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3.1 � Introduction

To illustrate the coarse-grain parameterization and multiscale methodology, we pro-
vide a more thorough discussion regarding the development of specific mesoscopic 
models. The focus is on the coarse-grain potential development, to provide examples 
of the model formulation framework described in depth in Chapter 2. It is noted that 
some equations are repeated to provide a self-contained and complete description of 
each model formulation within each case.

The three chosen case studies are presented to exemplify both the finer-trains-
coarser multiscale paradigm (that is, use of full atomistic test suites to parameterize 
the coarse-grain potentials), as well as a system-dependent approach (the developed 
coarse-grain potentials are unique to the intended application) as previously dis-
cussed. Our intent is to differentiate general coarse-graining frameworks [such as 
the aforementioned elastic network model (ENM) or MARTINI force field] from 
system-specific coarse-graining development. The merits of either approach, of 
course, are both subjective and problem-specific and judicious consideration of the 
resulting simulation design and intent is required.

For a broader perspective, each case study presented represents a fundamental 
advantage to all coarse-graining approaches, and thus can be considered as arche-
type coarse-graining problems. Sections 3.1.1 through 3.1.3 discuss characteristics of 
the case studies presented in this chapter.

3.1.1 �I nvestigate the Structure–Property Relation at the Mesoscale 

A primary motivation for the development of a coarse-grain representation is to pro-
vide a means to directly model system behavior at the mesoscopic scale. With the 
coarse-grained representation, structures approaching micrometers in scale can be 
efficiently modeled. Because of the use of a finer-trains-coarser approach, the atomis-
tic behavior and intramolecular interactions are maintained, thereby providing a nec-
essary intermediate step reconciling the gap between atomistic and continuum theory. 
Here, we specifically wish to investigate two materials, carbon nanotubes and colla-
gen, that form hierarchical secondary structures at length scales beyond the capacity 
of full atomistic representation, but yet are dependent on intermolecular adhesion and 
interaction. These secondary structures (nanotube arrays and collagen fibrils) have 
unique structural arrangements that directly affect the mechanical properties. Thus, 
neither an atomistic chemical description nor continuum material properties are suf-
ficient to describe the structure-property relation at the mesoscale. It is intended that 
the coarse-grain representation can be used to investigate such behavior. The coarse-
grain models we present provide a method to model and investigate this class of nano-
structures that fall precariously between atomistic and continuum techniques.
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3.1.2 �E xtend Atomistic Behavior to Inaccessible Time- and Length-Scales

A fundamental limitation of full atomistic molecular dynamics simulations is the 
accessible (or inaccessible) time and length scales. As a consequence, it is frequently 
difficult to extend theoretically well-described atomistic behavior to physically rel-
evant time and length regimes. By integrating atomistic behavior into developed 
coarse-grain potentials, larger systems can be simulated for longer time spans, while 
representing complex molecular interactions and properties. Precise definition of the 
intended behavior is required to develop accurate coarse-grain representation. Case 
Study II presents the development of a coarse-grain model to represent the unfold-
ing behavior of alpha-helical protein domains. The unfolding behavior is initiated 
by the rupture of hydrogen bonds—an unquestionable atomistic response—and is 
supported by full atomistic simulations. Coarse-graining is introduced here to both 
examine the length dependencies of this unfolding response and investigate such 
proteins in networked systems (as found in biological cells and membranes). 

3.1.3 � Minimize Degrees of Freedom for Large Systems

Simulations of molecular systems in solution are often hindered by the computational 
overhead of calculation of the reactions of water molecules, regardless of the inter-
action with the relevant macromolecule. Indeed, the degrees of freedom associated 
with the solvent can exceed the macromolecule by an order of magnitude or more. 
By design, parameterization of coarse-grain potentials fully integrates the effects of 
water molecules, eliminating the need for either explicit water molecule represen-
tations or applied implicit water force fields. Case Study III illustrates the coarse-
graining of polymer-tethered fullerenes to allow the investigation of self-association 
of such large nanoparticles in solution and efficient investigation of the effects of 
parameters such as molecular weight, polymer architecture, and particle density.

There is significant overlap for all presented case studies in the sense that each 
investigates the structure–property relationship, extends the accessible time and 
length scales, and reduces the number of degrees of freedom. However, each is differ-
entiated by the associated advantage for coarse-graining, and the approach for each 
system subsequently differs based on intent and utilization of the model. Relevant 
applications for each model are described to provide an understanding of the inten-
tions and benefits of the coarse-grain representation. The discussion of applications 
is relatively brief, to emphasize model development and intent rather than results of 
specific investigations. The reader is encouraged to refer to the cited literature for 
each case study for more details.

3.2 �C ase Study I: Carbon Nanotubes 
and Tropocollagen

At the atomistic scale, carbon nanotubes (CNTs) [1,2] and collagen differ in terms 
of structure and behavior. Carbon nanotubes consist of rolled sheets of graphene 
(single-layer bonded carbon), which form rigid cylindrical structures with high 
aspect ratios (Figure 3.1a). Carbon nanotubes are among the most widely studied 
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nanomaterials, with many potential applications that take advantage of their unique 
mechanical, electrical, thermal, and optical properties [6]. There are many concur-
rent investigations involving carbon nanotubes, ranging from experimental synthesis 
to atomistic and continuum modeling with a focus on a variety of properties, behav-
iors, and applications. The superior mechanical properties of carbon nanotubes are 
appealing for their potential use in novel nanomaterials. For instance, the Young’s 
modulus of a single-walled nanotube approaches a terapascal (1012 Pa) [7], imply-
ing one of the strongest known synthesized materials in terms of elastic modulus 
and ultimate tensile strength [8]. Collagen, in contrast, is a protein-based material, 
composed of polypeptide chains of various constituent amino acids (Figure 3.1b). A 
tropocollagen molecule is composed of three polypeptide chains arrange in a helical 
structure, stabilized by hydrogen bonding between different residues [3–5,9]. The 
Young’s modulus of tropocollagen is on the order of 4 to 10 GPa [3, 10–12]. Materials 
based on proteins hold particular promise because of their great flexibility in usage 
and their applications and the potential integration of technology and biology, allow-
ing translation of nature’s structural concepts into engineered materials [13].

The motivating factor for the coarse-graining of both carbon nanotubes and col-
lagen fibrils (and fibers) is the investigation of the materials at the mesoscopic hier-
archical level. For carbon nanotubes, a well-known behavior is intertube bonding 
due to weak van der Waals interactions, which results in the formation of bundles 
that contain hundreds or thousands of individual nanotubes (Figure 3.1a, inset). At 
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Figure 3.1  (See color insert following page 146.) Overview of carbon nanotube and 
tropocollagen systems. (a) Depiction of full atomistic representation of (5,5) carbon nanotube. 
Subplots show higher order hierarchical arrangements, including (i) SEM of single bundle 
of carbon nanotubes (Reprinted in part with permission from McClain, D., et al., J. Phys. 
Chem. C, 111(20), 7514–7520, 2007. Copyright 2007 American Chemistry Society.) and (ii) 
SEM micrograph of vertically aligned carbon nanotube array (Reprinted in part with permis-
sion from Yang, J. and Dai, L., J. Phys. Chem. B, 107, 12387–12390, 2003. Copyright 2003 
American Chemical Society.). (b) Schematic view of some of the hierarchical features of 
collagen, ranging from the amino acid sequence level at nanoscale up to the scale of collagen 
fibers with lengths on the order of 10 μm. (From Buehler, M.J., Keten, S., and Ackbarow, T., 
Prog. Mater. Sci., 53, 1101–1241, 2008.) The coarse-grain model development discussed here 
is focused on the behavior of tropocollagen molecules (component level) and their role in the 
mechanical behavior and properties of collagen fibrils (system level).
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the microscale, collagen fibrils consisting of staggered, crosslinked tropocollagen 
molecules form the basis for biological tissues such as tendon and bone. The forma-
tion of these mesoscopic structures complicates the full atomistic investigation of the 
mechanical properties. However, due to the homogeneous and fibrillar structure of 
both carbon nanotubes and tropocollagen, the formulation of their respective coarse-
grain models is the same.

3.2.1 � Model Development

The coarse-grain model developed is intended to capture two essential components 
of both carbon nanotubes and tropocollagen: (1) the mechanical behavior of the 
fibrillar structure for both stretching and bending and (2) the intermolecular inter-
actions between adjacent macromolecules. The intent is to apply a coarse-graining 
approach to achieve a mechanical response while maintaining atomistic interactions, 
an approach more apropos than equivalent continuum or elasticity techniques due 
to the system dependence on intermolecular interactions. We thus define the energy 
landscape as

	 ECG = Ebond + Eangle + Epair	 (3.1)

To obtain the necessary parameters for these potentials, the atomistic behavior 
of each must be investigated and full atomistic molecular dynamics simulations are 
undertaken to determine key mechanical property values.

For the current fibrillar structures, the coarse-grain bond potential, Ebond, is repre-
sentative of axial strain. Furthermore, the intended coarse-grain application is lim-
ited to tensile stretching. Thus, a simple simulation is developed to determine the 
force-displacement or stress-strain relationship of the macromolecule. We apply ten-
sile deformation by keeping one end of the molecule fixed and slowly displacing the 
other end in the axial direction (Figure 3.2a). In terms of mechanical properties, this 
relationship can be converted to Young’s modulus, E. It is noted that the atomistic 
behavior is not meant to correspond one-to-one with continuum properties such as 
Young’s modulus, which is typically limited to an elastic isotropic material, but such 
properties provide appropriate, conventional, and convenient measures for behavior 
such as axial stretching.

From the full atomistic results (Figure 3.3), the axial stretching behavior of both 
carbon nanotubes and tropocollagen consists of two regimes. For carbon nanotubes, 
there is nonlinear softening and plastic deformation due to the yielding of carbon 
bonds, whereas tropocollagen undergoes nonlinear stiffening due to the extension 
and unfolding of the helical arrangement and transition to direct straining of the 
protein backbone. Both carbon nanotubes and tropocollagen fracture at an ultimate 
strain. Although the nonlinear behavior is the result of complex atomic interactions, 
it is a trivial simplification to integrate the desired effect into the coarse-grain poten-
tial. We can determine Young’s modulus either directly from stress-strain results, or 
indirectly via force-displacement results, depending on the output and sophistication 
of the full atomistic simulation, where
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Figure 3.2  Atomistic “test suite” and corresponding coarse-grain potential behavior: 
(a) axial stretching, bond potential; (b) three-point bending, angle potential; (c) surface adhe-
sion; pair potential.
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Figure 3.3  (See color insert following page 146.) Full atomistic simulation results for 
the axial stretching of (a) a single-walled carbon nanotube (From Buehler, M.J., J. Mater. Res. 
21(11), 2855–2869, 2006. With permission.) and (b) a tropocollagen molecule (From Buehler, 
M.J., J. Mater. Res., 21(8), 1947–1961, 2006. With permission.). The nanotube results depict 
a softening behavior as the carbon bonds yield at high strain, while the tropocollagen results 
depict a stiffening behavior, as the molecule undergoes extension of the helical structure 
before direct straining of the protein backbone.
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where σ and ε are the stress and strain, F and r are the force and displacement, 
and Ac and r0 are the cross-sectional area (assumed constant) and initial length. For 
small deformation (initial stretching regime), the Young’s modulus for a (5,5) single-
walled carbon nanotube was calculated to be approximately 2 TPa, while the modu-
lus for  tropocollagen was determined to be on the order of 8 GPa. For nonlinear 
behavior, the Young’s modulus is calculated for each regime independently. The total 
bond energy of the coarse-grain system is given by the sum over all bonded interac-
tions or:

	

E rtbond

bonds

( )= ∑ φ 	 (3.3)

For axial stretching, a simple harmonic spring is used to determine the energy 
between all bonded pairs of particles in the system, given by

	
φt t tr k r r k r( )∆ ∆= −( ) =1

2
1
20

2 2 ,	 (3.4)

with kt as the spring constant relating distance, r, between two particles relative to the 
equilibrium distance, r0. We assume each linear regime can be approximated using 
the equivalent elastic strain energy, 
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For the integration over the volume, V , we assume a constant cross-section, Ac, such 
that V A r= c 0 , define strain, ε = Δr/r0, and stress, σ = Eε. We note that we utilized 
the full atomistic simulations to determine Young’s modulus specifically to allow 
this formulation of strain energy in our parameterization. Caution must be taken 
not to overextend the significance of the atomistic to continuum equivalence. Here, 
we only apply Young’s modulus to characterize the work required to stretch our 
atomistic model and thus train the coarse-grain potential. It is not implied that either 
carbon nanotubes or tropocollagen can be suitably modeled by elastic formulations. 
Indeed, unlike the Young’s modulus of elastic isotropic materials, the modulus deter-
mined by atomistic simulation can differ depending on system properties, atomistic 
force field, boundary conditions, and loading rates (see Buehler [3,4], for example). 
For equivalent energy and consistent mechanical behavior, we let ϕt(Δr) = U(Δr) 
and find
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To account for the nonlinear stress-strain behavior under tensile loading, a bilinear 
model that has been used successfully in previous studies [15,16] is applied where:
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where H(rfracture – r) is the Heaviside function H(a), which is defined to be 0 for a < 
0 and 1 for a ≥ 0, kt

0 and kt
1 are the spring constants for the different deformation 

regimes, and β(r) is obtained from continuity conditions where:

	
β( )r k r r k r r r rt t= −( ) + −( ) −( )1

2
0

1 0
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A schematic of the resulting force-displacement relationship is shown in Figure 
3.4. The same technique can be extended to multiple linear regimes, maintaining 
a computationally inexpensive harmonic potential while incorporating nonlinear 
effects.

For the angle potential, Eangle, the bending stiffness and force-displacement behav-
ior of each structure is required. A simple three-point bending test is simulated via 
full atomistic representation, with the macromolecule subjected to bending by a cen-
ter point load (Figure 3.2b). From the results, we can determine the bending stiffness 

k1
t

0

Softening

Stiffening

r
rfracturer1

k0
t

Fr
δ(φ)t
δr=

Figure 3.4  Plot of bilinear force model to account for nonlinear stiffening (collagen) or 
softening (carbon nanotubes) and fracture, as described by the potential in Equation 3.24. 
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of the molecule, which we label EI, using continuum beam theory to describe the 
mechanics of our system:

	
EI

L F
d

=




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3

48
, 	 (3.9)

where L is the bent length of the molecule, F is the applied load at the center of 
the span, and d is the maximum displacement (at the load point). Application of 
beam-theory to atomistic simulations is a matter of judgment, as considerations 
must be made for deformation mechanisms (i.e., the presence of nonlinear plastic 
hinging or shear deformation). Furthermore, it is again stressed that the continuum 
interpretation of EI, the product of Young’s modulus and area moment of inertia, is 
not applicable to all atomistic simulations. Here we use EI as a convention to char-
acterize the bending stiffness of the molecule and assist in the formulation of the 
coarse-grain potential. However, for a rigid molecule such as a carbon nanotube, a 
continuum approximation can provide support to help validate resultant simulation 
values. Indeed, for the (5,5) single-walled carbon nanotube, full atomistic simulated 
bending results in a bending stiffness, EI, of 6.65 × 10−26 N-m2. Using the previously 
determined E of 2 TPa, with a conservative approximation of I (assuming a solid cyl-
inder with diameter 6.8 Å), we calculate a bending stiffness, EItheoretical, of 2.1 × 10−26 
N/m2, which is on the same order of magnitude as the atomistic results. The bending 
energy is given by a sum over all triples in the system, given by

	

Eangle

triples

( )= ∑ φ θθ 	 (3.10)

For bending, a rotational harmonic spring potential is used to determine the energy 
between all triples of particles in the system:

	
φ θ θ θθ θ( ) = −( )1
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with kθ as the spring constant relating bending angle, θ, between three particles rela-
tive to the equilibrium angle, θ0 = 180°. Using the equivalent elastic energy [17],
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For small deformation, θ – θ0 ≈ 2d/r0, and letting ϕθ(d) = U(d):

	
k

EI
rθ = 3

0

	 (3.13)
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We next characterize weak interactions (van der Waals interactions) between all pairs 
of coarse-grain elements, Epair. The weak interactions represent the adhesion between 
adjacent macromolecules, thus a full atomistic simulation with two molecules (usu-
ally copies of the original) is simulated to determine the adhesion  energy  (Fig
ure 3.2c). The energy barrier and equilibrium distance can be quickly determined by 
minimizing the atomistic system at two distinct states: (1) when the molecules are in 
contact energy minimum and (2) when the molecules are arbitrarily separated such 
that the interaction is negligible (the required separation is dependent on the rela-
tive adhesion strength of the simulated system). Differences in energy minima can 
be used to extract potential energy gain of adhesion (Eadhesion), while the geometric 
configuration at contact can be used to determine equilibrium distances (Dadhesion). A 
more sophisticated approach would be to determine the potential energy as a func-
tion of separation for a more accurate fitting of the coarse-grain potential. However, 
here we assume a LJ 12:6 function to represent adhesion, requiring only the potential 
energy well depth and equilibrium spacing for parameterization.

For the current bead-spring representation, we require the adhesion energy per 
unit length. From the atomistic simulation results, with an adhesion energy gain, 
Eadhesion, and a total molecular contact length, L, we define the adhesion energy per 
unit length, EL, as

	
E

E
LL

adhesion= 1
2

	 (3.14)

The total adhesion energy of the coarse-grain system is given by the sum over all 
pairs or
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We use the LJ 12:6 function for each pair interaction:
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where ε describes the energy well depth at equilibrium, and σ is the distance param-
eter. We assume that a pair-wise interaction between different particles is sufficient to 
describe the adhesion between the coarse-grain elements, and that there are no mul-
tibody considerations. For both carbon nanotubes and tropocollagen, this assump-
tion is deemed appropriate. As the coarse-grain particles are fundamentally point 
masses, we must assign a representative thickness to our representation via the pair 
potential. For the carbon nanotube, this is representative of the diameter of the tube. 
For a molecule such as tropocollagen, a thickness is approximated based on the 
molecular cross-section and assumed boundaries of atomistic interaction. We can 
then determine the distance parameter for the LJ function:
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σ = +D tadhesion

26
,	 (3.17)

where Dadhesion is the equilibrium distance between macromolecules determined via 
atomistic simulation, and t is the representative thickness. To illustrate, the equilib-
rium distance between two (5,5) single-walled carbon nanotubes was determined to 
be 3.70 Å, and each tube has a diameter of approximately 6.8 Å. Using the Equation 
3.17, we find σ ≈ 9.35 Å. Note that the equilibrium spacing between coarse-grain 
particles is now approximately 10.5 Å, on the order of the bead-spring bond length. 
Choice of bond length, r0, and choice of thickness, t, are critical parameters deter-
mining bead-bead interactions, and a balance may be required if intermolecular 
adhesion is a pertinent system behavior (Figure 3.5).

If the bond length is much greater than the equilibrium distance of the pair poten-
tial, r0 >> rLJ, it is possible for coarse-grain molecules to be in close contact, or 
even pass through each other under certain conditions. If the bond length is rela-
tively large, r0 > rLJ, the energy landscape about the equilibrium conformations is not 
smooth and can result in a “stick-slip” mechanism for molecules in contact as par-
ticles pass from neighbor to neighbor. Further, if the bond length is relatively short 
in comparison to equilibrium separation, r0 < rLJ, configurations may occur where a 
particle is in equilibrium with its second-nearest neighbors, while being repelled by 
the closest molecular surface. All arrangements of bond distance maintain energy 
equivalence between atomistic and coarse-grain potentials, but do not result in 
consistent mechanical behavior. In general, the bond length is chosen around the 
pair potential equilibrium distance, to ensure consistent mechanical behavior and 
a smooth energy landscape. For carbon nanotubes, we choose an equilibrium bead-
spacing, r0, of 10 Å (rLJ = 10.5 Å), while for tropocollagen, we choose a bead-spacing 
of 14 Å (rLJ = 16.5 Å).

The potential minimum, represented by the adhesion energy per unit length, EL, 
is given by ε for the LJ 12:6 function. This parameter in the coarse-grain model is 
chosen such that the interaction of a single pair of beads is the same as the adhesion 
energy for the representative length of the full atomistic model. For nearest neigh-
bors only, we find:

	 ε = ELr0	 (3.18)

To account for the interactions of next-nearest neighbors in the energy contribution 
to the atomistic results, we note, at equilibrium:

	 ELr0 = ϕ(1)(rLJ) + ϕ(2)(r2) + ϕ(3)(r3) + . . . + ϕ(n)(rn)	 (3.19)

Or, the total adhesion energy along the coarse-grain element length is the summation 
of the nearest-neighbor interactions, and “n” next-nearest neighbor interactions, ϕ(n)

(rn), at distances rn. Thus, for more than one nearest neighbor,

	
ε π π π= + + + +( )
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
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−
E r n

L
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2 3

1
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where π(i) = ϕ(1)(rLJ)/ϕ(i)(ri). We define the term (1 + π(2) + π(3) + … + π(n)) = β(n), and 
then the above equation reduces to

	
ε

β
= E r

n
L
( )

0 ,	 (3.21)

where β(n) is a numerical factor to account for next-nearest neighbor interactions. 
The calculation β(n) depends on the geometry of the coarse-grain system, as well as 

(a) r0 >> rLJ r0 

(b) r0 > rLJ

(c) r0 ~ rLJ

(d) r0 < rLJ

rLJ

i ii iii

Figure 3.5  Energy landscape as a result of the relative magnitudes of bond distance, r0, 
and pair potential equilibrium distance, rLJ. (a) r0 >> rLJ, potentially resulting in false equi-
librium configurations, or allowing the passing of particles through bonds; (b) r0 > rLJ, rough 
energy landscape resulting in a “stick-slip” mechanism for adjacent molecules; (c) r0 ~ rLJ, 
best practice for consistent mechanical behavior and smooth energy landscape; (d) r0 < rLJ, 
potential equilibrium with next-nearest neighbor, particle (ii) while being repelled by nearest 
neighbor, particle (iii), yet attracted to third-nearest neighbor, particle (i), resulting in incon-
sistent mechanical behavior.
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consideration for the cutoff of the pair potential (which dictates the extent of considered 
neighbors). For the current model of bead-springs for carbon nanotubes and tropocol-
lagen, we use the first six nearest neighbors, and find β(6) ≅ 1.1. The factor, β(n), thus 
represents a reduction in the energy well depth of individual pairs, as the full atomistic 
representation implicitly accounts for the interaction with next-nearest neighbors.

The final consideration for the mesoscopic coarse-grain model is the assignment 
of mass to the particles. The mass of each bead is determined by assuming a homo-
geneous distribution of mass in the molecular model. Given the homogeneous struc-
ture of CNTs and tropocollagen, this is a reasonable approximation. The mass of 
each bead will scale with the selection of equilibrium bond distance, r0, as each bead 
is representative of a larger portion of the full atomistic model. It behooves us to note 
that the full implication of this mass assignment approach to coarse-grain models 
on such thermodynamic properties as temperature effects has not been thoroughly 
investigated. However, the approach has proven adequate for investigations focusing 
on mechanical behavior at constant temperature conditions. 

Finally, we can now define the mesoscopic model potentials by six parameters: 
kt, r0, kθ, θ0, σ, and ε. The results from the described atomistic simulations are used 
to determine these six parameters via equilibrium conditions (r0, θ0, σ) and energy 
conservation (kt, kθ, ε) by imposing energy equivalence and consistent mechanical 
behavior. The parameters can be extended to represent nonlinear effects, as illustrated 
by the bilinear function implemented for the softening or stiffening of the carbon 
nanotube or tropocollagen respectively. As such, the parameter kt can be thought of 
as a set of parameters, depending on the complexity of the developed potential. All 
parameters of the coarse-grain potentials developed for a (5,5) SWCNT and a tropo-
collagen molecule are given in Table 3.1, derived completely from the results of full 

Table 3.1
Summary of Coarse-Grain Parameters for the Bond, Angle, and Pair 
Potentials of a (5,5) SWCNT and a Tropocollagen Molecule

Parameter SWCNT Tropocollagen

Equilibrium bead distance, r0 (Å) 10.00 14.00

Tensile stiffness parameter, kt
0 (kcal/mol/Å2) 1000.00 17.13

Tensile stiffness parameter, kt
1 (kcal/mol/Å2) 700.00 97.66

Hyperelastic parameter, r1 (Å) 10.50 18.20

Fracture parameter, rfracture (Å) 13.20 21.00

Equilibrium angle, θ0 (degrees) 180.00 180.00

Tensile stiffness parameter, kθ  (kcal/mol/ rad2) 14300.00 15.00

LJ parameter, ε (kcal/mol) 15.10 10.6

LJ parameter, σ (Å) 9.35 14.72

Source:	� Buehler, M. J., J. Mater. Res., 21(11), 2855–2869, 2006; Buehler, M. J., J. Mech. Behav. Biomed. 
Mater., 1(1), 59–67, 2008.

Note:	 Derived from atomistic modeling and corresponding to Equations 3.23, 3.30, 3.34, and 3.38, as 
well as Section 3.3.1 (units in brackets).
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atomistic simulations and the formulation described herein, specifically Equations 
3.6, 3.13, 3.17, and 3.21.

It is noted that in the case of tropocollagen, which is typically found in solution, 
the influence of the solvent on the behavior of the macromolecules is captured in 
the aforementioned model constants, such that no explicit modeling of solvent is 
required. Typically, such models do not require an explicit solvent nor an implicit 
solvent force field or frictional coefficient. The effect of solvation is captured implic-
itly by the derived parameters and integrated into the coarse-grain potentials.

3.2.2 � Model Applications

3.2.2.1 �A pplication 1: Self-Folding of Large Aspect Ratio 
Carbon Nanotubes and Nanotube Bundles

Large aspect ratio CNTs are extremely flexible and can be deformed into almost 
arbitrary shapes with relatively small energetical effort [1]. As illustrated by the 
development of the coarse-grain pair potential, different adjacent CNTs attract each 
other via van der Waals forces. If different parts of the same tube come sufficiently 
close, these attractive forces can initiate the formation of self-folded structures, 
where adjacent tube sections align, forming a racket-like structure. Such structures 
have been observed in MD simulations [18] as well as experimentally [19]. The 
stability, self-assembly, and mechanical properties of these structures are difficult 
to probe experimentally, and become computationally expensive for full atomistic 
simulations as the length of required nanotube increases. The described coarse-grain 
model was implemented to investigate the stability of folded structures, as well as the 
variation of folded configurations as a function of adhesion strength. Further, coarse-
grain nanotubes were simulated in bundled configurations (up to 100 nanotubes per 
bundle) to determine mechanical properties and behavior under compressive, tensile, 
and bending deformations (see Figure 3.6).

The simple mesoscale model developed can easily be adapted for different types 
of carbon nanotubes, and allows the direct simulation of hierarchical bundled struc-
tures. Such investigations can potentially be of use for the development of carbon-
nanotube-reinforced nanocomposites that attempt to utilize the adhesion properties 

Figure 3.6  Simulation snapshot of response of a CNT bundle under mechanical com-
pressive loading depicting significantly deformed/buckled shape. The bundle consists of 
81 nanotubes using coarse-grain representation. (From Buehler, M.J., J. Mater. Res. 21(11), 
2855–2869, 2006. With permission.)
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of nanotube clusters and exploit energetically favorable folded configurations and 
manipulate stable adhesion domains.

3.2.2.2 �A pplication 2: Mechanical and Surface Properties 
of Vertically Aligned CNT Arrays

Synthesis techniques have become adept at producing arrays of carbon nanotubes 
consisting of thousands of aligned tubes with similar diameters, lengths, and aspect 
ratios [2,20]. The properties of such arrays can be exploited to produce novel materi-
als with unique, amplified, and controlled mechanical properties. Again, it is dif-
ficult to simulate such systems via full atomistic representations due to the sheer 
number of required nanotubes and timescales required to mimic real physical and 
experimental processes.

A vertically aligned array of nanotubes was constructed using the discussed 
coarse-grain CNT model, and then subjected to nanoindentation simulations (Figure 
3.7). The goal was to probe the global behavior and mechanical properties of the array, 
through variations in nanotube parameters and application of external forces (in the 
form of a magnetic field). We again stress the use of a coarse-graining approach to 
investigate the system-level response of the array as opposed to the constituent nano-
tubes (component-level).

The coarse-grain model inherently allows the efficient varying of array geom-
etry (aspect ratios, array spacing, etc.) to investigate behavior dependencies and pat-
tern formation. Combined with a representation of physical experimental techniques 
(nanoindentation) to derive physical properties, such models can serve to facilitate 
empirical investigations by providing efficient means of prediction and a theoretical 
basis for behavior, thereby providing a crucial link between simulation and reality.

3.2.2.3 �A pplication 3: Mechanical Property Variation 
through Collagen Fibril Crosslink Density

Natural collagen-based tissues are composed of staggered arrays of ultralong tro-
pocollagen molecules extending to several hundred nanometers [4]. Although the 
macroscopic properties of collagen-based tissues (such as bone and tendon) have 

(a) (b)

500 Å600 Å

Center of Indentation

Figure 3.7  Depiction of nanoindentation simulation of coarse-grain nanotube array con-
sisting of a 30 × 30 grid of nanotubes with a height of 30.0 nm [2]. (a) Top view, indenter not 
shown. (b) Side view with relative size of indenter depicted. The coarse-grain simulation 
consists of approximately 30,000 beads, whereas the equivalent full atomistic representation 
of the system would consist of over 4 million carbon atoms.
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been studied extensively, less is known about the nanomechanical properties at the 
mesoscale—the hierarchical structure formed by the staggered tropocollagen mol-
ecules. A coarse-grain representation is uniquely suited to investigate the behavior 
of the structure and interaction of collagen fibrils. One such investigation probed the 
effect of crosslink density on the mechanical strength, deformation, yield, and frac-
ture behavior on collagen fibrils (Figure 3.8). Crosslink-deficient collagen fibrils show 
a highly dissipative deformation behavior with large yield regimes, while increasing 
crosslink densities leads to stronger fibrils that display increasingly brittle behavior.

Collagen is such a fundamental constituent of biological materials that an 
improved understanding of the relevant nanomechanics can facilitate the devel-
opment of novel biomimetic materials and aid in the understanding of injury and 
pathology processes. Indeed, the mutable collagenous tissue of echinoderms serves 
as an inspiration of new pharmacological agents and composite materials with bio-
medical applications [21]. In addition, diseases such as osteogenesis imperfecta [22] 
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Figure 3.8  (See color insert following page 146.) Mesoscale model of collagen fibril, 
consisting of a two-dimensional array of ultralong coarse-grain tropocollagen molecules.  
The snapshots show the molecular structure as the fibril undergoes tensile deformation, 
where the color is defined by the magnitude of the slip vector [61]. A detailed analysis of the 
molecular deformation mechanisms suggests that intermolecular slip plays a major role in 
mediating large tensile strains in collagen fibrils leading up to failure, following a significant 
elastic regime. (Adapted from Tang, Y., Ballarini, R., Buehler, M. J., and Eppell, S. J., J. Roy. 
Soc. Interface, 7(46), 839, 2010.)
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are caused by defects in the molecular structure of collagen, altering the intermo-
lecular and molecular properties due to genetic mutations [23–26]. Investigations of 
the effects of such mutations on the subsequent mechanical behavior and properties 
of collagen structures can serve to elucidate the characterization and diagnosis of 
diseased tissues and the pathology of similar genetic diseases [27,28]. Such investi-
gations are only possible via multiscale coarse-graining approaches that transcend 
the hierarchy of collagen fibrils, from the constituent polypeptides to tropocollagen 
molecules to collagen fibrils, penultimately leading to a deeper understanding of 
biological tissues such as nascent bone and associated disease states.

3.3 �C ase Study II: Folding/Unfolding of 
Alpha-Helical Protein Domains

Proteins constitute the critical building blocks of life, providing essential mechani-
cal functions to biological systems, and the focus of many molecular and atomistic 
level simulations [29,30]. In particular, alpha-helical (AH) protein domains are the 
key constituents in a variety of biological materials, including cells, hair, hooves, 
and wool. While continuum mechanical theories have been very successful coupling 
the atomistic and macro scales for crystalline materials, biological materials and 
soft condensed matter (such as polymer composites) require different approaches to 
describe elasticity, strength, and failure. The fundamental deformation and failure 
mechanisms of biological protein materials remain largely unknown due to a lack 
of understanding of how individual protein building blocks respond to mechanical 
load.

It has been determined both experimentally [31] and via simulation [32] that the 
mechanical response of biological materials is a combination of molecular unfolding 
or sliding, with a particular significance of rupture of reversible chemical bonds such 
as hydrogen bonds (H-bonds), covalent crosslinks, or intermolecular entanglement. 
The dominance of specific mechanisms can emerge at different time and length 
scales, chemical environments of the protein, and hierarchical arrangements/struc-
tures. As such, it is difficult to generalize fully atomistic results from nano to macro. 
Figure 3.9 displays an example hierarchical alpha-helical protein system. 

A coarse-grain model is developed here to investigate the unfolding behavior 
of alpha-helical domains. The coarse-grain representation integrates parameters 
that define the energy landscape of the strength properties of alpha-helical protein 
domains, including energy barriers, unfolding and refolding distances, and the loca-
tion of folded and unfolded states, and is implemented to investigate the variations 
of strength with respect to length and loading rate of alpha-helical protein filaments. 
Although unfolding of short alpha-helical segments can be modeled using full atom
istic techniques, a coarse-grain representation is required to fully investigate the 
length dependence on mechanical response, as well as integration of alpha-helices 
into higher-level hierarchical arrangements. Such an approach intends to extend a 
known atomistic behavior to larger systems via coarse-grain potentials, which dif-
fers from the intent of the aforementioned carbon nanotube or collagen models that 
focused on system-level behavior and mechanical response.
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3.3.1 � Model Development

The setup of the coarse-grain model for alpha-helical protein domains is based on 
the geometry of an AH, which features a linear array of turns or convolutions sta-
bilized through the presence of H-bonds between sequential amino acid residues. 
During mechanical loading, any one of these convolutions can possibly rupture. As 
such, the coarse-grain representation is rationally discretized into bead-spring ele-
ments representing a single convolution consisting of approximately 3.6 amino acid 
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Figure 3.9  (See color insert following page 146.) Schematic depicting hierarchical 
structure of alpha-helix protein-based intermediate filaments (IFs), which provide structural 
tensegrity to the cytoskeleton of cellular membranes. Over seven levels of hierarchy are tran-
scended, from hydrogen bonds to alpha-helical turns, alpha-helical proteins (which are the 
focus of coarse-graining discussed here), dimers (coiled-coiled protein domain), tetramers, 
unit-length filaments, and full-length filaments to the cellular level. (Adapted from Qin, Z., 
Kreplak, L., and Buehler, M.J., PLos ONE, 4(10), e7294, 2009.)
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residues. To achieve the coarse-grained description, the entire sequence of amino 
acids that constitute the alpha-helices is replaced by a collection of mesoscopic bead-
spring elements (see Figure 3.10). 

Similar to the previous linear, one-dimensional bead-spring models, we define 
the energy landscape of the coarse-grain system by three potentials:

	 EAH = Ebond + Eangle + Epair	 (3.22)

Here, the bond potential must represent the structural backbone protein domain, 
and also the energetic features of the stabilizing H-bonds. The aim is to capture the 
structural and energetic features of an alpha-helical protein domain. A double-well 
potential is chosen to capture the existence of two equilibrium states for a convo-
lution, folded and unfolded (see Figure 3.11). The model does not involve explicit 
solvent; rather, the effect of the solvent on the breaking dynamics of alpha-helical 
convolutions is captured by an effective double-well potential, parameterized by full 
atomistic simulations that implemented explicit solvent.

(a)

(b)

(c)

x
θ

Figure 3.10  (See color insert following page 146.) Schematic of coarse-graining proce-
dure, in which full atomistic representation is replaced by a mesoscopic bead-spring model. 
A pair of beads represents one turn in the alpha-helix (also called a convolution), and thus 3.6 
residues with the corresponding mass. (a) Full atomistic representation depicting all atoms 
and bonds; folded states of the turns are stabilized by the presence of hydrogen bonds between 
residues (not shown); water molecules not shown for clarity. (b) Ribbon representation of pro-
tein, illustrating alpha-helical folded conformation of backbone chain and individual convo-
lutions; explicit solvent (water molecules) shown. (c) Developed coarse-grain representation, 
with a single bead per convolution; need for explicit solvent eliminated in coarse-grain model, 
as effects are integrated into coarse-grain potentials. 
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The bond potential can describe the microscopic details of the rupture mecha-
nism of the convolution H-bonds under force, as well as the transition from a folded 
to unfolded state, through the prescribed energy barrier of the potential. The descrip-
tion is sufficiently coarse to enable significant computational speedup and efficiency 
compared with a full atomistic description.

Again, the total bond energy of the alpha-helical system is given by the sum over 
all bonded interactions or:
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( )= ∑ φ 	 (3.23)

The double-well potential, ϕbond(x), is given by
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Figure 3.11  (See color insert following page 146.) Double-well profile of the bond-
stretching potential of the coarse-grain model, representing the energy landscape associated 
with the unfolding of one convolution (see Equation 3.24). The values of the equilibrium states, 
x0 and x1, energy barriers, Eb and Er , and the transition state, xtr , are obtained from geometric 
analysis of the alpha-helix geometry, as well as the full atomistic simulations. The transition 
state (local energy peak) corresponds to the breaking of hydrogen bonds between convolu-
tions of the alpha-helix. After failure of these weak bonds, the convolution unfolds to a second 
equilibrium state with a large interparticle distance. Under further loading, the covalent bonds 
begin to stretch, which leads to a second increase of the potential at large deformation.
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The first equilibrium reaction coordinate, x0 (first potential minimum), corresponds 
to the folded state of one alpha-helical convolution under no force applied. The tran-
sition state (energy barrier Eb), with position xtr (peak of potential between the two 
wells), corresponds to the breaking of the H-bonds between alpha-helical convolu-
tions. After failure of these weak bonds, the alpha-helix unfolds to a second equilib-
rium state. This corresponds to the second potential minimum with a larger interbead 
distance, x1. Under further loading, the backbone bonds begin to be stretched, lead-
ing to a second increase in the potential (see Figure 3.11). This formulation does 
not include the rupture of the covalent backbone bonds. The parameters xb and Eb 
represent the distance and energy barrier required to unfold one convolution, which 
xr and Er correspond to the refolding process. It is noted that the energy barrier for 
refolding, Er, must be smaller than the energy barrier for unfolding, Eb, since the 
folded state is the most favorable state for a convolution in equilibrium [33].

The representation of two equilibrium states also requires a transition of the 
bending stiffness from a folded to unfolded state. In order to distinguish the bending 
stiffness for each state (which entails a severe structural change), we define a stiff-
ness parameter, Kb, as a function of bead distance, x:
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From full atomistic simulations, the bending stiffness of the protein, EI, is deter-
mined. We let
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where EIfold and EIunfold are the bending stiffnesses of the folded and unfolded AH, 
respectively. Again, the total bending energy of the alpha-helical system is given by 
the sum over all bead triples (angles), or:

	

E xangle angle

triples

( , )= ∑ φ θ 	 (3.28)

We can then define the coarse-grain angle potential as

	
φ θ θ θangle ( , ) ( )x K xb= −( )1

2 0 	 (3.29)

Finally, the total intermolecular interaction energy, Epair, is again represented by 
the sum over pairwise interactions between beads of different alpha-helical protein 
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domains. The adhesion potential (ϕpair) is again formulated by a LJ 12:6 potential, via 
an energy minimum (ε) and distance parameter (σ), in a manner discussed in Section 
3.2.1. Table 3.2 lists the parameters implemented in the mesoscopic bead-spring 
alpha-helix model, from previous full atomistic simulations [29,32,34] depicted in 
Figure 3.12. The mass of each bead corresponds to the approximate average mass of 
each convolution (400 amu).

It is quite apparent that, although a similar double-well potential can be developed 
for other systems with distinct equilibrium conformations, the current coarse-grain 
description is uniquely developed for the alpha-helix. Specifically, it represents the 
atomistic rupture behavior of alpha-helical protein domains during mechanical load-
ing under a limited range of loading rates (pulling speeds under 0.3 m/s) at a spe-
cific temperature (300 K) and particular environmental conditions (explicit waterbox) 
implemented in the full atomistic simulations in which the distance and energy barrier 
parameters were obtained [32,34]. However, the model could be easily adapted to other 
classes of protein filaments that feature serial arranged domains that undergo unfold-
ing or a transition to distinct equilibrium states under mechanical loading and strain.

3.3.2 � Model Applications

3.3.2.1 �A pplication 1: Time Scale Extension
The developed coarse-grain model for the alpha-helix was implemented to investi-
gate the length and rate dependence of the Bell model, a theoretical strength model 
that can be applied to describe the mechanical behavior of molecules with reversible 

Table 3.2
Summary of Parameters for a Coarse-Grain Alpha-Helical Protein Model

Parameter Numerical Value

Equilibrium distance, folded state, x0 (Å) 5.4

Equilibrium distance, unfolded state, x1 (Å) 10.8

Distance between folded state and transition state, xb (Å) 1.2

Energy barrier, folded state and transition state, Eb (kcal/mol) 11.1

Energy barrier, unfolded state and transition state, Er (kcal/mol) 6.7

Bending stiffness, folded state, Kb,fold (kcal/mol/rad2) 21.6

Bending stiffness, unfolded state, Kb,unfold (kcal/mol/rad2) 0.665

Equilibrium angle, θ0 (degrees) 180

Pair potential, LJ distance parameter, σ (Å) 10.8

Pair potential, LJ energy parameter, ε (kcal/mol) 6.815

Mass of mesoscale bead (amu) 400

Source:	 Bertaud, J., et al., J. Phys. Condens. Matter, 2009.
Note:	 Derived from atomistic modeling, corresponding to Figure 3.12 and representing the constants 

required for the coarse-grain potentials as discussed in Section 3.3.1 and Equations 3.22 through 
3.29 (units in brackets).
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bonds (see Bell [35], Evans [36], Evans and Ritchie [37], and Walton, Lee, and Van 
Vliet [38], in addition to the primary references, Bertaud et al. [29,30], for details). 
Essentially, the Bell model presents a logarithmic relationship between reversible 
bond strength and loading rate (or molecule pulling speed). Full atomistic simula-
tions are limited to time scales on the order of nanoseconds, limiting the pulling of 
alpha-helix stretching to approximately 0.01 m/s. Such a relatively high loading rate 
prevents a one-to-one correspondence with experimental results. However, the use 
of the coarse-grain potential extends the accessible time-scales to an order of micro-
seconds, allowing pulling speeds on the order of 0.0001 m/s, representing a 100-
fold increase in time scale. Experimental results of stretching and breaking single 
AH domains [39,40] report forces corresponding to the force level predictions at 
ultraslow pulling speeds of the coarse-grain model. Additionally, the coarse-grain 
representation can still be implemented at time scales on the order of full atomistic 
studies, allowing the validation of mesoscopic and full atomistic results. 

3.3.2.2 �A pplication 2: Length Dependence
The model was further implemented to investigate the length dependence on the 
rupture strength of proteins to extend the Bell model to ultralong protein regimes. 
Both experimental and full atomistic investigations are limited to an alpha-helix 
length on the order of 10 nm. This limitation only represents approximately 20 
bead-spring elements of the coarse-grain representation, and thus can be easily sur-
mounted using the coarse-grain model. Extending the length of AH protein domains 
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Figure 3.12  (See color insert following page 146.) Full atomistic tests of alpha-helical 
protein (single-helix and coiled-coiled conformations) used to parameterize the coarse-grain 
model. (a) Force-strain results of direct tension simulations. The first regime (I) consists of a 
linear increase in force, until a strain of approximately 13% for the single alpha-helix, noted 
as the angular point (AP), which corresponds to the rupture and unfolding of an alpha-helix 
convolution. The second regime (II) represents the unfolding of the helix under approxi-
mately constant force. The third regime represents a nonlinear increase in strain due to 
backbone stretching of the protein. (b) Force-displacement results of three-point bending 
simulations. The slope of the curve is proportional to the bending stiffness. Only the single 
alpha-helix values were used in the development of the coarse-grain representation. (Adapted 
from Ackbarow, T., and Buehler, M.J., J. Mater. Sci., 42(21), 8771–8787, 2007.)
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to approximately 50 nm, coarse-grain simulations resulted in a logarithmic decrease 
in rupture strength as the protein length increased or

	 f(L) = a ln(L/L0) + b	 (3.30)

Due to the logarithmic dependence on length, this relation can only be investigated 
by simulating proteins with lengths extending several orders of magnitude. Such an 
expanse of scales is not accessible to full atomistic representations. This weakening 
behavior can be attributed to an increase in potential H-bond locations as the number 
of convolutions increases, each of which can break with the same probability. Since 
failure of one convolution is sufficient to initiate failure of the entire system, we expect 
longer molecules to be weaker, as observed in the coarse-grain simulations and previous 
investigations [41]. 

3.3.2.3 �A pplication 3: Characterizing Intermediate Filament Networks
Individual, isolated alpha-helices are rarely found in biology. Thus, the developed 
coarse-grain model can facilitate the investigation of hierarchical structures of pro-
teins and protein filaments [42]. Indeed, AH-based protein networks constitute the 
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Figure 3.13  (See color insert following page 146.) Snapshots of protein network deforma-
tion, where coarse-grain representation of alpha-helix proteins was implemented. The defor-
mation mechanism is characterized by the molecular unfolding of the alpha-helical protein 
domains, leading to the formation of large plastic yield regions, providing energy dissipation 
and preventing catastrophic failure. The blowups depict the atomistic structural arrangement 
of the alpha-helical protein domains based on the known correspondence with the coarse-
grain mapping. (Adapted from Ackbarow, T., et al., PLos ONE, 4(6), e6015, 2009.)
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intermediate filament structure in the cell’s cytoskeleton and the nuclear membrane. 
Using a network of coarse-grain bead-spring structures, large meshes reflecting an 
assembly of intermediate filaments can be constructed and probed for mechanical 
properties and behavior (Figure 3.13).

It was found that the characteristic properties of alpha-helix-based protein net-
works are due to the particular nanomechanical properties of the protein constit-
uents, enabling the formation of large dissipative yield regions around structural 
flaws, effectively protecting the protein network against catastrophic failure. The 
direct simulation of such large networks is only possible through the use of such 
multiscale coarse-grain models under discussion. 

3.4 �C ase Study III: Mesoscopic Aggregation 
of Fullerene-Polymer Clusters

Modification of nanoparticles by attachment of polymer chains can, in principle, 
allow manipulation of the geometry and interaction of particles on the nanoscale, 
allowing a tunable method of controlling their self-association [43,44]. A complete 
understanding of such interactions can result in unique binding properties or con-
trolled self-assembly. Simulations implementing coarse-grain models have shown 
that nanoparticles tethered by polymer chains with various degrees of asymmetry, 
chain length, and polymer/particle interaction exhibit a rich spectrum of nanostuc-
tures, including spherical, cylindrical, lamellar, sheetlike, and bicontinuous mor-
phologies [45]. Experimental observations also show self-assembly of such tethered 
nanoparticles into spherical vesicles [46] and nanorods [47]. Here we focus on 
poly(ethylene oxide) (PEO)-grafted fullerenes (C60-PEO nanoparticles). The thermo-
dynamics of self-assembly of these nanoparticles, including the strong dependence 
of cluster distribution and average cluster size on concentration, indicate that the self-
assembly process resembles the formation of wormy or spherical micelles, taking 
advantage of the water-soluble PEO and the hydrophobic fullerene.

Investigation of the formation and aggregation of such nanostructures is limited 
using full atomistic approaches, as there is a significantly large computational expense 
to compute the interactions of the nanoparticle (such as the carbon–carbon interac-
tions of the fullerene) and the behavior of the polymer–nanoparticle interactions. 
Such computations are inconsequential, as it is known a priori that the mesoscopic 
structure is stable. Thus, coarse-graining methods are developed to investigate the 
subsequent hierarchical level of nanoparticle interactions and aggregation, circum-
venting the details of full atomistic behavior.

The coarse-graining approach to such systems has a threefold purpose:

	 1.	To reduce the number of degrees of freedom to be simulated
	 2.	To focus on the nanoparticle–nanoparticle interactions
	 3.	To reproduce the molecular distributions and aggregations of the nano

particles

Specifically, the goal of the coarse-grain model is to adequately reproduce the 
intramolecular and intermolecular structure of aqueous C60-PEO systems, the 
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distribution of PEO segments around the fullerenes, and the energetic landscape 
between nanoparticles.

It is noted that the intended mesoscopic investigation is not focused on mechani-
cal behavior, and thus mechanical properties such as Young’s modulus and bending 
stiffness, critical parameters in the previous potentials (Sections 3.2 and 3.3), are not 
part of the current coarse-grain model development. However, the C60-PEO coarse-
grain system provides an illustration of both the finer-trains-coarser multiscale para-
digm, as well as the system-dependent approach to coarse-grain model development 
expressed throughout this chapter.

3.4.1 � Model Development

The coarse-grain model is parameterized based on fullerene–fullerene, fullerene–
PEO, and PEO–PEO interactions. Of critical concern, as the nanoparticles aggregate 
in solution, is the integration of the influence of water on all interactions. Indeed, 
elimination of the explicit solvent results in the primary reduction of degrees of 
freedom. Fullerenes were condensed to a single-particle representation, while PEO 
chains were developed consisting of one particle per CH2–O–CH2 functional group 
(Figure 3.14). The coarse-graining approach for polymer systems is unique in the 
fact that polymer systems are typically governed by entropic effects (as opposed 
to the rigid structures of CNTs or tropocollagen). As such, the coarse-grain model 
focuses on interactions and molecular distributions rather than replication of specific 
structural or mechanical properties.

We define the energy of the system as

	
E EPEO-C pair60

= ,	 (3.31)

such that

	

EPEO-C pair

pair
60

= ∑φ 	 (3.32)

(a) (b) 

Figure 3.14  Representative snapshots of (a) two interacting C60–PEO nanoparticles 
obtained from atomistic, explicit solvent simulations (water molecules and PEO chains on the 
right fullerene omitted for clarity) and (b) three coarse-grain C60–PEO nanoparticle repre-
sentations (PEO beads of the center nanoparticle shaded differently to differentiate adjacent 
molecules). (Reprinted with permission from Bedrov, D., Smith, G. D., and Li, L., Langmuir, 
21, 5251–5255, 2005. Copyright 2005 American Chemical Society.)
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Here, the coarse-grain potential is defined by the interactions alone. To account 
for bonding and angular geometry, the SHAKE algorithm was implemented [48] 
(which applies bond and angle constraints). As the intent of the coarse-grain model 
is not the mechanical behavior of the nanoparticles, less emphasis is placed on the 
accurate representation of molecular deformation, and application of the SHAKE 
algorithm is sufficient to maintain accurate geometry and polymer tether response 
during aggregation. Each interaction pair was investigated at the atomistic level sep-
arately, and can subsequently be considered part of the discussed atomistic test suite, 
with a focus on molecular interactions rather than molecular mechanical response. 
Atomistic investigations include 

	 1.	PEO–PEO and PEO–water intermolecular and PEO–PEO intramolecular 
interactions representing both hydrophilic and hydrophobic ether–water 
interactions [49]

	 2.	Fullerene–fullerene interactions using full atomistic carbon–carbon poten-
tial to develop a coarse-grain C60–C60 pair potential [50]

	 3.	Water–carbon interactions [51] as the basis for water–fullerene interac
tions [52]

It is noted that each investigation focused on a particular molecular interaction, 
similar to previous case studies in which the atomistic test suites focused on indi-
vidual molecular responses, such as stretching, bending, or adhesion. The interac-
tions were then defined by 

	 ϕpair = ϕAB,	 (3.33)

where ϕpair is derived from the atomistic test suite. The AB indices indicate the pos
sible fullerene–fullerene, PEO–PEO, or PEO–fullerene interactions. As the atom
istic  studies did not determine all possible combinatorial parameters, standard 
mixing rules were implemented:

	
ε ε εAB A B= 	 (3.34)

	
σ σ σAB A B= +( )1

2
	 (3.35)

Using the known atomistic interactions as well as the mixing rules, behavior 
was investigated between C60–PEO nanoparticles in full atomistic and coarse-grain 
simulations. Nonbonded coarse-grain PEO–PEO interactions were parameterized to 
reproduce the PEO monomer–monomer interactions. Bonds and bends in the PEO 
chains were developed to match intramolecular correlations (end-to-end distance 
and radius of gyration). Parameterization of the coarse-grain potentials was then 
adjusted to reflect accurate radial distribution functions and coordination number of 



62	 Multiscale Modeling: From Atoms to Devices

the C60–PEO system, i.e., the distribution of the polymer tethers about the fullerene 
(Figure 3.15).

Validation was carried out by calculation of the potential of mean force between 
two C60–PEO nanoparticles via full atomistic (explicit solvent) and coarse-grain 
(implicit solvent) simulations. The coarse-grain model captures the most important 
features of the PMF, namely, the weak long-range attraction and strong short-range 
attraction. Again, we see how full atomistic investigations are applied to validate 
the behavior of a system component (as described in Section 2.3.5), after which the 
coarse-grain model can be extended to investigate larger systems.

3.4.2 � Model Applications

3.4.2.1 �A pplication 1: Large Systems of Aqueous C60–PEO Nanoparticles
The coarse-grain representation was implemented to compare the aggregation of 
1000 bare fullerene or 1000 C60–PEO nanoparticles in solution, with fullerene 
volume fractions ranging from 0.07 to 0.25 [43]. Full atomistic simulation of such 
systems would expend the majority of computational cost on the explicit solvent 
calculations, consisting of thousands of water molecules with negligible interac-
tions with the nanoparticles, yet a large system is required to investigate the spatial 
and density effects of nanoparticle aggregation. It was shown that bare fullerenes 
form dense clusters with interactions between many fullerene neighbors, while the 
introduction of PEO tethers results in a polymer “hugging” phenomena (coverage of 
adjacent fullerenes by PEO chains). With an increase in surface coverage, the steric 
interactions between PEO chains and between PEO and fullerenes become dominant 
and shield the fullerene from interactions with other fullerenes, resulting in chain-
like cluster configurations (Figure 3.16).
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Figure 3.15  Full atomistic and coarse-grain results for model parameterization and vali-
dation for C60–PEO nanoparticles. (a) PEO–PEO monomer intermolecular radial distribution 
function as obtained from atomistic, explicit solvent and coarse-grained, implicit solvent MD 
simulations of two PEO aqueous solutions. (b) Integrated coordination number of PEO seg-
ments in the C60–PEO in an aqueous solution system as a function of their separation from 
the center of fullerene. (Reprinted with permission from Bedrov, D., Smith, G. D., and Li, L., 
Langmuir, 21, 5251–5255, 2005. Copyright 2005 American Chemical Society.)
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3.4.2.2 �A pplication 2: Systematic Variation of Polymer 
Architecture on C60–PEO Nanoparticles

The effect of polymer architecture was investigated using the developed coarse-grain 
model, by manipulating the number and chain-length of the attached PEO tethers 
[44]. PEO-grafted fullerenes were comprised of a single tether of 60 repeat units 
(PEO functional groups), a three-arm star with 20 units per chain, or a six-arm star 

(a) (b)
Ncluster=64

Ncluster=45

(c)

Figure 3.16  Representative coarse-grain simulation snapshots of (a) 1000 bare C60 fuller-
enes in aqueous solution (water not shown); (b) 1000 PEO-tethered C60 fullerenes, with equiv-
alent volume fraction as (a) (water and PEO chains are not shown for clarity); and (c)  two 
representative PEO–C60 clusters from the configuration shown in (b). (Reprinted with per-
mission from Bedrov, D., Smith, G. D., and Li, L., Langmuir, 21, 5251–5255, 2005. Copyright 
2005 American Chemical Society.)

(a)

(b)

Figure 3.17  (See color insert following page 146.) Schematic overview of the types of 
coarse-grain nanoparticles employed in the clustering study. (a) Constant architecture motif, 
with each chain in a three-armed star with lengths of 5, 10, 20, and 40 PEO units, respectively. 
(b) Constant mass motif, where each nanoparticle has 60 total PEO units with arrangements 
in a linear, three-armed, or six-armed fashion, respectively. Note explicit solvent molecules 
are neither depicted nor required in the coarse-grain simulations. (Reproduced with permis-
sion of the PCCP Owner Societies. Copyright 2009. Hooper, J. B., Bedrov, D., and Smith, 
G. D., Phys. Chem. Chem. Physics, 11, 2034–2045, 2009.)
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with 10 units per chain (Figure 3.17b). In addition, the influence of tether length of 
the three-chain configuration was investigated, from 5 to 40 units per chain (Figure 
3.17a). Variation of number of PEO segments and segment length serve to control 
aggregate size and shape during self assembly. 

It was concluded that higher molecular weight PEO (longer arms) and more com-
pact PEO (more arms but constant total number of units) resulted in greater steric 
repulsion between fullerenes, engendering greater aggregate surface curvature and 
resulting in more spherically shaped aggregates (Figure 3.18).

It is emphasized that while the coarse-grained simulations were able to eliminate 
solvent degrees of freedom, the degrees of freedom of the tethered polymer chains 
cannot be excluded due to the nontrivial and nonisotropic contribution of the func-
tional monomer groups into the interaction between C60-PEO nanoparticles. Again, 
care must be taken to ensure such pertinent effects are included in any developed 
coarse-grain representation.

Such studies illustrate that chemical modifications of nanoparticles can result in 
unexpected interaction/self-assembly behavior due to interplay between nanoscale 
phenomena—phenomena that may be beyond the scope of atomistic investigations. 
The understanding of nanoparticle aggregations such as polymer-tethered fullerenes 
can facilitate the development of complex nanoscale structures with potential bio-
medical applications (i.e., drug delivery, binding to biological molecules) or advance 
polymer nanocomposites with superior mechanical properties.

3.5 �S ummary and Conclusions

Model formulation is dependent on the molecular system to be represented, as well 
as the intent of the coarse-grain simulations. In the model development for carbon 
nanotubes and tropocollagen molecules, a focus was on structure–property rela-
tions of secondary hierarchical structures such as CNT bundles or arrays and col-
lagen fibrils. The intent of the investigation was to probe the mechanics of the larger 

(a) (b) (c)

Figure 3.18  Representative snapshots for the constant mass series of clusters as depicted 
in Figure 3.17b: (a) Single, 60-unit PEO chains; (b) three-armed configuration, 20 units each; 
(c) six-armed configuration, 10 units each. The red spheres represent the fullerene core, while 
the surrounding polymer is depicted as a solvent-accessible isosurface. (Reproduced in part 
with permission of the PCCP Owner Societies. Copyright 2009. Hooper, J. B., Bedrov, D., 
and Smith, G. D., Phys. Chem. Chem. Physics, 11, 2034–2045, 2009.)
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hierarchical systems, and care was taken to accurately represent the mechanical 
response of the coarse-grain potential. Consequently, this lead to the integration of 
molecular softening and stiffening of carbon nanotubes and tropocollagen molecules 
within the coarse-grain response. The intention of the coarse-grain representation of 
alpha-helix protein domains, in contrast, was to extend well-known atomistic behav-
ior to time  and length scales inaccessible to full atomistic molecular dynamics. The 
integration of the unfolding behavior of an alpha-helix reduced the complex phe-
nomena of hydrogen-bond rupture to a simple bond potential, via a unique “double 
well” potential formulation. In effect, the coarse-grain representation can accurately 
represent the response of two distinct configurations of the protein—both helical 
and unfolded—within the same model. For nanoparticle aggregation, the coarse-
grain model development concentrated on polymer–nanoparticle interactions, with 
limited focus on mechanical properties. The intended application is not to produce 
a mechanical response, but rather to systematically study the effects of nanopar-
ticle concentration and polymer architecture on self-assembly processes. As such, 
accurate mechanical properties and associated potentials were not required, further 
optimizing the computational efficiency of the simulations, required atomistic tests, 
and development of the coarse-grain model. 

It is apparent that current coarse-graining methods are neither as accurate nor as 
predictive as all atom simulations. Future coarse-graining techniques can explore 
more rigorous parameterization methodologies for more accurate representations of 
the system. Indeed, full atomistic force fields and algorithms are constantly updated 
to improve the accuracy of results and versatility of applications. With an inevitable 
increase in computing power, larger and larger systems can be simulated via full 
atomistic representations, providing a counterargument for the development of any 
coarse-graining approaches. In addition, coarse-graining methods are inherently at 
a disadvantage due to their system-dependent nature—complex and diverse interac-
tions must be described by a small number of parameters. The finer-trains-coarser 
multiscale paradigm implemented here attempts to illustrate the possible utility and 
advantages of coarse-graining methods through the delineation of component-level 
material properties and system-level mechanical behavior. The convergence of struc-
ture and mechanical properties is apparent in both natural and synthetic hierarchical 
systems, requiring new approaches to analyze and explicate the reciprocity of mate-
rial properties, mechanical function, and structural arrangement. It is the contention 
of all multiscale methods that component-level behaviors can be adeptly represented 
by coarse-grain potentials, and thus serve to clarify structure-property relations 
without resorting to more complex models.
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