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Abstract: Amyloids are highly organized protein filaments, rich in beta-sheet secondary structures 

that self-assemble to form dense plaques in brain tissues affected by severe neurodegenerative 

disorders (e.g. Alzheimer’s Disease). Identified as natural functional materials in bacteria, in addition 

to their remarkable mechanical properties, amyloids have also been proposed as a platform for novel 

biomaterials in nanotechnology applications including nanowires, liquid crystals, scaffolds and thin 

films. Despite recent progress in the understanding amyloid structure and behavior, the latent self-

assembly mechanism and the underlying adhesion forces that drive the aggregation process remain 

poorly understood. On the basis of previous full atomistic simulations, here we report a simple 

coarse-grain model to analyze the competition between adhesive forces and elastic deformation of 

amyloid fibrils. We use simple model system to investigate self-assembly mechanisms of fibrils, 

focused on the formation of self-folded nanorackets and nanorings, and thereby address a critical 

issue in linking the biochemical (Angstrom) to micrometer scales relevant for larger-scale states of 

functional amyloid materials. We investigate the effect of varying the interfibril adhesion energy on 

the structure and stability of self-folded nanorackets and nanorings and demonstrate that such 

aggregated amyloid fibrils are stable in such states even when the fibril-fibril interaction is relatively 

weak, suggesting a strong propensity towards aggregation, given that the constituting amyloid fibril 

lengths exceed a critical fibril length-scale of several hundred nanometers. We further present a 

simple approach to directly determine the interfibril adhesion strength from geometric measures. In 

addition to providing insight into the physics of aggregation of amyloid fibrils our model enables the 

analysis of large-scale amyloid plaques and presents a new method for the estimation and engineering 

of the adhesive forces responsible of the self-assembly process of amyloid nanostructures, filling a 
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gap that previously existed between full atomistic simulations of primarily ultra-short fibrils and 

much larger micrometer-scale amyloid aggregates. Via direct simulation of large-scale amyloid 

plaques consisting of hundreds of fibrils we demonstrate that the fibril length has a profound impact 

on their structure and mechanical properties, where critical fibril length-scale derived from our 

analysis defines the structure of amyloid plaques. A multi-scale modeling approach as used here, 

bridging the scales from Angstroms to micrometers, opens a wide range of possible nanotechnology 

applications by presenting a holistic framework that balances mechanical properties of individual 

fibrils, hierarchical self-assembly, and the adhesive forces determining their stability to facilitate the 

design of de novo amyloid materials.  
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1. Introduction 

Plaques of Aβ(1-40) amyloid fibrils are observed in the brain tissue affected by Alzheimer’s Disease 

(AD)1, a severe neurodegenerative disease. Along with many other biological materials - such as 

bone, silk, and cells - amyloids feature a hierarchical structure with geometric features at multiple 

scales2. Amyloidogenic plaques derive from the aggregation of protofilaments composed of single 

fibrils that (at the atomistic level) are characterized by the stacking of sequence-wise identical layers, 

showing a twofold symmetry with respect to the growth axis3 that results in their characteristic cross-

beta geometry4 (Fig. 1A). The overall molecular structure of amyloid fibrils is stabilized by a dense 

network of H-bonds4, and features exceptional mechanical properties5, 6 such as high stiffness5-8, self-

assembling capacity9-12, and remarkable stability even in adverse chemical environments13. 

Hierarchical self-assembly of materials with such intriguing mechanical properties is a powerful 

developing tool for the creation of novel nanostructured materials14-16. There are examples of 

amyloids used as bionanomaterials in the form of nanowires10, 17-19, scaffolds and (bio)templates10, 20-

25, liquid crystals26, adhesives27 and films14.  This wide range of applications is justified by the 

amyloid’s remarkable mechanical and thermal stability and by their chemical properties that can be 

tuned via the introduction of additional elements, including enzymes, metal ions, fluorophores, biotin 

or cytochromes.  

Recent results based on atomistic modelling provide a direct and quantitative link between molecular 

structure and mechanical behavior7, 8, indicating a coupling between axial and twist deformation that 
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facilitates mechanical stability. However, there is a dichotomy in approaches, where most 

quantitative experimental and theoretical studies have thus far focused on the scale of individual 

amyloid fibrils5-7, 28-32, other more qualitative experimental studies focused on amyloid aggregates 

(plaques)14, 33 at vastly larger scales, studying, for example, amyloid toxicity34-36. No quantitative, 

molecular based model exists to describe scales of hundreds of nanometers and micrometers, where 

particular key functional properties might emerge as amyloid fibrils form bundles and plaques (Figs. 

1A and 2A). A specific issue that remains poorly understood - albeit absolutely essential for the 

understanding of structure formation - is the competition between adhesive forces and elastic 

deformation of amyloid fibrils in the formation of bundles and plaques. This is a particularly 

intriguing question due to the great elastic stiffness (with Young’s moduli exceeding 10-20 GPa), but 

rather weak (noncovalent) interactions between individual amyloid fibrils, posing a fundamental 

question of whether or not the weak interactions between fibrils are sufficiently strong to result in 

larger deformation and stable aggregation of amyloid fibrils into plaques. Here we address these 

issues by using a hierarchical multiscale approach in which results from atomistic simulations 

parameterize a coarse-grained representation of amyloid fibrils at scales approaching micrometers.  

This paper is organized as follows: Section 2 (Materials and Methods) provides details of the 

atomistic simulation procedure used to estimate the adhesion energy and of the implementation of the 

mesoscale model. Section 3 reports a description of the results of atomistic simulations of 2-fibrils 

systems and of the behaviour of self-folded amyloid fibrils at the mesoscale, via the implementation 

of the coarse-grain model and the tuning of the adhesive forces driving the interaction between 

different fibrils, or part of the same fibril. In the same section we propose a connection between this 

study and experimental measurements on the basis of the observed geometry of folded amyloid 

fibrils. In the final Conclusion part (Section 4), the key contributions of this article are briefly 

highlighted. 

2. Materials and methods 

2.1 Adhesion energy calculation from atomistic simulations 

Each layer and the corresponding 3D structure of the Aβ(1-40) amyloid fibrils is provided by solid 

state NMR experimental data3, which allow to model only 32 of the 40 amino acids composing the 

sequence, since results from the first eight are disordered in experiments3. The structure of a 20 layer 

fibril is built following the model reported in Ref. 27 and considering the average configuration 

resulting from minimization and relaxation procedures37. Assuming that the interaction is 
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homogenous along the length of the fibrils, all possible configurations of two amyloid fibrils 

interacting laterally are taken into account (Fig. 1B), where all cases are minimized and relaxed for 

approximately 5 nanoseconds at 300 K in implicit solvent, until convergence is reached. The 

followed simulation protocol and convergence criteria are the same as described in Ref. 24, which 

uses the CHARMM1938 polar force field in conjunction with an effective Gaussian model for water39, 

and a time step  of 1 fs. Each of the 2 fibril systems has been built imposing an interfibril distance 

sufficiently large to avoid any overlap between the lateral facing parts of the fibrils. The average 

distance between the two fibrils is radh= 42.82 Å (Fig. 1C), while the adhesion energy γ0 has been 

estimated as = 4.39 kcal/(mol-Å) (see next sections for details). Note that the approach used here to 

estimate the adhesion energy between fibrils has potential errors primarily due to limitations of the 

computational approach. Thus, the resulting adhesion energy is taken only as a base value that is 

varied over great ranges in the study reported here.  

2.2 Mesoscale model 

A series of full atomistic mechanical tests (tension and compression)7 provides a set of elastic 

parameters that, combined with the adhesion energy  𝛾0 and the average distance between two fibrils 

radh, allows us to develop a coarse-grained representation based on a hierarchical multiscale approach. 

In the coarse-grained representation three layers of the amyloid fibril are reduced to a single particle 

(bead) with a moment of inertia of I = 110,070.81 ×10-40 m4, a cross-sectional area A = 1,414.32 Å2 

and a bond distance r0 = 12.72 Å7. Assuming a homogenous distribution of mass, the mass of each 

particle represents the sum of the masses of all atoms composing the three layers, thus m = 30,940.98 

g/mol. The total energy of the system is evaluated as Etot = Ebond + Eangle + Eadh, where Ebond is the 

energy stored in axial bond deformation, Eangle is the energy contribution from bending and Eadh 

describes adhesion. The bonds are evaluated on the basis of a series of harmonic potentials summing 

over all bonded pairs of beads, 𝐸bond = ∑ 𝜑b(𝑟)bonds . The stress-strain behavior of an Aβ(1-40) 

amyloid fibril under tensile and compressive loading is non-linear and, in particular, both cases 

exhibit an increase of modulus from 2.34 GPa (for less than 0.168% strain in compression and 

0.266% strain in tension), to 12.43 GPa for compression and 18.05 GPa for tension as reported in 

Ref. 13. Incorporating these results the bond energy function (accounting for nonlinearities) is 

expressed as: 

𝜑b = 1
2
�
𝑘b𝑠(𝑟stiff

𝑐 − 𝑟0)2 + 𝑘b𝑐(𝑟 − 𝑟stiff
𝑐 )2,

𝑘b𝑠(𝑟 − 𝑟0)2,
𝑘b𝑠(𝑟stiff

𝑡 − 𝑟0)2 + 𝑘b𝑡(𝑟 − 𝑟stiff
𝑡 )2,
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𝑐 < 𝑟 < 𝑟stiff

𝑡  
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Here 𝑘b𝑖   represents the spring constant relative to the strain range i (c = compression, t = tension, and 

s = small deformation). Based on the elastic moduli Ei identified in 7, 𝑘b𝑖 = 𝐴𝐸𝑖 𝑟0⁄ , 𝑘bc =198.84 

kcal/(mol-Å2), 𝑘bs=  37.43 kcal/(mol-Å2) and 𝑘bt  = 288.74 kcal/(mol-Å2). A three-body potential is 

used to evaluate the bending energy contributions, given by the sum over all fibril angles, 𝐸angles =

∑ 𝜑a(𝜃)angles  and 𝜑a(𝜃) = 1 2⁄ 𝑘θ(𝜃 − 𝜃0)2
, 
where kθ = 8,739.66 kcal/mol is the spring constant 

related to the bending stiffness, θ is the angle formed by three beads, and θ0 = 180° (equilibrium 

angle). Considering the elastic deformation energy of a beam with a point load, 𝑘θ ∝ 𝐸𝐼 𝑟0⁄  .We use a 

Lennard-Jones model to describe interfibril adhesion, 𝐸adh = ∑ 𝜑LJ(𝑟)pairs , and 𝜑LJ(𝑟) =

4𝜀([𝜎 𝑟⁄ ]12 − [𝜎 𝑟⁄ ]6) with 𝜎 = 38.15 Å and 𝜀 = 0.5𝑟0𝛾0 = 27.91 kcal/(mol − Å) (following the 

approach put forth in Ref. 32). We note that the described mesoscale model is extremely simple by 

design, since the adopted bending potential contribution implies the isotropy of the fibrils bending 

stiffness, which can be considered correct only for fibrils longer than their helical pitch, which is 

approximately 120 nm. The coarse-grain mesoscale model is implemented in LAMMPS40. An initial 

racket-type starting configuration is obtained by imposing a curvature to the central part of the fibril 

as reported in Fig. 2A (IV). A ring shaped state is obtained starting from a fibril in helix-like 

configuration. All structures are relaxed with an NVT ensemble at 300 K and equilibrated until 

structural convergence is reached.  

2.3 Plaque assembly 

To attain large multi-fibril systems, amyloid plaques are assembled in silico via a modified procedure 

developed for nanotube assembly akin to an approach described in a previous study41, wherein twelve 

sequential layers of 20 fibrils (240 fibrils total) are deposited on a substrate and equilibrated (see Fig. 

4A; the same procedure was used to arrive at the plaque depicted in Fig. 1A). Each sequential layer is 

initially rotated by 60o in-plane to facilitated entanglement and random orientation upon deposition. 

During assembly, the system is constrained by a cylindrical boundary with a diameter equal to the 

fibril length to facilitate fibril interaction. Upon each layer deposition, the assembly is equilibrated at 

300 K for 2.5 ns. After all layers have been deposited, boundary constraints are removed and the 

plaque is equilibrated at 300 K for an additional 10 ns. The substrate is modeled by a Lennard-Jones 

wall potential, where 𝜑wall(𝑧) = 𝜀𝑤 �
2
15

[𝜎𝑤 𝑧⁄ ]9 − [𝜎𝑤 𝑧⁄ ]3�. Since it is not straightforward to 

directly link this strength of adsorption to experimental values, we choose parameters so as to mimic 

good ‘anchoring’ properties to the planar surface. Test cases indicate that deviations in the selected 

parameters (εw and σw) have a limited affect on the assembled structures. We note that the assembly 
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procedure is implemented to obtain randomly entangled structures and not intended to mimic 

physical plaque growth. 

2.4 Computational nanoindentation 

We apply computational nanoindentation to characterize the contact stiffness of the assembled 

plaques (as described above following a similar approach as outlined in a previous study41). The 

indentation process itself is simple, where an indenter tip is pressed into the material and the force–

displacement relationship is recorded (Fig. 4D). Indentation is simulated by the introduction of an 

indenter force field where a harmonic spherical indenter exerts a force of magnitude 𝐹(𝑟) =

𝐾(𝑟 − 𝑅ind)2, where K is the specified force constant (69.5 N/m),  r is the distance of a coarse-grain 

particle to the center of the indenter, and Rind is the radius of the indenter (50 nm). A constant 

indentation speed of 50 m s-1 was used. Both the force (F) and depth (dind) of the indenter tip are 

recorded during the simulation, resulting in the desired force–displacement relationship. Indentation 

is repeated several times at various locations in the plaque to account for random 

perturbations/variance and the average force-displacement curve is determined for each plaque. 

Using the relation for contact stiffness42, 𝐸contact = 𝑆�𝜋 4𝐴⁄ , where A is the contact area of the 

indenter and S is the calculated slope of the force-displacement curve. For the implemented spherical 

indenter, 𝐴 = 2𝜋𝑅indℎmax, where Rind is again the radius of the indenter, and hmax is the maximum 

depth of indentation (approx. 25 nm). It is noted that the calculated contact modulus (Econtact) does not 

necessarily reflect the Young’s modulus of the amyloid plaques but provides a means of mechanical 

comparison between the cases considered.  

3. Results and discussion 

3.1 Adhesion energies 

We first focus on quantifying fibril-fibril interactions, which derive from the combination of van der 

Waals, electrostatic and hydrophobic forces, here based on a full-atomistic model. We consider a 

system composed of two Aβ(1-40) amyloid fibrils as a model and determine the most stable 

arrangement and the corresponding adhesion energy. All possible configurations of two fibrils 

interacting laterally are taken into account (Fig. 1B). During the minimization and the subsequent 

relaxation (see Materials and Methods section for the details), the fibrils composing the systems 

reported in Fig 1B, rearrange thus optimizing the inter and intra-fibrils distances and interactions, but 

in the monitored time range, no further movement has been observed, nor switch of orientations of 
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the fibrils. Further changes in the orientation of a single fibril could be investigated using different 

molecular simulation techniques (such as replica exchange approaches), which can circumvent the 

high energetic barriers separating eventual local minima. However, the fibrils composing the systems 

reported in Fig. 1B (Panels III-VI) tend to move apart during the relaxation, revealing the lack of a 

sufficiently large interfibril interaction due to the decreased contact area implied by the 

corresponding orientation.  

For each case the total potential energy is averaged over the last 1 ns relaxation and the minimum 

energy value (E2) indicates the most favourable orientation (Fig. 1C and highlighted with a box in 

Fig. 1B). Similarly, for isolated fibrils, the average energy value E1 is estimated over the last 1 ns 

relaxation of a pair of sufficiently isolated fibrils7, 37. The adhesion energy per unit length γ0 is 

defined as (E2- E1)/l where l = 91.87 Å (fibril length). The value of the adhesion energy in the most 

favourable orientation is γ0= 4.39 ± 0.32 kcal/(mol-Å). The error on the value of the adhesion energy 

is estimated on the basis of the root mean square deviation relative to the last 1 ns relaxation 

calculated for both the energy values. The stability of this arrangement is mediated by a large contact 

area that promotes a great number of interactions among side chains. This arrangement also allows 

the system to maintain symmetry with respect to the fibril growth axis with twist periodicity in sync. 

However, the definition of the most stable configuration and of the corresponding value of γ0, does 

not take into account the presence of the above mentioned disordered amino acids, which could drive 

differently the interaction and the arrangement of the fibrils, causing a variation of the estimated 

adhesion energy γ0. The adhesion energy per unit area is defined as γA = (E2- E1)/Ac, where Ac =  

2,965.61 Å2 is the contact area between two fibrils, estimated based on the length of 10 amino acids 

in the most inner part of the fibrils. This sequence is less affected by entropic perturbations and the 

variations of the corresponding contact area are reduced significantly. The adhesion energy per unit 

area is γA=0.14 kcal/(mol-Å2). This value is on the same order of magnitude of the adhesion energy of 

graphene, ranging from 0.22 kcal/(mol-Å2)43 to 0.37 kcal/(mol-Å2)44, or for the gecko spatulae that 

feature an adhesion energy of 0.07- 0.09 kcal/(mol-Å2)43.  

3.2 Analysis of the self-folded fibrils: nanorackets and nanorings 

Self-folded configurations of amyloid fibrils into racket-like and ring-shape forms at the mesoscale 

are considered here as simple models to develop fundamental insight into fibril aggregation 

mechanisms, by analyzing the effect of varying adhesion energy on resulting structures and stability. 

Despite the experimental evidences of self-folded amyloid fibrils, in particular of ring-shaped 
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forms45, to achieve a common structure of mechanical comparison, here the studied configurations 

are built imposing an initial defined curvature to the fibrils. These structures will be referred to as 

‘self-folded’ for the purpose of this study.  

Self-folding analysis has been used in earlier works applied to other systems including carbon 

nanotubes46 and graphene44 and provides a simple yet powerful method to gain fundamental insight 

into self-assembly mechanisms of nanostructures. Here, we consider fibrils in racket- and ring-type 

shape, as reported in Fig. 2A (IV and V), respectively. For both configurations, the stability of the 

folded amyloid fibril with length L is driven by the balance of the energy required to bend the fibril 

and the energy gained by the attractive forces, which are proportional to the bending stiffness, EI, and 

the adhesion energy, γ0, respectively. A contact length, Lc is defined by the adhered segments. For the 

racket-type structure, the corresponding folded length is 2Lf  = L-2Lc (Fig. 2A (II and IV)). Here, we 

approximate the bending energy of a fibril using Euler-Bernoulli beam theory, where the bending 

energy per unit length is described as 𝑈bend = 𝐸𝐼 ∫ (𝑑2𝑢 𝑑𝑥2⁄ )2𝑑𝑥𝐿f
0 , and where 𝑢(𝑥) is deflection. It 

has been shown that shear effects can be important for the deformation of such layered protein 

structures47, however, the fibrils studied here are considered long enough to neglect such 

contributions. The adhesion energy is expressed as 𝑈adhesion = 𝛾𝐿c. Applying appropriate beam 

boundary conditions, and solving for 

 𝑈total = 𝑈bend − 𝑈adhesion = 2 𝜋2

𝐿f
𝐸𝐼 + 2𝛾𝐿f − 𝛾𝐿       (2) 

where 2𝐿f < 𝐿. From the minimization of the total energy, we predict the adhesion energy of a fibril. 

Letting  𝑑𝑈 𝑑𝐿f⁄ = 0, we find: 

𝛾 = 𝐸𝐼 �𝜋
𝐿f
�
2
.            (3) 

A similar derivation can be done for ring-type structures (Figs. 2A (III and V). Unlike racket-type 

folding, for overlapped ring structures, the adhered contact length, Lc, is also part of the folded 

length, approximating a circle of radius r. Thus, the fibril length is defined as 𝐿 = 2𝜋𝑟 + 𝐿𝑐. The 

elastic strain energy is defined as 𝑈ring = 1
2 ∫ 𝐸𝐼 ∙ 𝜅2𝐿

0 𝑑𝑠, where 𝜅 = 1 𝑟2⁄ , while the adhesion energy 

is defined as before (𝛾𝐿c). Allowing 𝑈total = 𝑈ring − 𝑈adhesion, and minimizing with respect to the 

radius of the ring, it can be shown that: 

𝛾 = 𝐸𝐼∙𝐿
2𝜋∙𝑟3

            (4) 
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Ring-shape structures show a dependence on the total length of the fibril L, which undergoes bending 

and contributes to both the adhesion and bending energy terms. Similar results have been shown in 

previous work for self-folding filamentous structures44, 46, 48, 49 enabling a direct link between 

continuum theory and simulation or experiment. The simplified relations given in eq. (3) or eq. (4) 

can be used to compute the adhesion energy of an amyloid fibril if the folded length Lf can be 

measured from folded amyloidogenic structures (e.g. from experiment).   

We now apply the coarse-grained model and consider amyloid fibrils with length L ≈255 nm and 

study the self-folding process to investigate the effect of adhesion energy on its stability in racket-

type configurations. This analysis is motivated by the structure of amyloid plaques shown in Fig. 

1A(I) as well as the visualization in Fig. 2A that suggest that self-interactions of amyloid fibrils play 

an important role in plaque formation and as a result, in defining their structural and mechanical 

properties.  We find that the fibril can be robustly folded into a stable racket- or ring-type shape, as 

demonstrated in Figs. 2B and C, for the reference adhesion energy γ/γ0=1. This shows that in spite of 

the great stiffness of amyloid fibrils, the relatively weak interfibril interactions are sufficiently strong 

to drive the formation of a highly bent self-folded state.  We systematically analyze the stability of 

the fibril in the racket-like and ring configuration by tuning the adhesion energy via variations of the 

ratio γ/γ0. This approach allows us to quantify the effect of the adhesion energy on the geometry of 

the self-folded structure, and to effectively model changed environmental conditions such as 

variations in pH, temperature, pressure and solvent that directly affect the interfibril adhesion 

(variations of these conditions have been experimentally analyzed by changing the solvent and by 

studying the variation of the fibril self-folding and aggregation rates50). The relaxed self-folded 

configurations are visualized in Figs. 2B and 2C, where snapshots of the relaxed amyloid fibrils 

correspond to different adhesion energies. We find that in both cases, higher values of the adhesion 

energy increase the contact length of the self-folded fibril, while it reduces if the adhesion energy is 

lowered. The values of contact and folded lengths (Lc and Lf) of the fibril in racket-type state are 

plotted over the adhesion energy in Fig. 3A.  

Many experimental probes focus on simple mechanical assays (e.g. AFM bending tests), and, by 

extension, an inspection of folded structures provides a direct physical link between mechanical and 

energetic properties by using the results reported here. Specifically, the results reported here can be 

directly used by experimentalists to back-calculate the adhesion energy of the studied amyloid fibrils: 

geometric measurements of the rackety-type folded fibrils (“nanorackets”) obtained in the 

experiments provide evaluations of the contact (Lc) and free (Lf) lengths (Fig. 3B), and a bending 
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stiffness can be determined from mechanical testing. Likewise, the radius, r, and contact length, Lc, 

of ring-type structures (“nanorings”) can be measured. From this data, the corresponding adhesion 

energy can be estimated (Figs. 3C and 3D; eq. (3) and eq. (4)).  

Moreover, from eq. (2), applying the condition that self-folding occurs when 𝑈total < 0 (i.e. the 

formation of folded structure is favorable), it can be seen that the critical total length to facilitate 

energetically stable self-folding is 𝐿crit,racket = 4𝜋�𝐸𝐼 𝛾⁄ . For the reference case considered here in 

which 𝛾 = 𝛾0, 𝐿crit ≈ 115 nm, which is smaller than the length of the fibril considered here and 

agrees with the observation in Fig. 2B that the self-folded state is stable.  On the other hand, for the 

lowest adhesion energy modeled, γ/γ0 = 0.1, we find 𝐿crit ≈ 365 nm and thus we expect an unstable, 

self-straightening fibril, also in direct agreement with the findings shown in Fig. 2B. Specifically, the 

analysis predicts that a decrease of the adhesion energy does not result in the unfolding of the racket-

like structure until a critical value is reached (γ/γ0 < 0.2, or an adhesion energy per unit area of 0.028 

kcal/(mol-Å2) and thus much smaller than van der Waals interactions as found in gecko spatulae). 

Below this level of adhesion, the folded length (2Lf) required to achieve an energy minimum (as per 

eq. (2)) exceeds the total length of the fibril (L) considered here, L ≈ 255 nm. This result shows that 

folded amyloid fibrils are stable in folded states even when the fibril-fibril interaction is rather small, 

suggesting a strong propensity towards aggregation.  

We also observe that increasing the adhesion energy results in a more prominent energy minimum, 

and thus more stable folded configurations as shown in Fig. 3C.  The critical length to facilitate self-

folding is dependent on both the adhesion energy and bending stiffness, which can vary according to 

specific experimental and environmental conditions.  Similarly, we find for ring-type structures, 

𝐿crit,ring ≈ 3.67𝜋�𝐸𝐼 𝛾⁄ . Thus, the formation of stable ring-type structures occurs at a slightly 

shorter fibril length. The analysis of the critical folding length and similarly, the diameter of amyloids 

folded into ring structures, provide a quantitative estimate of the length scale at which self-assembled 

amyloid structures emerge, resulting in a characteristic length-scale on the order of one hundred 

nanometers for the reference adhesion energy. This is an important finding that defines a scale at 

which mechanical properties of assemblies of amyloids are expected to show a significant change 

since the formation of entanglements based on racket-like structures and rings will induce novel 

deformation mechanisms. Specifically, assemblies of amyloid fibrils with short lengths at 𝐿 < 𝐿crit 

are expected to feature more organized structures since bending of fibrils into complex entanglements 
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due to interfibril adhesion is not possible, whereas assemblies of amyloids with 𝐿 ≥ 𝐿crit will feature 

a greater level of disorder.  

To directly test this hypothesis and to potentially exploit this critical length-scale, we assemble and 

characterize large-scale multi-fibril assemblies (termed “plaques”).  For the assembled plaques, we 

consider a constant adhesion energy 𝛾 = 𝛾0, such that 𝐿crit ≈ 115 nm. We specifically consider fibril 

constituents of three distinct lengths: 200 nm (above critical length), 100 nm (approximately critical 

length), and 50 nm (below critical length). Upon equilibration, the length of the fibrils has a direct 

impact on the final structure. As depicted in Fig. 4B, when 𝐿 = 200 nm > 𝐿crit, the fibrils are more 

entangled and disordered. Loops, folds, and voids are clearly visible within the plaque structure, with 

no apparent preferred in-plane orientation. Conversely, when 𝐿 = 100 nm ≈ 𝐿crit, the fibrils tend to 

align along a common axis, while for 𝐿 = 50 nm < 𝐿crit  the self-alignment results in a  highly 

ordered in-plane configuration. It is noted that the assembly procedure is identical in all cases, and 

that it deposits layers in rotated orientations that induces entanglements and fibril folding. For short 

fibrils, self-alignment occurs upon equilibration and relaxation, and results in a more dense and 

ordered amyloid plaque. The mechanical analysis provided for fibril self-folding (Eq. (2) through Eq. 

(4)) cannot be applied directly to analyze fibrils within the plaque (due to multi-fibril interactions), 

but should be indicative of the length-scale in which plaques transition from an ordered to an 

entangled state. To quantify the state of disorder, we calculate the angle distribution along each fibril 

(i.e. multiple turns and folds within a fibril indicates a range of angle distributions, whereas aligned 

fibrils are relatively straight). For comparison, the deviation in angle from 180-degrees (i.e. perfectly 

linear) is calculated for each defined coarse-grain triple along all fibrils within the plaque and the 

frequency distribution plotted from 0 to 12 degrees (Fig. 4C). The peaks in the distribution are 

relative to the average curvature of the fibrils, and occur between 0o-0.5o for 50 nm fibrils, indicating 

an extremely high linearity, whereas 1.0o-1.5o for 100 nm fibrils and 1.5o-2.0o for the 200 nm fibrils.  

The relatively small angles are attributed to the stiffness of the fibrils, but peaks decrease in 

magnitude and the distribution of angles widens as the length of the fibrils increase as the fibril length 

increases. For or the current assembled plaques, the angle distributions are depicted in Fig. 4C, 

clearly illustrating a higher level of disorder when 𝐿 > 𝐿crit, as the range of calculated angles 

increases.  

We also find that this changed structure has important implications on the mechanical properties, 

shown in Fig. 4D, which we assess via computational nanoindentation. The simulation of a 

nanoindentation is beneficial, as such investigations can be directly linked to actual physical 
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experiments and providing a critical connection between empirical results and theoretical basis. 

Indentation is carried out to a depth of 25 nm for the 200 nm and 100 nm fibril plaques, while limited 

to 12.5 nm for the 50 nm fibril plaque as the smaller system becomes unstable. Further, for the 

smaller plaque system, we see a change in deformation mechanism under indentation. Due to the 

extremely high alignment of the fibril layers in the 50 nm fibril plaque, upon indentation, the loaded 

fibrils undergo “slip” along the adhesion plane, similar to slip of lattice planes in a crystalline 

material such as a metal. These slip events are reflected in regular drops of the force-displacement 

behavior (Fig. 4D), and occur approximately when the indentation depth reaches each sequential 

layer (3.6 nm to 4.0 nm). The deviation from a purely elastic response inhibits the rigorous 

calculation of the contact modulus, but for a qualitative comparison the contact stiffness, S, is 

calculated from the final linear regime prior to slip. From the resulting force-displacement curves, we 

find that 𝐸contact ≈ 0.67 GPa for 𝐿 = 200 nm, 1.88 GPa for 𝐿 = 100 nm, and 3.26 GPa for 𝐿 = 50 

nm. Although the calculated contact modulus for the smallest plaque is an estimate due to the 

uncertainty in fitting, the force-displacement response clearly indicates higher contact stiffness. This 

immense decrease in stiffness (over 450%) is attributed to the increased level of disorder within the 

larger system, and suggests the potential tunability of mechanical properties as a function of fibril 

length.  

Aggregations of amyloid fibrils typically have lengths on the order of hundreds of nanometers, thus 

favoring the presence of such folds even with relatively small adhesion energies. Additionally, 

folding can occur between multiple fibrils under contact, as well the potential for multiple folds of 

ultra-long fibrils, facilitating growth and structural stability of aggregates and plaques. Such folding 

may result in complex mechanical entanglements, which, under various chemical environments that 

typically change the adhesion strength, maintain structural stability, serving to enhance the robustness 

of plaque formations. Further systematic investigation of adhesion strength variation, intermediate 

lengths scales, and the effect of mixed lengths is currently being studied.   

The self-folding analysis reported here gives additional insight for the understanding of different 

shapes of amyloid fibrils at the mesoscale, such as the formation of end-to-end ring-shaped 

assemblies that have indeed been observed in the deposition of β-microglobuline amyloid fibrils or in 

the synthesis of insulin fibrils under pressure45. Other studies suggested that the inherently crowded 

environment of a living cell accelerates amyloid formation and aggregation51, 52, while others relate 

the self assembly process to the presence of chaperone molecules53, or to increased peptide 

concentrations, altered pH and changed environmental conditions50. The results of our model propose 
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a simple physical explanation of amyloid aggregation on the basis of adhesion between fibrils or parts 

of the same fibril.  

4. Conclusion 

The self-folding analysis of a single long fibril provides fundamental insight into the effect of fibril-

fibril interactions (Figs. 2 and 3), which are responsible of the further aggregation of disordered and 

complex systems into amyloid plaques. Our computational and analytical multiscale study, bridging 

scales from Angstroms to micrometers, showed that the formation of these self-folded aggregates can 

be understood based on a balance of bending energy versus adhesion energy. The adhesion energy, as 

one of the key players driving the self-assembly and self-organization of amyloids into plaques, 

remains a key missing parameter in the range of physical properties associated with this class of 

protein materials. In this context, our analysis provides a simple and direct approach to calculate the 

adhesion energy based solely on the geometry of self-folded amyloid fibrils that can be easily 

measured from experiment. The estimation of the adhesion energy and of its variation according to 

the chemical environment represent an important step further to the understanding of amyloids self-

assembly driving forces and for their effective utilization for the generation of new nanostructured 

materials and specifically for the applications in nanotechnology. Their performance in extreme 

mechanical, chemical or thermal conditions is highly dependent on the combination of the 

mechanical properties of both the individual fibrils and of the amyloid aggregates and the adhesive 

forces, which keep the self-assembled structures stable and promote the hierarchical organization of 

the material. Indeed, in a study of aggregation of a large number of amyloid fibrils into plaques we 

have directly demonstrated that the length of amyloid fibrils has important implications on the 

structure and mechanical properties of plaques (Fig. 4). Our data shows that for fibrils below a 

critical length highly ordered and stiff plaques emerge since the adhesion forces between fibrils are 

not sufficient to cause major bending. Conversely, for fibrils longer than a critical length highly 

entangled and disordered plaques are formed, which are significantly softer. This is explained by the 

fact that longer fibrils are increasingly stable in self-folded and ring-like geometries. 
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Figures and figure captions 

 

Fig. 1.  Multiscale representation of Aβ(1-40) amyloid fibrils and evaluation of the fibril-fibril 

adhesion. A, Hierarchical structure of amyloid plaques from the Angstrom to micrometer length-

scales. (I) Schematic image of an amyloid plaque54, which appears as a complex ensemble of 

entangled fibers. (II) Schematic representation of a single amyloid fibril at the nanoscale. (III) 

Coarse-grain representation of the amyloid fibril. (IV) Representation of a two-fold symmetric Aβ(1-

40) amyloid fibril with atomistic details. B, Schematics of all possible arrangements of two amyloid 

fibrils. C, Relaxed system consisting of two beta-cross amyloid fibrils in the most stable 

configuration among all possible ones reported in panel B (II). The approach shown in panels B and 

C has a potential error associated with it (due to limitations of the computational approach); thus, the 

resulting adhesion energy is taken as a base value that is varied over great ranges in the study 

reported here.  

  



17 
 

 

Fig. 2. Mesoscale representation of amyloid plaques and of fibrils in self-folded and ring-shaped 

states. A, Visualization of a complex amyloid plaque modeled with the coarse-grain model described 

here (I). Examples of self-folded and ring-shaped amyloid fibrils identified within the larger plaque 

are depicted in subplots (II) and (III), respectively. Corresponding schematics of their geometry are 

shown in subplots (IV) and (V) with a definition of all key variables. B and C, Snapshots of amyloid 

fibrils in racket-like and ring-shaped states, obtained after relaxation at different adhesion energies 

(adhesion energies quantified by γ/γ0).  
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Fig. 3. Effect of the adhesion energy on amyloid fibrils in self folded and ring-shaped configurations. 

A, Contact length (Lc) and folded length (Lf) of an amyloid fibril in a racket-like configuration as a 

function of varied adhesion energy. B, Simple procedure to approximate the adhesion energy of 

amyloid fibrils via a geometric analysis of a stable folded structure with known bending stiffness, EI 

(see Eq. (3) and Eq. (4)). C and D, Total energy (Eq. (3) and Eq. (4)), as a function of folded length 

(in racket-type and ring-shaped state, respectively), demonstrating the decrease of the folded length 

required as a function of adhesion energy.  
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Fig. 4. Structural and mechanical investigation of large-scale amyloid plaques. A, Schematic of 

assembly procedure in which sequential layers of fibrils are deposited on a substrate (adapted from 

reference 41); distinct layers of fibrils colored for clarity. B, Assembled plaques after relaxation and 

equilibration for fibril lengths greater than critical length (200 nm), close to critical length (100 nm), 

and less than critical length (50 nm). Plaques assembled with fibrils longer than the critical length 

maintain an entangled, disordered structure, with frequent occurrences of folds and loops, whereas 

plaques assembled with short fibrils undergo self-alignment under equilibration, resulting in a more 

ordered nanostructure. C, Quantification of disorder via angle distribution (frequency of angles 

among those defined by the coarse-grain fibrils). Here, the peak frequency is representative of 

average curvature of a single fibril. For the shortest fibrils (50 nm), over 90% of the angles are less 

than 1.0o, indicating relatively linear arrangements (frequency peaks omitted for clarity); for the 100 

nm fibrils, over 75% of the angles are less than 2.5o, again indicating little curvature, whereas the 

longer fibrils (200 nm) have a much broader range of angles due to the inherent folds and loops. D, 

Schematic and plot of computational nanoindentation of the 200 nm, 100 nm, and 50 nm fibril 

plaques. Contact modulus (and contact stiffness) increases from approximately 0.67 GPa to 1.88 GPa 

as the fibril length decreases from 200 nm to 100 nm. Contact modulus approximated as 3.26 GPa for 

50 nm fibril plaques, which undergo fibril layer “slip” under indentation (reflected by regular drops 
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in force-displacement response). Variation of the length of the constituent fibrils illustrates the 

potential tunability of both the structural and mechanical properties of plaques and higher-order 

nanostructures.  
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