 485   |  |  |
| Case 3 | 523   |  |  |

#### **Discussion**

Optimal buffer space distribution.

- Observation from studying buffer space allocation problems:
  - \* Buffer space is needed most where buffer level variability is greatest!

### **Background**

### **HP Printer Case**

- In 1993, the ink-jet printer market was taking off explosively, and manufacturers were competing intensively for market share.
- Manufacturers could sell all they could produce.
   Demand was much greater than production capacity.
- Hewlett Packard was designing and producing its printers in Vancouver, Washington (near Portland, Oregon).

### **HP Printer Case**

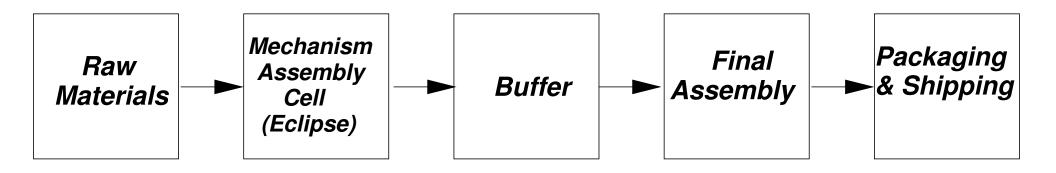
### **Background**

#### HP's needs

- Maintain quality.
- Meet increased demand and increase market share.
  - ★ Target: 300,000 printers/month.
- Meet profit and revenue targets.
- Keep employment stable.
  - ★ Capacity with existing manual assembly: 200,000 printers/month.

### **HP Printer Case**

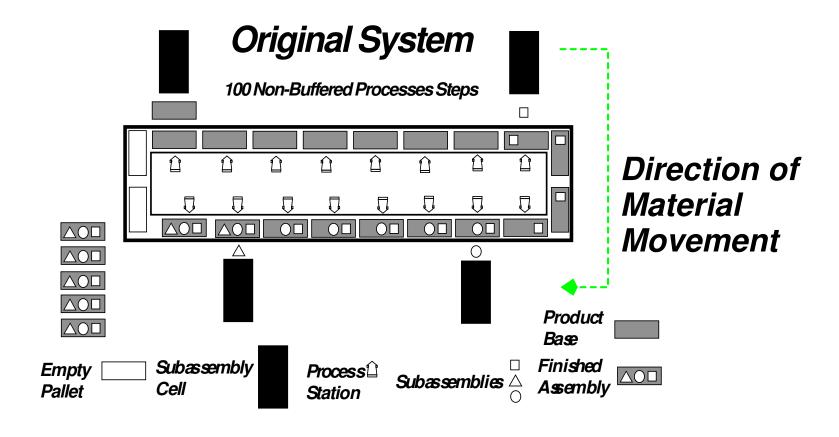
HP invested \$25,000,000 in "Eclipse," a new system for automated assembly of the print engine.



Two Eclipses were installed.

#### **Printer Production**

### **HP Printer Case**



Design philosophy: minimal — essentially zero — buffer space.

### **HP Printer Case**

#### **Printer Production**

### **Estimated capacity**

To estimate the production capacity, recall the formula for machine efficiency,

$$e=rac{r}{r+p}=rac{1}{1+rac{p}{r}}$$

and Buzacott's zero-buffer formula,

$$P = rac{1}{ au} \; rac{1}{1 + \sum_{i=1}^k rac{p_i}{r_i}}$$

## **HP Printer Case**

#### **Printer Production**

### **Estimated capacity**

- Machine efficiencies e are all about .99. Therefore  $p_i/r_i \approx .01$ .
- k = 50 machines. (More than one process step per machine.)
- $\bullet$  1/ au = 400 units per hour, 685 available hours per month
- yield = .995

Therefore the total production rate is

$$P = (.995)(2)(400)(685) \frac{1}{1 + (50)(.01)}$$

 $\approx 369,900$  units per month

which is greater than the target, so the target appears to be feasible. (Note: the production rate is extremely sensitive to e.)

#### The Problem

### **HP Printer Case**

Data was collected when the first two machines were installed.

- Efficiency was less than .99.
- Operation times were variable and often greater than 3600/400=9 seconds.

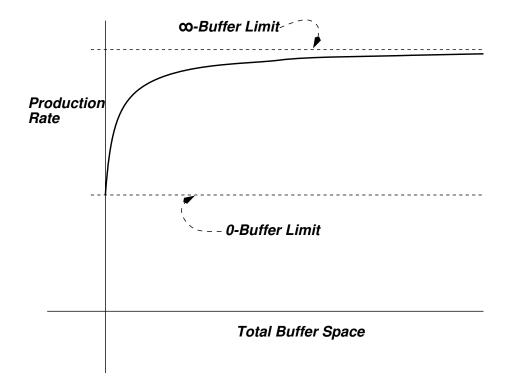
Therefore actual production rate would be about 125,000 units/month, much less than the target, if the design of the system were not changed.

#### The Problem

- HP tried to analyze the system by simulation. They consulted a vendor, but the project appeared to be too large and complex to produce useful results in time to affect the system design.
  - \* This was because they tried to include too much detail.
- Infeasible changes: adding labor, redesigning machines.

### **HP Printer Case**

• Feasible change: adding buffer space within Eclipse.

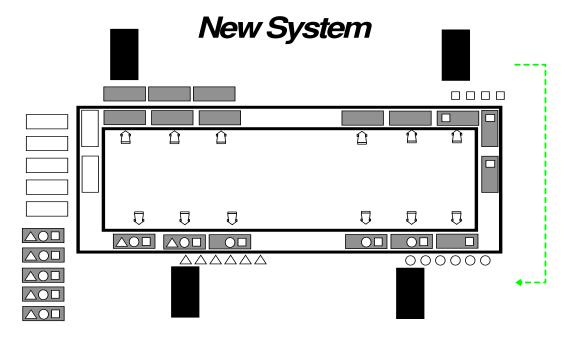


Design tool: decomposition.

#### The Solution

- The existing decomposition method did not have certain features of the Eclipse system:
  - ★ Machines with different operation times;
  - ★ Closed loop pallet flow.
- This required creative approximation.
- Both of these features were added in later research.

### **The Solution**



- Empty pallet buffer.
- WIP space between subassembly lines and main line.
- WIP space on main line.
- Buffer sizes were large enough to hold about 30 minutes worth of material. This is a small multiple of the mean time to repair (MTTR) of the machines.

## The Consequences

- Increased factory capacity to over 250,000 units/month.
- Capital cost of changes was about \$1,400,000.
- Incremental revenues of about \$280,000,000.
- Labor productivity increased by about 50%.
- Improved factory design method.
- New research results which have been incorporated in courses.
- MIT spin-off (Analytics Operations Engineering, Inc.).

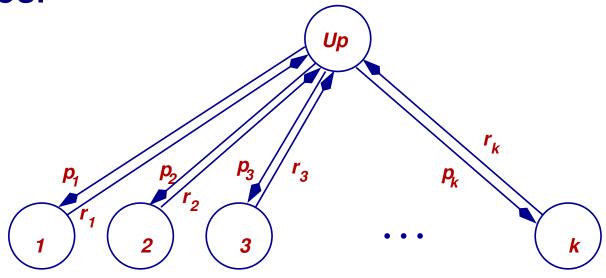
#### **Reasons for Success**

- Early intervention.
- Rapid response by MIT researchers because much related work already done.
- HP managers' flexibility.
- The new analysis tool was fast, easy to use, and was at the right level of detail.

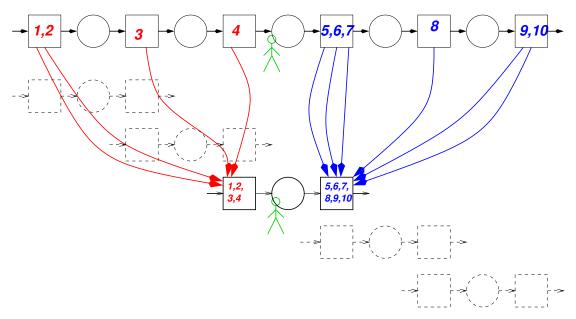
- Goal: To improve accuracy of decomposition when machines have very different repair times.
- Goal: To allow machines to have multiple failure modes.
- Additional benefit: To extend decomposition to systems with closed loops.

First, extend single machine model to having multiple

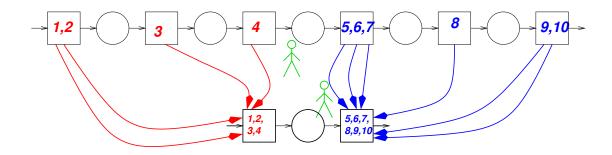
down states.



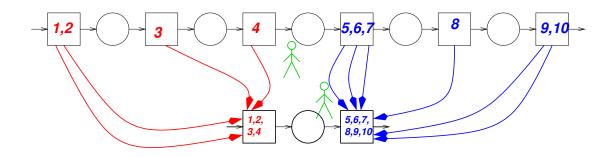
Then, extend two-machine line so that both machines have multiple down states.



• There is an observer in each buffer who is told that he is actually in the buffer of a two-machine line.



- Each machine in the original line may and in the two-machine lines must have multiple failure modes.
- For each failure mode downstream of a given buffer, there is a corresponding mode in the downstream machine of its two-machine line.
- Similarly for upstream modes.



- The downstream failure modes appear to the observer after propagation through blockage.
- The upstream failure modes appear to the observer after propagation through starvation.
- The two-machine lines are more complex that in earlier decompositions but the decomposition equations are simpler.

- A set of decomposition equations are formulated.
- They are solved by a Dallery-David-Xie-like algorithm.
- The results are a little more accurate than earlier methods.

### **Extensions**

- Assembly/Disassembly
- Buffer size optimization
- Closed loops
- Real-time control
- Quality/Quantity
- Multiple part types and reentrant flow
- Split/Merge
- Generalized two-machine, one-buffer line

## **Conclusions**

- For some systems, randomness is an essential feature that defines the performance.
  - ★ For some systems you can approximate random variables by their averages, but for many you cannot.
- Randomness can be quantified and treated in practical ways.
- The appropriate approach to mitigate variability is proportionate to the time scale of the variability.
- We have a growing collection of practical tools for manufacturing system analysis, design, and operation.

# Required Reading

http://home.comcast.net/~hierarchy/MSE/mse.html

