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Software purpose 

Matriarch is a high-level language of materials architecture, implemented in an open-source  

Python library. This language is based on the mathematical field of category theory, as discussed 

in the journal article, A Python Library for Materials Architecture. Matriarch creates material 

architectures for protein structures and can output them as atomic configurations, in the form of 

PDB (protein data bank) files. Using Matriarch, an engineer can substitute building blocks and 

vary building instructions to create and study new materials.  
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2 Download and install 

 

You can download the Matriarch program library, free of charge, at the following website: 

http://web.mit.edu/matriarch/. 

 

The Matriarch distribution contains three folders and two files: 

 aminoAcids (folder) 

 examples (folder) 

 matriarch (folder) 

 parseAminoAcids.py 

 setup.py 

 

Open a terminal and navigate to the directory in which you downloaded the Matriarch package. 

Run the command python setup.py install, as an administrator (e.g., using  

sudo python setup.py install on Linux and Mac, and with a command prompt as 

administrator on Windows). This requires the Python package distutils, which is usually 

preinstalled in your Python distribution.  

 

Open a Python console (restart it if it is already running). You can now import the library using 

either of the following commands: 

 

 
 

or 

 

 
 

 

3 First things first 

 

3.1 Basic concepts of Matriarch 

 

The word matriarch is a portmanteau of “materials architecture”. Matriarch is a Python library 

for creating material architectures, i.e., building blocks that have been formed out of simpler 

building blocks, using a building instruction.  

 

A building block is a construct that contains various sorts of information about its architecture, 

such as atomic coordinates and bonds. More details can be found in Section 4.2.1. The pre-

import matriarch 

from matriarch import * 

http://web.mit.edu/matriarch/
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installed building blocks in Matriarch are the 20 standard amino acids, plus hydroxyproline. The 

user can add custom basic building blocks, as explained in Section 4.2.5.  

A building instruction is a function with various arguments (existing building blocks) and 

parameters (real numbers, etc.), which creates a new building block from previously constructed 

ones. Thus a material architecture can be thought of as a tree, whose leaf nodes are basic building 

blocks, and whose non-leaf nodes are building instructions. The final product is a material 

building block, which can be exported as a PDB file. Building instructions are described in 

Section 4.3. 

 

The whole framework described here is formalized using the mathematics of operads, which can 

model the assembly of hierarchical structures (see ref. [1] and [2]). Expert-level details about the 

mathematical framework for Matriarch can be found in the Mathematics Supplement. 

 

3.2 Organization of the Matriarch package 

 

The file matriarch.py contains the implementation of the core building instructions. Classes in 

matriarch.py are organized in accordance with the mathematical definition of material building 

blocks, as described in Section 4.2.1. The file PDB_operations.py contains the classes and 

functions that can read and write PDB files. These may be of independent use, for example to 

rotate polypeptides in PDB files and to reformat incorrectly structured PDB files (e.g., to add 

“TER” at the end of each polypeptide strand). 

 

The file vector.py contains a lambda-calculus style implementation of basic linear algebra and 

rigid motions of Euclidean space to provide simple notation for PDB_operations.py and 

matriarch.py. 

 

The aminoAcids folder contains the PDB files of the 20 standard amino acids, as well as 

hydroxyproline. The Examples folder contains several Python files that use Matriarch to output 

various material architectures, again as PDB files. These can be visualized, for example using 

VMD (visual molecular dynamics software).  

 

 

4 Operation of the Matriarch program 

 

In this section you will learn the basics of creating custom material architectures using 

Matriarch, and outputting them as PDB files. Simple example scripts will be written in blue 

boxes, each of which can be run directly in Python, once the library is installed as described in 

Section 2. All of these blue-box examples can be found in the Examples folder of the Matriarch 

installation. 

 

http://web.mit.edu/matriarch/downloads/MathSupplement.pdf
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4.1 Your first Matriarch program 

 

Begin by launching Python. Inside the Python terminal, enter the following: 

 

 
 

In this Matriarch program, we first create a string representing a sequence of six amino acids in 

letter codes: alanine, alanine, alanine, proline, proline, tyrosine. The command chain converts 

this list into a building block, called myChain. Using the building instruction attachSeries, this 

building block is attached to itself, end-to-end, five times to create a new building block, 

myLongChain. Finally, the building block MyLongChain is output as MyLongChain.pdb, a file 

in the working directory. 

 

The result can be viewed using a simple text editor or a molecular visualization program, such as 

VMD. Opening MyLongChain in VMD will show a straight polypeptide chain with 30 residues. 

 

4.2 Building blocks 

 

The Matriarch program can be used to create highly complex proteins, each of which will be 

called a building block. The notion of building block is therefore itself fairly complex. It involves 

a number of amino acids, information about bonding, and information about the 3-dimensional 

shape. The next section makes this precise, but can be safely skipped on a first reading. 

 

4.2.1 What is a building block? 

 

Roughly speaking, a building block is a set of oriented rigid bodies that are bonded together, 

organized in space, and equipped with left and right interfaces that allow them to connect to 

other building blocks. A more precise description is given below. In the case of proteins, we treat 

amino acids as oriented rigid bodies, with orientation given by its amine (N) and carboxyl (C) 

terminals. Because many proteins have a persistence length of at least 4 Å, which is 

approximately the contour length of a single amino acid, the approximation that amino acids are 

rigid is reasonable. 

 

For concreteness, we will speak of each oriented rigid body as an amino acid with one of its 

terminals (carboxyl or amine) chosen as its left end. We fix a set 𝐴𝐴 of amino acid types, each 

import matriarch 

mySeq = 'AAAPPY' 

myChain = matriarch.chain(mySeq) 

myLongChain = matriarch.attachSeries(myChain,5) 

myLongChain.fileOut('MyLongChain.pdb') 
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element of which is denoted by its 3-letter code, such as ala or tyr. Each element of 𝐴𝐴 has a 

contour length 𝑐𝐿𝑒𝑛: 𝐴𝐴 → ℝ, calculated from its PDB file. There is also a fixed set 𝑃𝑇𝑇 =

{𝐶,𝑁} with two elements, called primitive terminal types. Define 𝑂𝑅𝐵 = 𝐴𝐴 × 𝑃𝑃𝑇, and call it 

the set of oriented rigid bodies (or ORBs).  

 

The second projection of an ORB is called the left primitive terminal function 𝐿𝑇𝑒𝑟𝑚:𝑂𝑅𝐵 →

𝑃𝑇𝑇; it returns the orientation of the ORB. Consider the left-right swap function 𝑘: {𝐶, 𝑁} →

{𝐶,𝑁} such that 𝑘(𝐶) = 𝑁 and 𝑘(𝑁) = 𝐶. Define 𝑅𝑇𝑒𝑟𝑚:𝑂𝑅𝐵 → 𝑃𝑇𝑇, called the right 

primitive terminal function, by 𝑅𝑇𝑒𝑟𝑚(𝑥) = 𝑘(𝐿𝑇𝑒𝑟𝑚(𝑥)). We will say two ORBs (𝑥, 𝑦) are 

bondable if 𝑅𝑇𝑒𝑟𝑚(𝑥) = 𝑘(𝐿𝑇𝑒𝑟𝑚(𝑦)), which is the same as saying the ORBs have the same 

left primitive terminal, 𝐿𝑇𝑒𝑟𝑚(𝑥) = 𝐿𝑇𝑒𝑟𝑚(𝑦). 

 

We introduce the concept of a building block axis. The building block axis is a pair of numbers 

(𝑙, 𝜃), where 𝑙 ∈ ℝ>0 and 0 ≤ 𝜃 < 2𝜋, signifying a portion of the nonnegative z-axis [0, 𝑙], 

together with an angle 𝜃, called the clutch angle, which indicates a direction in the xy-plane. 

Now we are ready for the formal definition of a building block.  

 

A building block consists of: 

1. a finite ordered set 𝑆, called the enumerator of the building block.  

2. a bond structure on 𝑆, which consists of: 

a. a function 𝑠𝑖𝑔: 𝑆 → 𝑂𝑅𝐵, called the signature. Together, the pair (𝑆, 𝑠𝑖𝑔) is called 

the ORB sequence. 

b. a set 𝐵, elements of which are called bonds, and a function 𝑒𝑝𝑡𝑠: 𝐵 → 𝑆 × 𝑆, 

called the endpoints function. We put the further restriction that for every 𝑏 ∈ 𝐵, 

its endpoints have bondable signatures (as defined above).  

c. an interface structure: two ordered subsets 𝐿, 𝑅 ⊆ 𝑆, called the left and right 

terminals of the building block. The sets 𝐿 and 𝑅 are not required to be disjoint. 

3. an axis structure on 𝑆, which consists of: 

a. a building block axis (𝑙, 𝜃) of some finite length 𝑙 ≥ 0 and clutch angle 𝜃 ∈

[0,2𝜋), 

b. three functions 𝑝,𝑁1, 𝑁2: 𝑆 → ℝ
3, such that 𝑁1 and 𝑁2 are orthogonal unit 

vectors. We call 𝑝 the point in space of the amino acid, 𝑁1 the backbone direction, 

and 𝑁2 the side-chain direction. 

c. a function 𝜋: 𝑆 → [0, 𝑙], called the axis projection. 
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Figure 1 

 

In Figure 1, the bond structure and axis structure of a helix with an ORB sequence consisting of 

20 alanines, are shown for the following Matriarch code.  

 

 
 

The result is shown to the left in Figure 1, under the heading “Building block axis”. The helix 

winds around the z-axis. The amine group of the first amino acid in the sequence is placed on the 

x-axis, and the clutch angle 𝜃 points at the amine group of the hypothetical “next” amino acid. 

With these orientations, it will be possible to attach another helix nextHelix to myHelix, using the 

attach command. This command will automatically align the two by moving nextHelix with a 

import matriarch 

mySeqA = 'AAAAAAAAAAAAAAAAAAAA' 

myChainA = matriarch.chain(mySeqA) 

myHelix = matriarch.helix(myChainA, 4, 8, 'L') 

myHelix.fileOut('myHelix.pdb') 



 9 

rigid motion g, such that 𝜃(𝑚𝑦𝐻𝑒𝑙𝑖𝑥) = 𝑔(1,0,0). 

 

More of the axis structure is shown in Figure 1 under the heading “Additional axis structure”. 

This includes the points in space 𝑝(𝑖), the backbone direction 𝑁1(𝑖), and the side chain 

directions 𝑁2(𝑖) of the ORBs, for 𝑖 ∈ {1,2, … ,20}. The axis projections 𝜋(𝑖) of the ORBs onto 

the line segment [0, 𝑙] are not shown. The vector 𝑁1(𝑖) is a unit vector pointing from the nitrogen 

atom of amino acid 𝑖 to the nitrogen atom of amino acid 𝑖 + 1. The backbone direction for the 

last amino acid in the sequence, in this case 𝑁1(20), is approximated from the position of the last 

carbon. For each 𝑖, the vector 𝑁2(𝑖) points from the backbone to the side chain direction. 

 

The bond structure of a building block is a network of ORBs and bonds, and a sample of it is 

shown in Figure 1 under the heading “Bond structure”. Each edge in the network is a bond 𝑏 ∈

𝐵, and its two endpoints 𝑒𝑝𝑡𝑠(𝑏) ∈ 𝑆 × 𝑆 indicate the ORBs that are being bonded. Each number 

𝑖 ∈ {1,2, … ,20} has a signature 𝑠𝑖𝑔(𝑖) = (𝑎𝑎𝑖, 𝑝𝑡𝑡𝑖), which is an ORB. Recall that an ORB 

consists of an amino acid name, such as Alanine, and a primitive terminal type (C or N). The 

primitive terminal type determines the orientation of the amino acid; for example if (Alanine, N) 

were replaced by (Alanine, C) the amino acid would be turned around. If a bond 𝑏 has endpoints 

𝑒𝑝𝑡𝑠(𝑏) = (𝑠1, 𝑠2), then the primitive terminal types of ORBs, 𝑂1 = 𝑠𝑖𝑔(𝑠1) = (𝑎𝑎1, 𝑝𝑡𝑡1) and 

𝑂2 = 𝑠𝑖𝑔(𝑠2) = (𝑎𝑎2, 𝑝𝑡𝑡2), must be bondable, i.e., 𝐿𝑡𝑒𝑟𝑚(𝑂1) = 𝑝𝑡𝑡1 = 𝑝𝑡𝑡2 = 𝐿𝑡𝑒𝑟𝑚(𝑂2). 

 

4.2.2 Standard protein building blocks 

 

Every oriented rigid body (𝑎𝑎, 𝑝𝑡𝑡) ∈ 𝑂𝑅𝐵 can be converted to a building block, which we call a 

standard building block, as follows.  

1. Enumerator: S={1} 

2. Bond structure: 𝑠𝑖𝑔(1) = (𝑎𝑎, 𝑝𝑡𝑡). There is one ORB in the sequence, and its signature 

is (𝑎𝑎, 𝑝𝑡𝑡). 𝐵 = ∅ (no bonds), 𝐿 = 𝑅 = {1}. The left and right terminals are equal 

because the building block consists only of one amino acid, to which other building 

blocks can be attached on either side.  

3. Axis structure: 𝑙 = 𝑐𝐿𝑒𝑛(𝑎𝑎). The clutch angle is 𝜃 = 0, i.e. pointing along the x-axis. 

The point in space of the amino acid is the amine end: 𝑝(1) = (0,0,0) if 𝑝𝑡𝑡 = 𝑁 and 

𝑝(1) = (0,0, 𝑐𝐿𝑒𝑛(𝑎𝑎)) if 𝑝𝑡𝑡 = 𝐶. The backbone direction is 𝑁1(1) = (0,0,1), the side-

chain direction is chosen to be 𝑁2(1) = (1,0,0), and the axis projection is given by 

𝜋(1) = 0. 
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Other than hypdroxyproline, all of the amino acid structures (see Table 1) were taken from the 

following website: http://wbiomed.curtin.edu.au/biochem/tutorials/pdb/. They were then 

processed through VMD’s AutoPSF function. These include the standard 20, as well as 

hydroxyproline:  

Table 1. Standard amino acids and their letter codes.  
 

Amino acid (aa) Standard abbreviation Matriarch letter code 

Alanine ala A 

Arginine arg R 

Asparagine asn N 

Aspartic acid asp D 

Cysteine cys C 

Glutamine gln  Q 

Glutamic acid glu  E 

Glycine gly  G 

Histidine his H 

Hydroxyproline hyp  Z 

Isoleucine ile I 

Leucine leu L 

Lysine lys K 

Methionine met M 

Phenylalanine phe F 

Proline pro P 

Serine ser S 

Threonine thr T 

Tryptophan trp W 

Tyrosine tyr Y 

Valine val V 

 

Note that hydroxyproline should not be placed at an end of a polypeptide strand because the PDB 

file for hyp (version 1.0) does not have correctly placed hydrogen atoms at the carboxyl terminal. 

 

4.2.3 Chains of standard building blocks 

 

For any sequence of amino acids, say seq='AAAPPY', the command chain(seq, ptt) will create a 

building block. Here, ppt is an optional parameter, either 'N' or 'C', that allows the user to specify 

the left terminal of the ORBs. The default is 'N', amine.  

 

http://wbiomed.curtin.edu.au/biochem/tutorials/pdb/
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For example, the standard building block, as discussed in Section 4.2.2, for the amino acid 

Alanine, is formed by the command chain('A'). The longer sequence seq is converted to the 

following building block by chain('AAAPPY', 'N'): 

1. Enumerator: 𝑆 = {1,2, … ,6}. 

2. Bond structure: 𝑠𝑖𝑔(1) = (𝑎𝑙𝑎, 𝑁), 𝑠𝑖𝑔(2) = (𝑎𝑙𝑎, 𝑁), … , 𝑠𝑖𝑔(6) = (𝑡𝑦𝑟, 𝑁). Bonds 

𝐵 = {12, 23, 34, 45, 56}, with endpoints 𝑒𝑝𝑡𝑠(12) = (1,2), etc. The left terminal is 𝐿 =

{1}, and the right terminal is 𝑅 = {6}. 

3. Axis Structure: Length 𝑙 = ∑ 𝑐𝐿𝑒𝑛(𝑠𝑖𝑔(𝑖))6
𝑖=1 , the clutch angle is 𝜃 = 0, i.e. pointing 

along the x-axis. The point in space for each 𝑗 ∈ 𝑆 is 𝑝(𝑗) = (0,0, ∑ 𝑐𝐿𝑒𝑛(𝑖)
𝑗−1
𝑖=1 ), the 

amino backbone direction is constant 𝑁1(𝑗) = (0,0,1), the side-chain direction is 

constant 𝑁2(𝑗) = (1,0,0), and the axis projection is given by 𝜋(𝑗) = ∑ 𝑐𝐿𝑒𝑛(𝑖)
𝑗−1
𝑖=1 . 

 

Note that the function chain will automatically remove charges from intermediate amino acids, 

but leave the terminal (first and last) amino acids charged.  

 

4.2.4 Examining a building block’s structure 

 

For a building block 𝛤, the command print(𝛤) will output its building block structure, as defined 

in Section 4.2.1. (Note that this does not override Python’s usual print command.) Here is an 

example. 

 

 
 
>>> print(myChain) 

BOND STRUCTURE 

Type of amino acid 1: (ala,C) 

Type of amino acid 2: (ala,C) 

Type of amino acid 3: (ala,C) 

Type of amino acid 4: (pro,C) 

Type of amino acid 5: (pro,C) 

Type of amino acid 6: (tyr,C) 

Bonds: [[1, 2], [2, 3], [3, 4], [4, 5], [5, 6]] 

Left end: [1] 

Right end: [6] 

 

AXIS STRUCTURE 

Axis -- Length: 22.0512400171; Clutch angle: 0.0 

Amino acid 1 -- Point: [0, 0, 0]; N1: [0, 0, 1]; N2: [1, 0, 0]; Projection: 0 

Amino acid 2 -- Point: [0.0, 0.0, 3.694812428370368]; N1: [0.0, 0.0, 1.0]; N2: [1.0, 0.0, 0.0]; Projection: 3.69481242837 

Amino acid 3 -- Point: [0.0, 0.0, 7.389624856740736]; N1: [0.0, 0.0, 1.0]; N2: [1.0, 0.0, 0.0]; Projection: 7.38962485674 

Amino acid 4 -- Point: [0.0, 0.0, 11.084437285111104]; N1: [0.0, 0.0, 1.0]; N2: [1.0, 0.0, 0.0]; Projection: 11.0844372851 

Amino acid 5 -- Point: [0.0, 0.0, 14.7330884733543]; N1: [0.0, 0.0, 1.0]; N2: [1.0, 0.0, 0.0]; Projection: 14.7330884734 

Amino acid 6 -- Point: [0.0, 0.0, 18.381739661597496]; N1: [0.0, 0.0, 1.0]; N2: [1.0, 0.0, 0.0]; Projection: 18.3817396616 
 

import matriarch 

mySeq = 'AAAPPY' 

myChain = matriarch.chain(mySeq) 

print(myChain) 

myChain.fileOut('myChain.pdb') 
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4.2.5 Adding custom amino acids 

 

You can add custom amino acids to the existing library, the standard 20 plus hydroxyproline, 

using PDB files. The command is userDefinedAminoAcid(filePath, symbol, abbrv), where abbrv 

is an optional string parameter.  

 

For example, suppose you want to add Pyrrolysine to Matriarch. The steps for doing so are as 

follows: 

1. Assign an abbreviation, such as abbrv='pyr'. This will be used for Matriarch’s print 

command. 

2. Assign it a symbol, which must be a character; for example choose symbol='&'. 

3. Create a PDB file, and supply the path to Matriarch; for example 

filePath='C:/Users/matriarchUser/Desktop/pyrrolysine.pdb'. This file must satisfy the 

following constraints.  

a. The first line should be Nitrogen. In particular there should be no REMARKs or 

crystal sizes. 

b. The second, third, and fourth lines must be the three hydrogens in the amine 

group.  

c. The naming scheme should be the same as used in PDB files of the standard 

building blocks, (use N, HT1, HT2, HT3, C, CA, CB, OT1, and OT2). Matriarch 

will automatically adjust the orientation of the backbone and the side chain to the 

needs of the program.  

4. Use the following command to import your custom amino acid

 
This command has to be run only once per session, e.g., immediately after importing 

Matriarch. 

Once you have added the custom amino acid, you can use chain to create a building block; see 

Section 4.2.3. 

 

4.3 Building instructions  

 

A building instruction always returns a building block. There are Matriarch commands that 

perform other useful functions; they are discussed in Section 4.4. 

 

The simplest building instructions are the ones that take one building block as an argument, such 

as those that move it in ℝ3. For example, one can apply the moveORBs command to a building 

block to move its atoms in space. These instructions are purely based in the geometry of ℝ3. 

matriarch.userDefinedAminoAcid('C:/Users/matriarchUser/Desktop/

pyrrolysine.pdb', '&', 'pyr') 
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Given a building block, one can twist it into a spiral, or more generally into an arbitrary shape, 

without deforming the individual rigid pieces that comprise the building block. For example, one 

can twist the amino acid sequence for a strand of tropocollagen into a spiral, and then twist the 

result into a helix to yield a strand of tropocollagen. Padding a building block by adding empty 

space at its right terminal is another instruction belonging to the same class. Reversing a building 

block mirrors the building block and puts its left terminal at the origin. 

 

The instructions attach, overlay, and space are used to combine building blocks; each takes two 

building blocks as arguments. The attach instruction is straightforward; it bonds two building 

blocks together. One can also overlay blocks, placing them in the same space and combining 

their positive (resp. negative) terminals into a single composite positive (resp. negative) terminal. 

For example, one can overlay three helices at 120 degree angles offset from one another, and 

twist the result to obtain tropocollagen. Spacing two building blocks together places them next to 

each other with any given distance in between, without bonding the blocks to one another, and 

forgets any positive and negative terminals in the middle.  

 

This section begins with a table that shows all the basic building instructions, including their 

arguments and their parameters. The effect of each building instruction on the bond structure and 

the axis structure of the building blocks is then made precise in the subsections that follow. 
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Table 2. Basic building instructions. Throughout, 𝛤 represents a building block; all other 

variables are parameters. For fully formal specifications of these instructions, see the Matriarch 

Mathematics Supplement. 

 

Instruction Function 

𝑚𝑜𝑣𝑒𝑂𝑟𝑏𝑠(𝛤, 𝑔) Moves the atoms in building block 𝛤 by rigid motion g. See Section 

4.3.1. 

𝑠ℎ𝑖𝑓𝑡𝑂𝑟𝑏𝑠(𝛤, 𝑠) Shifts the atoms of 𝛤 by s units in the 𝑧-direction. See Section 4.3.1. 

𝑟𝑜𝑡𝑎𝑡𝑒𝑂𝑟𝑏𝑠(𝛤, 𝜓) Rotates the atoms of 𝛤 by 𝜓 (in degrees) around the 𝑧-axis. See 

Section 4.3.1. 

𝑡𝑤𝑖𝑠𝑡(𝛤,𝑊) Twists 𝛤 by the axis twister 𝑊. See Section 4.3.2. 

ℎ𝑒𝑙𝑖𝑥(𝛤, 𝑟𝑎𝑑, 𝑝𝑖𝑡𝑐ℎ, 

ℎ𝑎𝑛𝑑𝑒𝑑) 

Twists 𝛤 into a helix with radius 𝑟𝑎𝑑, pitch length 𝑝𝑖𝑡𝑐ℎ, both in Å. 

The argument ℎ𝑎𝑛𝑑𝑒𝑑 must be 'L' or 'R', to choose the handed-ness 

of the helix. See Section 4.3.2. 

𝑝𝑎𝑑(𝛤, 𝑠) Pads 𝛤 with blank space of length 𝑠 at its right terminal. See Section 

4.3.3. 

𝑎𝑡𝑡𝑎𝑐ℎ(𝛤1, 𝛤2) Attaches 𝛤1 and 𝛤2 in series. See Section 4.3.4. 

𝑎𝑡𝑡𝑎𝑐ℎ𝑆𝑒𝑟𝑖𝑒𝑠(𝛤, 𝑛) Attaches 𝑛 copies of 𝛤 in series. See Section 4.3.4.   

𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑂𝑟𝑏𝑠(𝛤) Reverses the direction of 𝛤. See Section 4.3.5. 

𝑜𝑣𝑒𝑟𝑙𝑎𝑦(𝛤1, 𝛤2) Overlays 𝛤1 and 𝛤2 in the same space. See Section 4.3.6. 

𝑚𝑎𝑘𝑒𝐴𝑟𝑟𝑎𝑦(𝛤, 

           𝑛𝑥, 𝑛𝑦 , 𝑠𝑥, 𝑠𝑦, 𝑎𝑙𝑡) 

Places 𝑛𝑥𝑛𝑦 copies of 𝛤  into an 𝑛𝑥 × 𝑛𝑦 array, spaced at a distance 

𝑠𝑥 and 𝑠𝑦 respectively, either antiparallel (𝑎𝑙𝑡 = 𝑇𝑟𝑢𝑒) or parallel 

(𝑎𝑙𝑡 = 𝐹𝑎𝑙𝑠𝑒). See Section 4.3.6. 

𝑠𝑝𝑎𝑐𝑒(𝛤1, 𝛤2, 𝑠) Spaces 𝛤1 and 𝛤2, with a distance 𝑠 in between. See Section 4.3.7. 

𝑠𝑝𝑎𝑐𝑒𝑆𝑒𝑟𝑖𝑒𝑠(𝛤, 𝑛, 𝑠) Places 𝑛 copies of 𝛤 in series, spaced at a distance 𝑠. See Section 

4.3.7. 
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4.3.1 Move ORBs  

 

The command 𝑚𝑜𝑣𝑒𝑂𝑟𝑏𝑠(𝛤, 𝑔) moves the atoms of building block 𝛤 in space by the 

transformation (rigid motion) g. For any building block 𝛤 and transformation g, the ORB and 

bond structure of the output building block 𝑚𝑜𝑣𝑒𝑂𝑟𝑏𝑠(𝛤, 𝑔) are the same as those of 𝛤. Its axis 

structure is obtained by applying g to the points in space, backbone directions, and side chain 

directions of 𝛤.  

 

In Python, the form of g should be [F,F’], where F is a rigid motion of Euclidean space and F’ is 

the derivative of F. Both F and F’ should be written as functions.  

 

For example, we could use 𝑔 = (𝐹, 𝐹’) where 𝐹(𝑥, 𝑦, 𝑧) = (𝑧 + 25, 𝑦, −𝑥).  

 

𝐹′ =

(

 
 

𝜕𝐹𝑥

𝜕𝑥

𝜕𝐹𝑥

𝜕𝑦

𝜕𝐹𝑥

𝜕𝑧

𝜕𝐹𝑦

𝜕𝑥

𝜕𝐹𝑦

𝜕𝑦

𝜕𝐹𝑦

𝜕𝑧

𝜕𝐹𝑧

𝜕𝑥

𝜕𝐹𝑧

𝜕𝑦

𝜕𝐹𝑧

𝜕𝑧)

 
 
(
𝑥
𝑦
𝑧
) = (

0 0 1
0 1 0
−1 0 0

)(
𝑥
𝑦
𝑧
) = (

𝑧
𝑦
−𝑥
). 

 

Note that when attaching building blocks, it is not necessary to 

use moveOrbs because the program automatically aligns 

building blocks correctly before attaching them. 

 

 
 

Shift ORBs: The command shiftOrbs(𝛤, s) shifts the atoms of building block 𝛤 by s units in the 

𝑧-direction. The argument s can be negative. The bond structure of shiftOrbs(𝛤, s) is the same as 

the bond structure of 𝛤. 

 

import matriarch 

mySeq = 'AAAPPY' 

myChain = matriarch.chain(mySeq) 

 

def T(x): 

    return[-x[2], x[1],x[0]-25] 

 

def TPrime(x): 

    return[-x[2],x[1],x[0]] 

 

g = [T,TPrime] 

movedChain = matriarch.moveOrbs(myChain,g) 

movedChain.fileOut(movedChain.pdb') 

Figure 2 
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Rotate ORBs: The command rotateOrbs(𝛤,𝜓) rotates the ORBs of 𝛤 by 𝜓 (in degrees) around 

the z-axis. The axis (including the clutch angle) does not change, nor does the axis projection. 

The bond structure of rotateOrbs(𝛤,𝜓) is the same as the bond structure of 𝛤. The point in space, 

the backbone direction, and the side-chain direction are rotated by the angle 𝜓 about the 𝑧-axis. 

This instruction is useful to rotate building blocks before overlaying them, for example in the 

building instruction for tropocollagen. 

 

4.3.2 Twist            

 

The command 𝛤’ =twist(𝛤,W) is a two-part function. First, it deforms the building block 𝛤 in 

space, by laying it along a chosen curve (which will be called 𝑊𝑚𝑎𝑝). Second, it defines a new 

axis for the output building block 𝛤’ (which will be accomplished using the total clutch function 

𝛩). The twist command changes the axis structure, but not the bond structure, of its input. Twist 

is the most complicated of the building instructions. 

 

The axis twister is a pair 𝑊 = (𝑊𝑚𝑎𝑝, 𝛩). Here the total clutch, 𝛩: [0,∞) → [0,2𝜋) assigns an 

angle to each point on the positive 𝑧-axis. We will explain its function later. 

𝑊𝑚𝑎𝑝 = (𝑓𝑚𝑎𝑝, 𝑓𝑚𝑎𝑝
′ , 𝑑𝑚𝑎𝑝) is a curved axis, which includes three functions 

𝑓𝑚𝑎𝑝 , 𝑓𝑚𝑎𝑝
′ , 𝑑𝑚𝑎𝑝: [0,∞) → ℝ

3, called the mapping curve, the mapping tangent, and the mapping 

direction, respectively. Here 𝑓𝑚𝑎𝑝 is the curve on which the axis of the original building block 

will be laid, 𝑓𝑚𝑎𝑝
′  is the unit tangent vector to 𝑓𝑚𝑎𝑝, and 𝑑𝑚𝑎𝑝 is a unit vector orthogonal to 𝑓𝑚𝑎𝑝

′ .  

 

Again, the positive 𝑧-axis of 𝛤 will be laid on 𝑓𝑚𝑎𝑝. The points in space of the new building 

block will be obtained by applying the rigid motion 𝑇𝑡, which moves (0,0, 𝑡) to 𝑓𝑚𝑎𝑝(𝑡), and 

rotates the positive 𝑧-axis in line with 𝑓𝑚𝑎𝑝
′ (𝑡). It also rotates the positive 𝑥-axis in line 

with 𝑑𝑚𝑎𝑝(𝑡), as shown in Figure 3. This is necessary to determine the locations of the amino 

acids in the twisted structure: for each ORB 𝑠 ∈ 𝑆, we will apply the rigid motion 𝑇𝜋(𝑠) to each 

of 𝑝(𝑠), 𝑁1(𝑠), and 𝑁2(𝑠). 

 

A new length and clutch angle for the twisted building block needs to be computed. There is a 

slight difference between the math and the code here, because it can be useful to allow the user to 

create non-legal building blocks, for example with negative length. Let 𝑝𝑧: ℝ
3 → ℝ denote 

projection onto the 𝑧-axis. The new length and angle are given by 𝑙′ = 𝑝𝑧 (𝑓𝑚𝑎𝑝(𝑙)), and let 

𝜃′ = 𝛩(𝑙′). Because the final length is not known ahead of time, the function 𝛩(𝑧0) specifies the 

expected direction of the clutch angle at all points 𝑧0 ∈ ℝ>0; the evaluation at 𝑙′ gives the actual 

value for the clutch angle. 

 

Note that there are two different kinds of axis-like structures that appear in Matriarch. The most 
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important is the building block axis, (𝑙, 𝜃), which is always positioned on the positive 𝑧-axis; this 

is defined in Section 4.2.1. The other axis-like structure is only used when twisting. It is the 

curved axis (𝑓𝑚𝑎𝑝, 𝑓𝑚𝑎𝑝
′ , 𝑑𝑚𝑎𝑝), which determines the family of rigid motions 𝑇𝑡.  

 

If 𝑓𝑚𝑎𝑝 is not parameterized by arc length, Matriarch will stretch or compress bonds when 

twisting; this is rarely desirable. To avoid this, there are useful functions, buildAxisTwister and 

smoothedPiecewiseLinear, described in Sections 4.4.2 and 4.4.3, respectively. These create an 

axis twister W for you, including the arc length reparameterization, either from an arbitrarily 

parameterized curve, or from a sequence of points. 

 

We now give some example code and the corresponding figure, to explain the above remarks. 

 

 
 

 

Figure 3 

 

The purpose of Figure 3 is to explain the twist command, in a simple case. Consider the left side 

of Figure 3. We begin with a chain called myChain (whose axis is, as always, aligned with the z-

axis. The pink vector indicates the backbone directions 𝑁1(𝑠) = [0,0,1]. The blue vector 

indicates the side chain direction 𝑁2(𝑠) = [1,0,0].  

 

import matriarch 

mySeq = 'AAAPPY' 

myChain = matriarch.chain(mySeq) 

def parabola(t): 

     return [-t*t, 0, 10*t] 

 

Rout = matriarch.Ray([18,0,0],[0,0,0]) 

W = matriarch.buildAxisTwister(parabola, Rout) 

twistedBlock = matriarch.twist(myChain, W) 

matriarch.fileOut(twistedBlock,'twistedBlock.pdb') 
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The twisting process is performed by using a certain family of transformations 𝑇𝜋(𝑠), one to each 

ORB s. The transformation 𝑇𝜋(𝑠) is a complicated function, and does not need to be directly 

specified by the user. Instead, it is internally determined by the parameters passed to the twist 

command, W, which in our case is provided by buildAxisTwister (see Section 4.4.2). This 

transformation includes both a translation of the z-axis onto 𝑓𝑚𝑎𝑝 and a rotation that is 

determined by 𝑑𝑚𝑎𝑝. The buildAxisTwister command defines 𝑓𝑚𝑎𝑝by reparameterizing of 𝑔𝑚𝑎𝑝, 

which is a user input. In our case, 𝑔𝑚𝑎𝑝is given by the “parabola” function. Furthermore, the 

buildAxisTwister command defines 𝑑𝑚𝑎𝑝(𝑡), for any 𝑡 ∈ [0, 𝑡𝑚𝑎𝑥], to be the unique unit vector 

orthogonal to 𝑓𝑚𝑎𝑝
′ (𝑡), coplanar with the line from 𝑅𝑜𝑢𝑡 to 𝑓𝑚𝑎𝑝(𝑡), and pointing away from 

𝑅𝑜𝑢𝑡 (forming an angle of more than 90∘). In our case 𝑅𝑜𝑢𝑡 is specified as [18,0,0], which makes 

𝑑𝑚𝑎𝑝 orthogonal to 𝑓𝑚𝑎𝑝
′ , pointing in the negative 𝑥-direction. Using 𝑓𝑚𝑎𝑝, 𝑑𝑚𝑎𝑝, and 𝑓’𝑚𝑎𝑝, we 

obtain the final point in space, amino backbone direction, and side chain direction of each amino 

acid 𝑠. In the specific example of Figure 3, the rigid motion 𝑇𝜋(𝑠) sends the pink vector [0,0,1] to 

𝑓𝑚𝑎𝑝
′ (𝜋(𝑠)) and the blue vector [1,0,0] to 𝑑𝑚𝑎𝑝(𝜋(𝑠)). 

 

It remains to provide the clutch direction of the new building block, which will always be 𝛩(𝑙′), 

where 𝑙′ is the new length discussed above. Recall that the total clutch, 𝛩: [0,∞) → [0,2𝜋), is a 

component of the axis twister W, input to twist. The command buildAxisTwister generally 

computes the function 𝛩(𝑧0) for you. However, you can specify the optional parameter 𝛩𝑠𝑝𝑒𝑐 ∈

[0,2𝜋), in which case 𝛩(𝑧0) = 𝛩𝑠𝑝𝑒𝑐 for all 𝑧0 ∈ (0,∞), so the clutch angle will be 𝜃 = 𝛩𝑠𝑝𝑒𝑐. 

In the example of Figure 3, 𝛩𝑠𝑝𝑒𝑐 is not supplied, so the total clutch 𝛩 is determined by the 

algorithm discussed in Section 4.4.2. The precise definition of 𝛩 is given in Section 4.4.2, but 

roughly 𝛩(𝑙′) is the angle, with respect to the 𝑥-axis, of the last ORB (projected onto the 𝑥𝑦-

plane). 
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Figure 4 

 

The purpose of Figure 4 is to explain the inner workings of the twist command, by performing 

import matriarch 

mySeq = 'AAAPPY' 

myChain = matriarch.chain(mySeq) 

def F(x): 

 return [-x[2], x[1], x[0]-25] 

 

def FPrime(x): 

 return [-x[2], x[1], x[0]] 

 

g = [F, FPrime] 

myChain_newAxis = matriarch.moveOrbs(myChain, g) 

def parabola(t): 

     return [-t*t, 0, 10*t] 

 

Rout = matriarch.Ray([18,0,0],[0,0,0]) 

W = matriarch.buildAxisTwister(parabola,Rout) 

warpedBlock = matriarch.twist(myChain_newAxis, W) 

matriarch.fileOut(warpedBlock,'warpedBlock.pdb') 
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some irregular transformations at the outset. Beginning with a chain called myChain (whose axis 

is, as always, aligned with the z-axis), we apply moveOrbs(myChain,g) to rotate and move the 

atoms “downwards”. Consider the orange line in the left-hand side of Figure 4. Given an amino 

acid 𝑠 ∈ 𝑆, the orange line indicates the connection between the old and new points in space 

𝑝(𝑠) = (0,0, 𝜋(𝑠)) and 𝑔(𝑝(𝑠)). The pink vectors indicate the relationship between the old and 

new backbone directions 𝑁1(𝑠) = [0,0,1] and 𝑔(𝑁1(𝑠)). The blue vectors indicate the 

relationship between the old and new side chain directions 𝑁2(𝑠) = [1,0,0] and 𝑔(𝑁2(𝑠)). Note 

that, in general, we will not have that 𝑝(𝑠) = (0,0, 𝜋(𝑠)) nor 𝑁1(𝑠) = [0,0,1] nor 𝑁2(𝑠) =

[1,0,0]; they are true in this case because myChain is a chain. The transformation g has moved 

the ORBs without changing the axis. You can think of the orange line, pink vector, and blue 

vector as together forming a rigid connector, which will be used by twist to determine the final 

position and side-chain direction of the amino acid s.  

 

Specifically, twist applies 𝑇𝜋(𝑠) to the line segment connecting the ORBs to their projection onto 

the z-axis, and on this line segment it acts like a rigid motion. In the case of Figure 4, that line 

segment had length 0, so we spoke as though we were applying 𝑇𝜋(𝑠) to each ORB, s itself. In 

this case, the twisting process is performed by applying 𝑇𝜋(𝑠) as a family of rigid motions on the 

orange lines (one for each ORB), and the associated pink and blue vectors. This gives the final 

point in space, amino backbone direction, and side chain direction of each amino acid 𝑠. As a 

family of rigid motions, 𝑇𝜋(𝑠) sends the pink vector [0,0,1] to 𝑓𝑚𝑎𝑝
′ (𝜋(𝑠)) and the blue vector 

[1,0,0] to 𝑑𝑚𝑎𝑝(𝜋(𝑠)).  

 

There is a strong similarity between Figure 4 and 5, deriving from the fact that they use the same 

axis twister W. Thus the values, as well as the derivation, of the mapping direction 𝑑𝑚𝑎𝑝 and the 

total clutch 𝛩 are identical in both cases. 

 

Note that because we began by moving the ORBs, the bonds in the backbone between the amino 

acids become stretched non-physically. If the axis remains on the backbone (as in Figure 4), 

neither stretching nor compressing will occur. In ordinary cases, even if the axis is not directly on 

the backbone, the stretching effect should not be noticeable.  

 

The example shown in the Figure 5 is rather exotic, but it illustrates the twisting mechanism. 

More common would be a helix (or triple helix). We will also show how to build the spherical 

spiral, seen on the front page, in Section 4.5.3.  

 

Helix 

 

Helix(x, rad, pitch, handed) is a special case of twist, for which the axis twister W has been built 

into Matriarch. The argument handed is optional, and defaults to right-handed, ‘R’. Define 
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𝑠𝑖𝑔𝑛 to be 1 if handed is ‘R’ and -1 if handed is ‘L’ and define 𝑠𝑐𝑎𝑙𝑒 = √𝑟𝑎𝑑2 + 4𝜋2 𝑝𝑖𝑡𝑐ℎ2. 

Then  

 

𝑓𝑚𝑎𝑝(𝑡) = (𝑟𝑎𝑑 ∗ cos (
𝑠𝑖𝑔𝑛 ∗ 𝑡

𝑠𝑐𝑎𝑙𝑒
) , 𝑟𝑎𝑑 ∗ sin (

𝑠𝑖𝑔𝑛 ∗ 𝑡

𝑠𝑐𝑎𝑙𝑒
) ,
𝑝𝑖𝑡𝑐ℎ ∗ 𝑡

2𝜋 𝑠𝑐𝑎𝑙𝑒
), 

 

𝑑𝑚𝑎𝑝(𝑡) = (cos (
𝑠𝑖𝑔𝑛 ∗ 𝑡

𝑠𝑐𝑎𝑙𝑒
) , sin (

𝑠𝑖𝑔𝑛 ∗ 𝑡

𝑠𝑐𝑎𝑙𝑒
)), 

 

𝛩(𝑡) =
𝑠𝑖𝑔𝑛 ∗ 𝑡 ∗ 2𝜋

𝑝𝑖𝑡𝑐ℎ
. 

 

The code that produces Figure 1 is below. 

 

 
 

Expanding the helix command, the code above is equivalent to the following: 

 

 
 

  

import matriarch 

mySeqA = 'AAAAAAAAAAAAAAAAAAAA' 

myChainA = matriarch.chain(mySeqA) 

myHelix = matriarch.helix(myChainA, 4, 8, 'L') 

myHelix.fileout('myHelix.pdb') 

import matriarch 

from math import * 

mySeqA = 'AAAAAAAAAAAAAAAAAAAA' 

myChainA = matriarch.chain(mySeqA) 

def parameterizedHelix(t): 

    return [4*cos(2*pi*t),-4*sin(2*pi*t),8*t] 

 

W = matriarch.buildAxisTwister(parameterizedHelix) 

myHelix = matriarch.twist(myChainA, W) 

matriarch.fileOut(myHelix, 'helixEg.pdb') 
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4.3.3 Pad 

 

The command pad(𝛤,s) adds s Angstrom of blank space to the right terminal of building block 𝛤. 

The bond structure of 𝛤’=pad(𝛤,s) is the same as the bond structure of 𝛤. The axis structure of 

pad(𝛤,s) is obtained by increasing the length by s, i.e., 𝑙′ = 𝑙 + 𝑠. Everything else is the same for 

𝛤 and 𝛤’. 

 

 
 

4.3.4 Attach  

 

The command attach(𝛤1, 𝛤2) attaches two bondable building blocks together to create a 

composite building block. The attach command moves the left terminal of 𝛤2 next to the right 

terminal of 𝛤1. It then forms the appropriate bonds between the ORBs in the right terminal of 𝛤1 

and the ORBs in the left terminal of 𝛤2. In order for the command attach(𝛤1, 𝛤2) to work, the 

ORBs of 𝛤1 at its right terminal must be bondable (see Section 4.2.1) to the ORBs of 𝛤2 at its left 

terminal: there is a one-to-one correspondence 𝜙:𝑅1 →̃ 𝐿2. 

 

The new building block 𝛤′ = 𝑎𝑡𝑡𝑎𝑐ℎ(𝛤1, 𝛤2) is defined as follows. Its ORB sequence is given by 

𝑆′ = 𝑆1 ∪ 𝑆2   and   𝑠𝑖𝑔′(𝑠) = {
𝑠𝑖𝑔1(𝑠), if 𝑠 ∈ 𝑆1
𝑠𝑖𝑔2(𝑠),  if 𝑠 ∈ 𝑆2

 

Its bond structure is given as follows. The set of bonds is 𝐵′ = 𝐵1 ∪ 𝐵2 ∪ 𝐵12, where we put 

𝐵12 = 𝑅1; this set has the right number of new bonds to be created. The endpoints function 

𝑒𝑝𝑡𝑠′: 𝐵′ → 𝑆′ × 𝑆′ is given on 𝑏 ∈ 𝐵′ by 

𝑒𝑝𝑡𝑠′(𝑏) = {

𝑒𝑝𝑡𝑠1(𝑏), if 𝑏 ∈ 𝐵1
𝑒𝑝𝑡𝑠2(𝑏), if 𝑏 ∈ 𝐵2
(𝑏, 𝜙(𝑏)), if 𝑏 ∈ 𝐵12

 

The interface structure is given by 𝐿′ = 𝐿1, 𝑅′ = 𝑅2.  

 

The axis structure on 𝛤′ is defined as follows. The building block axis is straightforward: 𝑙′ =

𝑙1 + 𝑙2 and 𝜃′ = 𝜃2. The points in space is given piecewise: 

𝑝′(𝑠) = {
𝑝1(𝑠), 𝑠 ∈ 𝑆1

𝑝2(𝑠) + 𝑙1, 𝑠 ∈ 𝑆2
 

 

The amino acid direction and side-chain direction are given by union. Finally, the axis projection 

from matriarch import * 

from math import * 

mySeqA = 'AAAAAA' 

myChainA = chain(mySeqA) 

myPadded = pad(myChainA, 3) 

fileOut(myPadded, 'myPadded.pdb') 
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is the union of the two axis projections, after composing them with the interval inclusions 

[0, 𝑙1] ⊆ [0, 𝑙
′] and [0, 𝑙2] ≅ [𝑙1, 𝑙

′] ⊆ [0, 𝑙′]. 

 

For an example of this, see Figure 5 below. 

 

Attach series 

 

The command attachSeries(𝛤, n) applies the attach command consecutively, n times in the z-

direction, on the same building block 𝛤. This will only work if the left and right terminals of 𝛤 

are bondable. 

 

4.3.5 Reverse Orbs 

 

The command reverseOrbs(𝛤) does what one would expect: it reverses the building block. This 

command is useful in a few contexts. For example, if you want to connect two chains, coming 

from two different functions, the orientation of one chain may need to be reversed; for example, 

see Figure 5 below. The reverse command is also useful in the construction of antiparallel 

polypeptides. It is used in makeArray in combination with overlay.  

 

The full description of 𝛤’=reverseOrbs (𝛤) is as follows. Let 𝑆′ be 𝑆, but with the order reversed, 

i.e., 𝑖 ≤ 𝑗 in 𝑆′ if and only if 𝑖 ≥ 𝑗 in 𝑆. The signature is given by 𝑠𝑖𝑔′(𝑠) = 𝑘𝑂𝑅𝐵 ∘ 𝑠𝑖𝑔(𝑠), 

where 𝑘𝑂𝑅𝐵 = (id𝐴𝐴, 𝑘): 𝑂𝑅𝐵 → 𝑂𝑅𝐵 is the left-right swap, i.e., it switches C and N. See 

Section 4.2.1. It has the same set of bonds, 𝐵′ = 𝐵, but the endpoints are swapped: for 𝑏 ∈ 𝐵 if 

𝑒𝑝𝑡𝑠(𝑏) = (𝑠, 𝑡) then 𝑒𝑝𝑡𝑠′(𝑏) = (𝑡, 𝑠). The left and right terminals are also swapped: 𝐿′ = 𝑅 

and 𝑅′ = 𝐿. The length and clutch angles of the axis are unchanged: 𝑙′ = 𝑙 and 𝜃′ = 𝜃. Let 

𝑇:ℝ3 → ℝ3 be the rigid motion of rotation about the line (𝑥, 0,
𝑙

2
) followed by rotation by angle 

𝜃, counterclockwise about the positive 𝑧-axis. This transformation swaps the left and right 

terminals (0,0,0) and (0,0, 𝑙), and swaps the positive 𝑥-axis with the clutch angle of 

(cos 𝜃 , sin 𝜃 , 0). The new point in space 𝑝′, amino backbone direction 𝑁1
′, and side-chain 

directions 𝑁2
′ are given by composing 𝑝,𝑁1, 𝑁2 with 𝑇, respectively. The axis projection is 

reversed: 𝜋′(𝑠) = 𝑙 − 𝜋(𝑠). 

 

The intuitive idea behind reverseOrbs(𝛤) is that it rotates the building block 𝛤 about a certain 

line 𝐿 lying in the plane 𝑧 = 𝑙/2. The angle in the xy-plane, between 𝐿 and the x-axis, is 𝜃/2, 

where 𝜃 is the clutch angle of 𝛤.  
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Figure 5 

  

from matriarch import * 

 

def parabola(t): 

    return [-t*t,0,10*t] 

 

mySeq = 'AAAAAAAAAAAPPPPPPPPPPP' 

myChain = chain(mySeq) 

Rout = Ray([-1,0,0], [0,0,0]) 

W = buildAxisTwister(parabola,Rout) 

pos = twist(myChain,W) 

rev = reverseOrbs(myChain) 

twi = twist(rev,W) 

neg = reverseOrbs(twi) 

t = attach(neg,pos) 

fileOut(t, 'parab.pdb') 

fileOut(pos, 'parab-pos.pdb') 

fileOut(rev, 'parab-rev.pdb') 

fileOut(twi, 'parab-twi.pdb') 

fileOut(neg, 'parab-neg.pdb') 
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4.3.6 Overlay 

 

The command overlay(𝛤1, 𝛤2) puts the building blocks 𝛤1 and 𝛤2 together by leaving each ORB, 

in both 𝛤1 and 𝛤2 in the same position and adding no new bonds, as we explain below. 

 

Let 𝛤′ = 𝑜𝑣𝑒𝑟𝑙𝑎𝑦(𝛤1, 𝛤2). The enumerator of 𝛤′ is the ordered union 𝑆′ = 𝑆1 ∪ 𝑆2, so if 𝑆1 =

{1,2, …𝑚} and 𝑆2 = {1,2, … , 𝑛}, then 𝑆′ = {1,2, … ,𝑚 + 𝑛}. The bond structure is given by the 

union; e.g., 𝑠𝑖𝑔′ = 𝑠𝑖𝑔1 ∪ 𝑠𝑖𝑔2, and same for bonds, endpoints, and terminals. The axis structure 

is given as follows. The length of the new building block is given by the maximum, 𝑙′ =

max (𝑙1, 𝑙2); the clutch angle is given by 𝜃′ = 𝜃1. The point in space, backbone direction, and 

side-chain direction are given by union. Finally, the axis projection is the union of the two axis 

projections, after composing them with the interval inclusions [0, 𝑙1] ⊆ [0, 𝑙
′] and [0, 𝑙2] ⊆

[0, 𝑙′]. 

 

Collagen has two amino acid sequences, each coiled into a left-handed helix with radius 1.5 Å 

and pitch 9.5238 Å. These will be twisted together into a triple helix as follows. Both helices are 

twisted into the shape of another left-handed helix with radius 4 Å and pitch 85.5 Å. These two 

are offset from one another by rotating (by 2𝜋/3 and 4𝜋/3) and shifting (by 2.8 Å and 5.6 Å), 

and then they are overlaid with the first helix to produce the final collagen output. See Figure 6. 

 

 

from matriarch import *  

import math  

 

def collagen(seq1, seq2):  

    a1 = chain(seq1)  

    a2 = chain(seq2) 

    hel1 = helix(a1,1.5,9.5238,'L')  

    hel2 = helix(a2,1.5,9.5238,'L') 

    helhel1 = helix(hel1,4,85.5,'L')  

    helhel2 = helix(hel2,4,85.5,'L') 

    helhel1rot = shiftOrbs(rotateOrbs(helhel1,2*math.pi/3),2.8)  

    helhel2rot = shiftOrbs(rotateOrbs(helhel2,4*math.pi/3),5.6) 

    homodimer = overlay(helhel1,helhel1rot)  

    output = overlay(homodimer,helhel2rot)  

    return output 

 

seq1 = 'GFZGPKGTAGEZGKAGERGVZGPZGAVGPAGKDGEAGAQGAZGPAGPAGERGEQGPA'  

seq2 = 'GFZGPKGPSGDZGKZGEKGHPGLAGARGAZGPDGNNGAQGPZGPQGVQGGKGEQGPA' 

collgn = collagen(seq1,seq2) 

fileOut(collgn,'collgn.pdb') 
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Figure 6 

 

Make Array 

 

The command makeArray(𝛤, nx, ny, sx, sy, alt) copies 𝛤 as an 𝑛𝑥 × 𝑛𝑦 stack (𝑛𝑥 copies in the x-

direction and 𝑛𝑦 copies in the y-direction), spaced apart by distance 𝑠𝑥 in the x-direction and 𝑠𝑦 

in the y-direction. Each copy of building block   in the resulting array is parallel to 𝛤, if the 

Boolean variable alt is set to alt=False, and the copies alternate if alt=True. Said another way, 

the (i,j)th copy is parallel if i+j is even, and is antiparallel if i+j is odd.  

 

The makeArray command is a composition of previously-defined commands: moveOrbs, 

reverse, and overlay, as described above. For example, the (i,j)-entry will involve the command 

𝑚𝑜𝑣𝑒𝑂𝑟𝑏𝑠(𝛤, [𝐹, 𝐹′]) where 𝐹 = [𝑥 + 𝑖 𝑠𝑥, 𝑦 + 𝑗 𝑠𝑦, 𝑧], and 𝐹′ = [𝑥, 𝑦, 𝑧]. 

 

See Figure 7 below.  

 

4.3.7 Space 

 

The command space(𝛤1, 𝛤2, s) leaves 𝛤1  where it is and moves the left terminal of 𝛤2 to a distance 

of d from the right terminal of 𝛤1, as we explain below.  

 

Let 𝛤′ = 𝑠𝑝𝑎𝑐𝑒(𝛤1, 𝛤2, 𝑠). The enumerator is the ordered union 𝑆′ = 𝑆1 ∪ 𝑆2, so if 𝑆1 =

{1,2, …𝑚} and 𝑆2 = {1,2, … , 𝑛}, then 𝑆′ = {1,2, … ,𝑚 + 𝑛}. Most of the bond structure is given 

by the union; e.g., 𝑠𝑖𝑔′ = 𝑠𝑖𝑔1 ∪ 𝑠𝑖𝑔2, 𝐵′ = 𝐵1 ∪ 𝐵2, 𝑒𝑝𝑡𝑠
′ = 𝑒𝑝𝑡𝑠1 ∪ 𝑒𝑝𝑡𝑠2. However, the 

terminals are a bit different: 𝐿′ = 𝐿1 and 𝑅′ = 𝑅2. The axis structure is as follows. The building 

block axis is straightforward: 𝑙′ = 𝑙1 + 𝑙2 + 𝑠 and 𝜃′ = 𝜃2. The points in space is given 

piecewise: 

𝑝′(𝑎) = {
𝑝1(𝑎), 𝑎 ∈ 𝑆1

𝑝2(𝑎) + 𝑙1 + 𝑠, 𝑎 ∈ 𝑆2
 

 

The amino acid direction and side-chain direction are given by union. Finally, the axis projection 

is the union of the two axis projections, after composing them with the interval inclusions 
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[0, 𝑙1] ⊆ [0, 𝑙
′] and [0, 𝑙2] ≅ [𝑙1 + 𝑠, 𝑙

′] ⊆ [0, 𝑙′]. 

 

 
 

 

Figure 7 

  

from matriarch import * 

 

mySeqG = 'GGGGGGGGG' 

mySeqA = 'AAA' 

myChainG = chain(mySeqG) 

myChainA = chain(mySeqA) 

spacedBlock = space(myChainG, myChainA, 10) 

array = makeArray(spacedBlock, 10, 15, 4, 6, True) 

fileOut(array, 'arraySpaced.pdb') 
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Space series 

 

The command spaceSeries(𝛤, n, s) applies the space command consecutively, n times in the z-

direction, on the same building block 𝛤. 

 

4.4 Other Matriarch functions 

 

Table 3. Other useful functions. Throughout, 𝛤 represents a building block; all other variables 

are parameters.  

 

Instruction  Function 

𝑓𝑖𝑙𝑒𝑜𝑢𝑡(𝛤, 𝑙𝑜𝑐) Saves the building block 𝛤 to a PDB file at location loc. See 

Section 4.4.1. 

𝑐ℎ𝑎𝑖𝑛(𝑠𝑒𝑞) Returns a building block constructed by attaching the sequence 

of amino acids given by seq. See Section 4.2.3. 

𝑏𝑢𝑖𝑙𝑑𝐴𝑥𝑖𝑠𝑇𝑤𝑖𝑠𝑡𝑒𝑟( 

𝑔𝑚𝑎𝑝, 𝑅𝑜𝑢𝑡, 𝛩𝑠𝑝𝑒𝑐 , 𝑡𝑚𝑎𝑥)   

Creates an axis twister by reparameterizing the mapping curve 

gmap according to arclength to avoid stretching or compressing 

bonds. Rout, Thetaspec, and tmax are optional parameters, 

described in Section 4.4.2. 

𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑𝑃𝑖𝑒𝑐𝑒𝑊𝑖𝑠𝑒𝐿𝑖𝑛𝑒𝑎𝑟( 

𝑝𝐿𝑖𝑠𝑡, 𝑅𝑜𝑢𝑡, 𝛩𝑠𝑝𝑒𝑐 , 

𝑠𝑚𝑡ℎ𝐹𝑎𝑐𝑡𝑜𝑟, 𝑛𝑝𝑡𝑠)  

Creates an axis twister from a sequence of points 𝑝𝐿𝑖𝑠𝑡, by 

making a piecewise linear curve and then smoothing it. There 

are several optional parameters: a ray 𝑅𝑜𝑢𝑡, a specified constant 

total clutch 𝛩𝑠𝑝𝑒𝑐, a smoothing factor between 0 and 1, 

and 𝑛𝑝𝑡𝑠 which controls the precision. See Section 4.4.3. 

𝑢𝑠𝑒𝑟𝐷𝑒𝑓𝑖𝑛𝑒𝑑𝐴𝑚𝑖𝑛𝑜𝐴𝑐𝑖𝑑( 

𝑠𝑦𝑚𝑏𝑜𝑙, 𝑡ℎ𝑟𝑒𝑒𝐿𝑒𝑡𝑡𝑒𝑟𝐶𝑜𝑑𝑒) 

You can add custom amino acids to the existing library, the 

standard 20 plus hydroxyproline, using PDB files. See Section 

4.2.5. 

𝑙𝑒𝑛𝑔𝑡ℎ(𝛤) Returns the length 𝑙 of the axis of the building block �. See 

Section 4.2.1. 

𝑝𝑟𝑖𝑛𝑡(𝛤) Displays the building block structure (enumerator, bonds, axis) 

of 𝛤. See Section 4.2.4. 
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4.4.1 File out 

 

The command fileout(𝛤, loc) saves the building block 𝛤 to a PDB file at location loc.  

 

4.4.2 Build axis twister 

 

Recall that an axis twister, 𝑊 = ((𝑓𝑚𝑎𝑝 , 𝑓𝑚𝑎𝑝
′ , 𝑑𝑚𝑎𝑝), 𝛩) includes a mapping curve 𝑓𝑚𝑎𝑝 as one 

of its parameters. If 𝑓𝑚𝑎𝑝 is not parameterized by arc length, Matriarch will stretch or compress 

bonds when twisting; this is rarely desirable. The usual constructor for axis twisters W, which 

automatically parameterizes 𝑓𝑚𝑎𝑝 by arc length, is the command 

buildAxisTwister(gmap,Rout,Thetaspec,tmax). The function 𝑔𝑚𝑎𝑝: [0, 𝑡𝑚𝑎𝑥] → ℝ
3 is 

automatically reparameterized by arc length and smoothed to make the mapping curve 𝑓𝑚𝑎𝑝.  

 

The following may seem complicated, but it is necessary for building complex twisted structures 

in 3D. For sufficiently simple 2D structures, you do not need to specify or understand 𝑅𝑜𝑢𝑡 and 

𝑡𝑚𝑎𝑥; they are optional parameters and can be just left as default values. There are predefined 

twisted structures, such as helices, that can be used without understanding the following details. 

The implementation of the helix command is shown below. 

 

For the command buildAxisTwister(gmap,Rout,thetaSpec,tmax), the ray 𝑅𝑜𝑢𝑡 = (𝑅𝑜𝑢𝑡,0, 𝑅𝑜𝑢𝑡,𝑡𝑛𝑔) 

is used to compute the mapping direction 𝑑𝑚𝑎𝑝, as explained below. The ray 𝑅𝑜𝑢𝑡 is defined by a 

point and a tangent vector. By default, the length 𝑡𝑚𝑎𝑥 is set to 1,000 and 𝑅𝑜𝑢𝑡 =

(𝑅𝑜𝑢𝑡,0, 𝑅𝑜𝑢𝑡,𝑡𝑛𝑔) defaults to the positive 𝑧-axis, 𝑅𝑜𝑢𝑡,0 = (0,0,0), 𝑅𝑜𝑢𝑡,𝑡𝑛𝑔 = (0,0,1). It is also ok 

for 𝑅𝑜𝑢𝑡 to be a point (i.e., with 𝑅𝑜𝑢𝑡,𝑡𝑛𝑔 = (0,0,0)), as in the default case. The buildAxisTwister 

command defines 𝑑𝑚𝑎𝑝(𝑡), for any 𝑡 ∈ [0, 𝑡𝑚𝑎𝑥], to be the unique unit vector orthogonal to 

𝑓𝑚𝑎𝑝
′ (𝑡), coplanar with the line from 𝑅𝑜𝑢𝑡 to 𝑓𝑚𝑎𝑝(𝑡), and pointing away from 𝑅𝑜𝑢𝑡 (forming an 

angle of more than 90∘).  

 

If the optional parameter 𝛩𝑠𝑝𝑒𝑐 is set to a non-default value, it must be set to a constant in [0,2𝜋). 

In this case the total clutch is set to the constant function 𝛩(𝑧0) = 𝛩𝑠𝑝𝑒𝑐. This will eventually be 

the new clutch angle, 𝜃′ = 𝛩(𝑙′) = 𝛩𝑠𝑝𝑒𝑐.  

 

If the default value 𝛩𝑠𝑝𝑒𝑐 = [ ] is used, then Matriarch will compute the total clutch 𝛩 from 𝑓𝑚𝑎𝑝 

as follows. First, for each 𝑧0 ∈ ℝ>0, we define a real number 𝑆(𝑧0) as follows 

𝑆(𝑧0) = max ({0} ∪ 𝑓𝑚𝑎𝑝
−1 (𝑝𝑧

−1((−∞, 𝑧0]))) 

Here 𝑝𝑧 is the projection of ℝ3 onto the 𝑧-axis. Then the total clutch is given by 
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𝛩(𝑧0) = 𝜓 (𝑓𝑚𝑎𝑝(𝑆(𝑧0)))  

Here 𝜓 is a function from (the complement of the 𝑧-axis in) ℝ3 to the interval [0,2𝜋). It takes a 

point (𝑥0, 𝑦0, 𝑧0) to the angle of [𝑥0, 𝑦0] ≠ [0,0] with the 𝑥-axis. The idea is that for each height 

𝑧0, the set of ORBs of height at most 𝑧0 is computed, and the angle of the latest one (i.e., of 

largest 𝑡) is taken as the total clutch 𝛩(𝑧0) at this height.  

 

All the optional parameters are specified in the code for the spherical spiral cover art; see Section 

4.5.3. 

 

4.4.3 Smoothed Piecewise Linear 

 

It is sometimes inconvenient to provide 𝑔𝑚𝑎𝑝 in functional form. Like buildAxisTwister, the 

command smoothedPiecewiseLinear(pList, Rout, thetaSpec, smthFactor, nPts) produces axis 

twisters W, but instead of a function 𝑔𝑚𝑎𝑝, the user provides a list of points 𝑝𝐿𝑖𝑠𝑡 =

[𝑞1, 𝑞2, … , 𝑞𝑛], where each 𝑞𝑖 ∈ ℝ
3. The command will first create a piecewise linear function 

from the sequence of points, and then smooth it using an optional parameter that is by default set 

to 1/3.  

 

Again, there are several optional parameters. The ray 𝑅𝑜𝑢𝑡 (see Section 4.3.2) has default value 

([0,0,0], [0,0,1]). The specified clutch angle 𝛩𝑠𝑝𝑒𝑐 is by default [], which causes the total clutch 

to be calculated, as discussed above (see Section 4.4.2). The smoothing factor is by default 1/3; it 

should be a number between 0 and 1. When smthFactor=0, the resulting curve will be an 

unsmoothed piecewise linear curve. In general, Matriarch fits a circle around the corners of the 

piecewise linear curve. The radii of these circles depend on the smoothing factor and the 

distances between consecutive points in 𝑝𝐿𝑖𝑠𝑡. Finally, the number of points 𝑛𝑃𝑡𝑠 only makes 

sense if 𝛩𝑠𝑝𝑒𝑐=[] is the default value, in which case it controls the precision with which 𝛩𝑠𝑝𝑒𝑐 is 

calculated. The default is 𝑛𝑃𝑡𝑠 = 10000.   
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4.5 Three more sample scripts 

 

The following source code contains three building instructions, one for tropocollagen, one for a 

triangular helix, and one for the spherical spiral (cover art). 

 

4.5.1 Tropocollagen  

 

 

from matriarch import * 

from math import * 

 

def collagen(seq1, seq2):  

    a1 = chain(seq1)  

    a2 = chain(seq2) 

    hel1 = helixBuilder(a1,1.5,9.5238,'L')  

    hel2 = helixBuilder(a2,1.5,9.5238,'L') 

    helhel1 = helixBuilder(hel1,4,85.5,'L')  

    helhel2 = helixBuilder(hel2,4,85.5,'L') 

    helhel1rot = shiftOrbs(rotateOrbs(helhel1,2*pi/3),2.8)  

    helhel2rot = shiftOrbs(rotateOrbs(helhel2,4*pi/3),5.6) 

    homodimer = overlay(helhel1,helhel1rot)  

    output = overlay(homodimer,helhel2rot)  

    return output 

 

def helixBuilder(myBB,rad,pitch,handed): 

    scale = sqrt(rad*rad + pitch*pitch/(4*pi*pi)) 

    if handed=='R': 

        sign=1 

    elif handed=='L': 

        sign=-1 

    else:  

        print handed,' should be L or R.' 

    def parameterizedHelix(t): 

        sc = sign/scale 

        return [rad*cos(sc*t),-rad*sin(sc*t),pitch*t/(2*pi*scale)] 

    W = buildAxisTwister(parameterizedHelix) 

    return twist(myBB, W) 

 

seq1 = 'GFZGPKGTAGEZGKAGERGVZGPZGAVGPAGKDGEAGAQGAZGPAGPAGERGEQGPA'  

seq2 = 'GFZGPKGPSGDZGKZGEKGHPGLAGARGAZGPDGNNGAQGPZGPQGVQGGKGEQGPA' 

collgn = collagen(seq1,seq2) 

fileOut(collgn,'collgn.pdb') 
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The building instruction collagen works by making three coiled coils and overlaying them, to 

form a tropocollagen molecule. To do so, it first creates two linear chains, for seq1 and seq2. 

Then it twists the chains into left-handed helices with radius 1.5 Å and pitch 9.5238 Å. It then 

twists the results into a coil of coils, i.e., a left-handed helix with radius 4 Å and pitch 85.5 Å. 

These two building blocks are rotated and shifted, so that they can be overlaid with the original. 

See Figure 8. 

 

 

Figure 8 
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4.5.2 Triangular helix 

 

 
 

  

from matriarch import *  

from math import * 

 

def triangleTwister(side, pitch, length, smoothingFactor): 

    iterations = int(length/(3*side)) + 2 

    const = sqrt(3)/6 

    def loop(Z0): 

        return [[side*2*const,0,Z0],[-

side*const,side/2.0,Z0+pitch/3.0],[-side*const,-

side/2.0,Z0+pitch*2/3.0]] 

    PList = [] 

    for n in range(0,iterations): 

        PList.extend(loop(pitch*n)) 

    Rout = Ray([0,0,0],[0,0,1]) 

    provideTheta = [] 

    return smoothedPieceWiseLinear(PList, Rout, provideTheta, 

smoothingFactor) 

 

aminoLength=3.4 

 

actualSeq ='TNVIIEGNVTLGHRVKIGTGCVIKNSVIGDDCEISP' 

Mult=3 

Side=9*aminoLength 

Pitch=7 

SmthFact = 0.33 

totalLen=Mult*aminoLength*len(actualSeq) 

myChain = attachSeries(chain(actualSeq),Mult) 

myTriangle = twist(myChain, triangleTwister(Side, Pitch, totalLen, 

SmthFact)) 

 

fileOut(myTriangle,'triangleHelix.pdb')  
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The triangular helix can be found in nature [3]. We build it with Matriarch using the twist 

command, applied to an axis twister called triangleTwister, which encodes a parameterized 

triangular helix. The input parameters for this axis twister are the side-length (here, that of nine 

amino acids), the pitch (here 7 Å), a length (here, that of 3*36 amino acids), and a smoothing 

factor (here the default value of .33). See Figure 9 below for two views of the output. 

 

 

 

 

Figure 9 
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4.5.3 The spherical spiral (cover art) 

 

The spherical spiral does not occur in nature—it is a construct to show the capability of our code.  

 

 
 

The SphSprl function parameterizes a spherical spiral. To avoid stretching or compressing bonds, 

the length of the spiral needs to be equal to that of the amino acid chain. This is what the scaling 

parameter 𝑘𝑛𝑒𝑤 does for us. We compute 𝑘𝑛𝑒𝑤 as follows. We first create the spherical spiral 

without scaling (k=1) and measure its length. The factor 𝑘𝑛𝑒𝑤 is obtained by dividing the amino 

acid chain length by the measured length of the spherical spiral.  

  

from matriarch import * 

from math import * 

 

seq1 = 'AAAAGGPGGYGGPGGAAAA' 

a = chain(seq1) 

ser = attachSeries(a,25) 

 

def SphSprl(k,Rout): 

    def curve(t): 

        return [k*sin(t)*cos(20*t), k*sin(t)*sin(20*t), k*cos(t)] 

    tmax=pi 

    Thetaspec=0 

    return buildAxisTwister(curve,Rout,Thetaspec,tmax) 

 

Rout = Ray([0,0,0], [0,0,0]) 

k1 = 1        #first try 

W1 = SphSprl(k1,Rout) 

 

contourLength = length(ser) 

lengthOfCurveWithKEquals1 = W1[0].length 

knew = contourLength / lengthOfCurveWithKEquals1 

 

SphSprlTwister = SphSprl(knew + 0.001,Rout) 

output = twist(ser, SphSprlTwister) 

 

fileOut(output,'sphericalSpiral.pdb') 
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4.6 Technical remarks and trouble shooting 

 

4.6.1 Stability of structures in MD 

 

It is possible to use Matriarch to create configurations that will not run stably in a molecular 

dynamics simulator. This can happen either when atoms are too close, or when bonds are 

stretched non-physically. In either case, infinite forces may occur.  

 

In most cases, a good work-around is to first run energy minimization on the configuration and 

then to set up a short NVT equilibration without holonomic constraints (LINCS or SHAKE) 

using a small time step. Then the production run using constraints should be stable. 

 

4.6.2 Terminal charges in Matriarch 

 

The ends of each polypeptide chain are left charged by Matriarch. 

 

Note that hydroxyproline should not be placed at an end of a polypeptide strand because the PDB 

file for hyp (version 1.0) does not have correctly placed hydrogen atoms at the carboxyl terminal. 

 

4.6.3 Optional parameters in Python 

 

Several Matriarch commands contain optional parameters. The default value of each is given in 

the respective function descriptions above.  

 

If a command has multiple optional parameters, and you want to specify for example the third, 

then the first and second also need to be specified. This is a constraint of the Python 

programming language. In other words, you can specify the earlier parameters without 

specifying the later ones, but you cannot specify the later parameters unless you also specify the 

earlier ones (which can be set to the default values if desired).  

4.6.4 Comments on the buildAxisTwister command 

 

It is recommended to use twist with buildAxisTwister. It is recommended that, when using 

buildAxisTwister and twist, the function 𝑓𝑚𝑎𝑝 should be monotonically increasing in 𝑧, and 

𝑝𝑧 (𝑓𝑚𝑎𝑝(0)) = 0, meaning that the 𝑧-component of 𝑓𝑚𝑎𝑝(0) should be zero. The 

buildAxisTwister command will only work if the line from 𝑅𝑜𝑢𝑡 to 𝑓𝑚𝑎𝑝(𝑡) is not tangent to 𝑓𝑚𝑎𝑝. 

If you get an error message, try specifying the total clutch to be a constant at the angle you think 

it should be at.  



 38 

5 References 

 

1. Giesa, T., et al., A Python Library for Materials Architecture. in submission, 2015. 

2. Spivak, D.I., The operad of wiring diagrams: Formalizing a graphical language for 

databases, recursion, and plug-and-play circuits. http://arxiv.org/abs/1305.0297, 2013. 

3. Solar, M. and M.J. Buehler, Comparative analysis of nanomechanics of protein filaments 

under lateral loading. Nanoscale, 2012. 4(4): p. 1177-1183. 

 

 

http://arxiv.org/abs/1305.0297

	1 Table of contents
	2 Download and install
	3 First things first
	3.1 Basic concepts of Matriarch
	3.2 Organization of the Matriarch package

	4 Operation of the Matriarch program
	4.1 Your first Matriarch program
	4.2 Building blocks
	4.2.1 What is a building block?
	4.2.2 Standard protein building blocks
	4.2.3 Chains of standard building blocks
	4.2.4 Examining a building block’s structure
	4.2.5 Adding custom amino acids

	4.3 Building instructions
	4.3.1 Move ORBs
	4.3.2 Twist
	4.3.3 Pad
	4.3.4 Attach
	4.3.5 Reverse Orbs
	4.3.6 Overlay
	4.3.7 Space

	4.4 Other Matriarch functions
	4.4.1 File out
	4.4.2 Build axis twister
	4.4.3 Smoothed Piecewise Linear

	4.5 Three more sample scripts
	4.5.1 Tropocollagen
	4.5.2 Triangular helix
	4.5.3 The spherical spiral (cover art)

	4.6 Technical remarks and trouble shooting
	4.6.1 Stability of structures in MD
	4.6.2 Terminal charges in Matriarch
	4.6.3 Optional parameters in Python
	4.6.4 Comments on the buildAxisTwister command


	5 References

