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As Hangs the Flexible Line:  
Equilibrium of Masonry Arches 
Abstract. In 1675, English scientist Robert Hooke discovered 
“the true… …manner of arches for building,” which he 
summarized with a single phrase: “As hangs the flexible line, so 
but inverted will stand the rigid arch.” In the centuries that 
followed, Hooke's simple idea has been used to understand 
and design numerous important works. Recent research at 
MIT on the interactive analysis of structural forces provides 
new graphical tools for the understanding of arch behavior, 
which are useful for relating the forces and geometry of 
masonry structures. The key mathematical principle is the use 
of graphical analysis to determine possible equilibrium states. 

Introduction 

Robert Hooke’s hanging chain. Robert Hooke (1635-1703) described the relationship between a 
hanging chain, which forms a catenary in tension under its own weight, and an arch, which stands 
in compression (fig. 1a).  

 
Fig. 1. (a) Poleni’s drawing of Hooke’s analogy between an arch and a hanging chain, and (b) his analysis of 

the Dome of St.-Peter’s in Rome [1748] 
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Though he could not derive the equation of a catenary, Hooke knew that his intuition was right 
and therefore wrote his finding as an anagram in Latin in the margin of another book [Hooke 
1675]. Once descrambled, the anagram reads: ut pendet continuum flexile, sic stabit contiguum 
rigidum inversum, and translates to “as hangs the flexible line, so but inverted will stand the rigid 
arch” [Heyman 1998]. Both the hanging chain and the arch must be in equilibrium, and the forces 
are simply reversed. The chain can support only tension, and the masonry arch acts in 
compression. Generalized, this idea signifies that the shape a string takes under a set of loads, if 
rigidified and inverted, illustrates a path of compressive forces for an arched structure to support 
the same set of loads. This shape of the string and the inverted arch is called a funicular shape for 
these loads. 

In 1748, Poleni analyzed a real structure using Hooke’s idea to assess the safety of the cracked 
dome of St. Peter’s in Rome. Poleni showed that the dome was safe by employing the hanging 
chain principle. For this, he divided the dome in slices and hung 32 unequal weights proportional 
to the weight of corresponding sections of that “arch” wedge, and then showed that the hanging 
chain could fit within the section of the arch (fig. 1b). If a line of force can be found that lies 
everywhere within the masonry, then the structure can be shown to be safe for that set of loads 
[Heyman 1966].  

Graphic Statics. From the introduction of Simon Stevin’s (1548-1602) parallelogram rule, 
equilibrium could be described graphically using force vectors and closed force polygons [Stevin 
1586]. This was the start of equilibrium analysis of structural systems, and also the start of 
graphical methods. It was now possible to explain experimental results such as weights hanging 
from a string and to “calculate” the forces in the string using these new graphical methods (fig. 2). 

 
Fig. 2. (a) One of Stevin’s drawings of force equilibrium of hanging weights on a string [1586], and (b) an 

illustration by Varignon showing a graphical analysis of a funicular shape [1725] 

Culmann [1866] was the first to formalize graphical analysis as a powerful method for 
equilibrium analysis in structural engineering. His Die graphische Statik had a strong theoretical 
foundation in mathematics, specifically in projected geometry. Graphical analysis provides a 
rigorous analysis method for trusses, arches, cables, and other structural systems. At the end of the 
nineteenth and the beginning of the twentieth century, graphic statics was the most common 
method to determine equilibrium for structures. Many trusses and masonry arch bridges were 
calculated using graphical methods, which still stand without any significant failures [Lévy 1888]. 
Handbooks from the beginning of the twentieth century, such as Wolfe [1921], use graphical 
constructions to solve advanced structural problems that would demand higher order differential 
equations when solved numerically. Maurer [1998] provides an excellent historical overview of the 
development and evolution of Culmann’s method. 
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Even though graphic statics was successfully used in engineering practice, its popularity did not 
last long. By 1920, graphical methods were largely replaced by the theory of elasticity, which 
provided elegant closed-form analytical solutions that did not require the same drawing skills. As 
Boothby [2001] pointed out, graphical methods give good but conservative results, though the 
process and analysis can become very tedious. Few engineers or architects today have the specific 
knowledge and patience to make these complex and advanced graphic constructions. In recent 
years, Zalewski and Allen [1998] have published a new textbook extolling the virtues of graphic 
statics for design, which suggests that there are new applications for this historical analysis method. 

Analysis of Masonry Arches. There are only three types of equations that can be used for structural 
analysis: equilibrium (statics); geometrical (compatibility), and materials (stresses). For historical 
masonry structures, the first two types of equations are most important, since stresses are typically 
an order of magnitude below the failure stress of the masonry. A stability or equilibrium approach 
will therefore be most valuable to assess the safety of masonry structures, and limit analysis 
provides a theoretical framework. To apply limit analysis to masonry, Heyman [1966] 
demonstrated that it is necessary to make three main assumptions: masonry has no tensile strength; 
it can resist infinite compression; and no sliding will occur within the masonry. Heyman [1982, 
1995] and Huerta [2004] provide additional background on limit analysis for masonry arches.  

Equilibrium in a masonry arch can be visualized using a line of thrust. This is a theoretical line, 
which represents the path of the resultants of the compressive forces through the stone structure. 
This line is the inverted catenary discussed above. For a pure compression structure to be in 
equilibrium with the applied loads there must be a line of thrust that lies entirely within the 
masonry section. The concept was first rigorously formulated by Moseley [1833] and an excellent 
mathematical treatment was offered by Milankovitch [1907]. The analytical solution for this 
concept, has been defined more precisely as the locus of pressure points by Ochsendorf [2002].  

New interactive equilibrium tools 

Recent research at MIT has produced new computer methods for graphic statics. Greenwold 
and Allen [2003] developed Active Statics, a series of interactive online tutorials that implement 
graphic statics for a series of chosen problems.  As a continuation, new methods for exploring the 
equilibrium and compatibility of masonry structures have been developed by Block et al [2005] 
which can be applied in real-time. In the tradition of limit analysis developed by Heyman, thrust 
line analysis is used to provide a clear means for understanding the behavior and safety of 
traditional masonry structures. Limit analysis using thrust lines can establish the relative stability of 
the structures and as well as possible collapse mechanisms. 

This paper presents a series of models and tools demonstrating the possibilities of this approach 
for analysis, design and teaching. This new approach brings back graphical analysis, greatly 
enhanced by the use of computers, which allow for parametric models of structural elements or 
systems. Their geometry is linked to the graphical construction and controls the loads of the 
analysis. A rigid block model is used to provide displacement or kinematic analysis and animations 
illustrate collapse. The models are interactive and parametric, allowing the user to change all 
parameters (such as thickness, height, span etc.) in order to explore an entire family of structural 
shapes and to understand the relation between geometrical changes and stability. At the same time, 
the methods are numerically accurate and rigorous.  

The three new ideas of this approach are: interactive graphic statics, geometry controlled loads, 
and animated kinematics. Block et al. [2005] provides a detailed explanation of these steps.  
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1. Interactive graphic statics:  
The models are made using simple two-dimensional drawing packages, such as Cabri 
Geometry [2006]. They allow the creation of dynamic geometric constructions, and to 
make these easily available over the internet. Computer aided drawing programs 
overcome the inconveniences and drawbacks of graphic statics by guaranteeing 
accuracy. Furthermore, parametric modeling prevents the user from having to redo the 
graphical constructions for every analysis.      

2. Loads controlled by the geometry:  
The geometry of the structural element is linked to the graphical construction. Altering 
the section on the screen will influence the self-weight and this is updated instantly 
thereby changing the applied loads. This results in an interactive tool that provides 
real-time structural feedback. 

3. Animated kinematics: 
The assumptions necessary to apply limit analysis to masonry structures allow 
displacement analysis to be performed in real time. The blocks in the models stay rigid 
during the kinematic movement and their movement can be described using geometry. 

Examples  

This section presents examples of tools made possible with this new approach. The project 
website at http//web.mit.edu/masonry/interactiveThrust contains more in-depth analysis. 

Thrust-line analysis of a random arch. Fig. 3 uses (a) Bow’s notation and (b) a force polygon to 
give the magnitude of the forces of the segments in the funicular polygon for a random arch. This 
force polygon is drawn to its own scale and represents and visualizes the equilibrium of the system. 
The funicular construction and its polygon are related by geometry. The mathematical 
foundations for this reciprocal relationship are clearly summarized by Scholtz [1989]. The 
horizontal distance from the pole o to the load line ah gives the horizontal thrust in the system. 
This is the amount the arch pushes (thrusts) outwards and analogously the amount the hanging 
string pulls inwards. Looking more closely at the fan shape of the force polygon, we can isolate the 
different closed vector triangles (bold lines) showing the equilibrium of each block in the random 
arch (Fig. 3c, d).  

First, the structure has to be divided into discrete parts. The actions of the different blocks are 
treated as lumped masses applied at their center of gravity (Fig. 3a). The magnitudes of the forces 
are proportional to their weight and transferred to the force polygon (b). If the user drags a corner 
point, this would influence the area, hence the weight, of the two adjacent blocks. This will then 
also alter the associated vector in the force polygon. 

It can also be seen that there is not only one solution to this problem since a different horizontal 
thrust in the system results in a deeper (for decreased thrust) or a more shallow (for increased 
thrust) section. Thanks to the interactive setup the user can explore this solution easily by 
controlling the unknown in the “equations”, for example the amount of horizontal thrust in the 
system. The notion that there is no one answer to this problem will be expanded in the following 
section.   
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Fig. 3.  For a random arched structure, (a) a possible thrust line and its equivalent hanging chain are 

constructed using graphic statics; (b) the force equilibrium of the system is represented in the funicular 
polygon; (c) the equilibrium of one of the voussoirs; and, (d) the vectors representing the forces in and on the 

block 

Semi-circular versus pointed arch. For every masonry structural element, there is an infinite 
amount of valid thrust lines that fit within its section, all lying between a maximum and minimum 
value (fig.4).  

 
Fig. 4.  This image compares (a) a semi-circular arch with (b) a pointed arch with the same t/R ratio. The 

minimum and maximum thrust of each arch is shown 
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The minimum thrust of a structural element is the minimum amount of force with which this 
element pushes against its neighbors or abutments. The maximum thrust or active state of that 
element is then the maximum amount of horizontal force it can transfer or provide. This value can 
become very large and therefore the maximum thrust of an element will be limited by the 
material’s crushing strength or, often sooner, by the stability of its neighboring elements, such as 
buttresses or walls [Ochsendorf et al 2004]. 

The different arch geometries and thrust lines in fig. 4 are generated with the same model. Since 
the geometries belong to the same type of structures, it suffices to change a few parameters. This 
enables the user, once a model is setup, to obtain the analyses for these different, but related, forms 
within minutes. This feature becomes very interesting when a vast number of structures have to be 
analyzed and compared, as applied to flying buttresses by Nikolinakou et al [2005]. Such an 
approach is possible since structures in masonry are scalable, and stability is more important than 
stress [Huerta 2004]. Rigid block model are therefore excellent models to understand unreinforced 
masonry structures.  

The two arches of fig. 4 have the same thickness to radius (t/R) ratio of 18%. Their minimum 
and maximum thrusts, expressed as a percentage of their self-weight, are respectively 16% and 
25% for the semicircular arch (fig. 4a), and 14% and 23% for the pointed arch (fig. 4b). The self-
weight of the two arches is nearly identical and the range of allowable thrusts is approximately the 
same. However, the pointed arch thrusts about 15% less than the circular arch. These results and 
the forces in the arches are obtained simply by measuring the rays of the force polygon and 
multiplying them with the appropriate scaling factor. Additionally, the size of the force polygon 
allows a quick visual comparison of the magnitude of the forces in the system. Romano and 
Ochsendorf [2006] provide a more detailed study on the performance of semi-circular versus 
pointed arches. 

Arch on spreading supports. Masonry arches commonly collapse due to instability caused by large 
displacements (ground settlements, leaning buttresses etc.). Therefore a displacement analysis is 
crucial for unreinforced masonry structures. The introduction of displacement analyses to assess 
the safety of these structures and to understand collapse was proposed and investigated in detail by 
Ochsendorf [2002, 2005]. Collapse mechanisms and crack genesis with large displacements are not 
easy to simulate using traditional (such as analytical or finite element) analysis methods.  

The approach demonstrated in this section shows a complex displacement analysis using a 
simple but powerful method. It is possible to illustrate the range of allowable displacements by 
superposing a static (thrust line) and a kinetic (rigid body) analysis. The example shows a simple 
arch on spreading supports (fig.5). The analysis demonstrates that very large displacements are 
possible before the structure becomes unstable, and that large cracks do not necessarily signify that 
the structure is in immediate danger of collapse. 

 To allow displacements, a rigid masonry structural element must develop cracks. There is a 
direct relationship between the thrust line and where the hinges occur: where the line touches the 
extremities of the structure, hinges are most likely to form (fig. 5a). From the moment the 
structure is cracked, the hinges define the location of the thrust line, and three hinges create a 
statically determinate structure with a unique equilibrium solution. Since compressive forces 
cannot travel through the air, the thrust line is forced to go through the hinging points (Fig. 5b).  



 

NEXUS NETWORK JOURNAL – VOL. 8, NO. 2, 2006 15 

 
Fig. 5.  This shows an arch on spreading supports with a t/R = 15% and a total angle of embrace of 160° (a) 

initially in its minimum thrust state, (b) at an inter-mediate state, and (c) right at collapse. (d) shows a 
snapshot of the animation showing the collapse mechanism 
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The limit of displacement at which collapse occurs can be explored by applying displacements 
until it is no longer possible to fit a thrust line in the deformed structure. Failure occurs when 
there are more than three hinges, i.e. when the thrust line touches the boundaries of the structure 
in more than three places (fig. 5c). Fig. 5d shows a snapshot of an animation of a possible collapse 
mode due to spreading supports.   

This model is interactive; the effects of spreading supports can be checked by the user by 
moving the corner or inputting values. While doing this, it can be noticed that the force polygon 
grows, indicating that the forces, specifically the horizontal thrust, in the system increase. This 
makes sense since the deforming arch becomes more and more shallow, resulting in an increase of 
horizontal thrust.  

Earthquake Analysis of Masonry Arches. This approach can also be extended to assess the stability 
and safety of arched structures in areas prone to earthquakes.  However, the assumptions adopted 
from Heyman [1995] must be reevaluated for dynamic loading.   Clearly dynamic loading could 
increase local stresses causing crushing failure of the masonry, and could cause vibrations which 
would increase the likelihood of sliding.  Despite the fact that such a purely geometrical analysis 
method cannot capture these more complicated effects of earthquake dynamics, the interactive 
graphical analysis can be useful.   

It is common practice in structural engineering design to simulate earthquake loading by a 
constant horizontal force that is some fraction of the weight of the structure in magnitude.  This is 
equivalent to applying a constant horizontal acceleration that is some fraction of the acceleration of 
gravity.  Such an “equivalent static loading” does not capture all of the dynamics, but it does 
provide a measure of the lateral loading that the structure could withstand before collapse.   

To implement equivalent static analysis for earthquake loading simulation, it is possible to 
modify the interactive thrust tool to include a tilting ground surface.  Tilting the ground surface 
effectively applies a vertical acceleration (gravity, g) and a horizontal acceleration (λ*g, where λ = 
tan(α) and α is the ground surface inclination angle).  The ground surface is tilted until the thrust 
line cannot be contained within the structure: the point where it passes through the exterior 
surface of the structure at four locations.  At this point, four ‘hinges’ would form and the structure 
would collapse.  Two examples of structures subjected to equivalent static analysis are shown at the 
point of collapse in Fig. 6.   

 
Fig. 6. Equivalent static analysis of (a) a masonry arch, and (b) a similar arch on buttresses.  Points indicate 

hinge locations at collapse 
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The arch of sixteen voussoirs, inclusion angle (β) of 157.5 degrees, and thickness/radius ratio of 
0.15 would collapse at a constant horizontal acceleration of 0.34*g (fig. 6a).  A similar arch (t/r = 
0.15, b = 120°) on buttresses with relative height and width dimensions of 1.5 and 0.5 times the 
vault span, respectively, would collapse at a constant horizontal acceleration of 0.13*g (fig. 6b).  
These equilibrium solutions can be verified through other common analysis techniques such as 
equilibrium equations or virtual work.  

The resulting values of horizontal accelerations which cause collapse are conservative in that 
they assume an infinite duration of loading.  Actual earthquake loadings are of much shorter 
duration which could allow the structure to “recover” due to inertial effects if higher horizontal 
accelerations are experienced.  However, the analysis is also unconservative because the possibilities 
of local crushing and sliding have not been evaluated.  Regardless, the method is valuable because 
it provides a rapid relative measure of the stability of vaulted masonry structures, and visually 
depicts the expected collapse mechanism.  Therefore, while more rigorous dynamic analyses should 
be executed for structures which are known to be in danger of collapse, this equivalent static 
analysis method can provide a valuable tool for identifying those structures. 

Conclusion  

As has been shown through previous examples, the interactive analysis tools provide a useful 
method which uses graphic statics to achieve a rapid first order assessment of the stability of 
various masonry arch structures.  Specifically, the real time graphic statics framework has been 
shown to allow the effects of geometrical changes such as arch thickness, buttress width, etc., to be 
quickly evaluated.  Assessment of the stability of such arched structures with varying geometries 
would be considerably more difficult using traditional computational methods, but more 
importantly, the graphic statics framework inherently presents results visually as well as 
numerically, allowing results to be easily interpreted. Mistakes cannot hide in the equations and 
the validity of the results is guaranteed because of the visual nature of the technique.  

The power of physical models and simulations can not be denied. For example, it was Hooke’s 
hanging chain that convinced his colleagues of the forces acting in tension under a given load as an 
inverted form of the forces in an arch. The methodology presented here, thanks to its integrated 
kinetic analysis, allows the same powerful simulations in a virtual environment with an added 
versatility to adapt the models easily in order to understand the effect of changes in geometry on 
the stability of arches.   

The strong assumptions necessary to apply limit analysis to masonry provide complex analyses 
easily and quickly. After this first order analysis, the analyst must check if the assumptions have 
been violated. In some cases, the method will lead to unconservative results since second order 
effects such as local crushing, crack propagation and sliding have not been considered. This is most 
crucial in the kinetic analyses. 

This paper has shown that there is great potential in using interactive thrust line analysis for 
masonry structures. It has also raised new research questions to be developed and has given possible 
paths to be considered for further exploration and development. Finally, the paper showed how 
graphical computation offers new possibilities in an old field of research, which is essential for 
conserving architectural heritage in the future. Finally, concept of the thrust line emphasizes the 
relationship between geometry and structural behavior of buildings as a fundamental principle for 
architectural designers in the future. 
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