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3.1 INTRODUCTION

To illustrate the coarse-grain parameterization and multiscale methodology, we pro-
vide a more thorough discussion regarding the development of specific mesoscopic
models. The focus is on the coarse-grain potential development, to provide examples
of the model formulation framework described in depth in Chapter 2. It is noted that
some equations are repeated to provide a self-contained and complete description of
each model formulation within each case.

The three chosen case studies are presented to exemplify both the finer-trains-
coarser multiscale paradigm (that is, use of full atomistic test suites to parameterize
the coarse-grain potentials), as well as a system-dependent approach (the developed
coarse-grain potentials are unique to the intended application) as previously dis-
cussed. Our intent is to differentiate general coarse-graining frameworks [such as
the aforementioned elastic network model (ENM) or MARTINI force field] from
system-specific coarse-graining development. The merits of either approach, of
course, are both subjective and problem-specific and judicious consideration of the
resulting simulation design and intent is required.

For a broader perspective, each case study presented represents a fundamental
advantage to all coarse-graining approaches, and thus can be considered as arche-
type coarse-graining problems. Sections 3.1.1 through 3.1.3 discuss characteristics of
the case studies presented in this chapter.

3.1.1  INVESTIGATE THE STRUCTURE—PROPERTY RELATION AT THE MESOSCALE

A primary motivation for the development of a coarse-grain representation is to pro-
vide a means to directly model system behavior at the mesoscopic scale. With the
coarse-grained representation, structures approaching micrometers in scale can be
efficiently modeled. Because of the use of a finer-trains-coarser approach, the atomis-
tic behavior and intramolecular interactions are maintained, thereby providing a nec-
essary intermediate step reconciling the gap between atomistic and continuum theory.
Here, we specifically wish to investigate two materials, carbon nanotubes and colla-
gen, that form hierarchical secondary structures at length scales beyond the capacity
of full atomistic representation, but yet are dependent on intermolecular adhesion and
interaction. These secondary structures (nanotube arrays and collagen fibrils) have
unique structural arrangements that directly affect the mechanical properties. Thus,
neither an atomistic chemical description nor continuum material properties are suf-
ficient to describe the structure-property relation at the mesoscale. It is intended that
the coarse-grain representation can be used to investigate such behavior. The coarse-
grain models we present provide a method to model and investigate this class of nano-
structures that fall precariously between atomistic and continuum techniques.
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3.1.2 ExTeND ATtoMisTIC BEHAVIOR TO INACCESSIBLE TIME- AND LENGTH-SCALES

A fundamental limitation of full atomistic molecular dynamics simulations is the
accessible (or inaccessible) time and length scales. As a consequence, it is frequently
difficult to extend theoretically well-described atomistic behavior to physically rel-
evant time and length regimes. By integrating atomistic behavior into developed
coarse-grain potentials, larger systems can be simulated for longer time spans, while
representing complex molecular interactions and properties. Precise definition of the
intended behavior is required to develop accurate coarse-grain representation. Case
Study II presents the development of a coarse-grain model to represent the unfold-
ing behavior of alpha-helical protein domains. The unfolding behavior is initiated
by the rupture of hydrogen bonds—an unquestionable atomistic response—and is
supported by full atomistic simulations. Coarse-graining is introduced here to both
examine the length dependencies of this unfolding response and investigate such
proteins in networked systems (as found in biological cells and membranes).

3.1.3 MiNimize DeGREES OF FREEDOM FOR LARGE SYSTEMS

Simulations of molecular systems in solution are often hindered by the computational
overhead of calculation of the reactions of water molecules, regardless of the inter-
action with the relevant macromolecule. Indeed, the degrees of freedom associated
with the solvent can exceed the macromolecule by an order of magnitude or more.
By design, parameterization of coarse-grain potentials fully integrates the effects of
water molecules, eliminating the need for either explicit water molecule represen-
tations or applied implicit water force fields. Case Study III illustrates the coarse-
graining of polymer-tethered fullerenes to allow the investigation of self-association
of such large nanoparticles in solution and efficient investigation of the effects of
parameters such as molecular weight, polymer architecture, and particle density.

There is significant overlap for all presented case studies in the sense that each
investigates the structure—property relationship, extends the accessible time and
length scales, and reduces the number of degrees of freedom. However, each is differ-
entiated by the associated advantage for coarse-graining, and the approach for each
system subsequently differs based on intent and utilization of the model. Relevant
applications for each model are described to provide an understanding of the inten-
tions and benefits of the coarse-grain representation. The discussion of applications
is relatively brief, to emphasize model development and intent rather than results of
specific investigations. The reader is encouraged to refer to the cited literature for
each case study for more details.

3.2 CASE STUDY I: CARBON NANOTUBES
AND TROPOCOLLAGEN

At the atomistic scale, carbon nanotubes (CNTs) [1,2] and collagen differ in terms
of structure and behavior. Carbon nanotubes consist of rolled sheets of graphene
(single-layer bonded carbon), which form rigid cylindrical structures with high
aspect ratios (Figure 3.1a). Carbon nanotubes are among the most widely studied
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FIGURE 3.1 (See color insert following page 146.) Overview of carbon nanotube and
tropocollagen systems. (a) Depiction of full atomistic representation of (5,5) carbon nanotube.
Subplots show higher order hierarchical arrangements, including (i) SEM of single bundle
of carbon nanotubes (Reprinted in part with permission from McClain, D., et al., J. Phys.
Chem. C, 111(20), 7514-7520, 2007. Copyright 2007 American Chemistry Society.) and (ii)
SEM micrograph of vertically aligned carbon nanotube array (Reprinted in part with permis-
sion from Yang, J. and Dai, L., J. Phys. Chem. B, 107, 12387-12390, 2003. Copyright 2003
American Chemical Society.). (b) Schematic view of some of the hierarchical features of
collagen, ranging from the amino acid sequence level at nanoscale up to the scale of collagen
fibers with lengths on the order of 10 pm. (From Buehler, M.J., Keten, S., and Ackbarow, T.,
Prog. Mater. Sci., 53, 1101-1241, 2008.) The coarse-grain model development discussed here
is focused on the behavior of tropocollagen molecules (component level) and their role in the
mechanical behavior and properties of collagen fibrils (system level).

nanomaterials, with many potential applications that take advantage of their unique
mechanical, electrical, thermal, and optical properties [6]. There are many concur-
rent investigations involving carbon nanotubes, ranging from experimental synthesis
to atomistic and continuum modeling with a focus on a variety of properties, behav-
iors, and applications. The superior mechanical properties of carbon nanotubes are
appealing for their potential use in novel nanomaterials. For instance, the Young’s
modulus of a single-walled nanotube approaches a terapascal (10'> Pa) [7], imply-
ing one of the strongest known synthesized materials in terms of elastic modulus
and ultimate tensile strength [8]. Collagen, in contrast, is a protein-based material,
composed of polypeptide chains of various constituent amino acids (Figure 3.1b). A
tropocollagen molecule is composed of three polypeptide chains arrange in a helical
structure, stabilized by hydrogen bonding between different residues [3-5,9]. The
Young’s modulus of tropocollagen is on the order of 4 to 10 GPa [3, 10—12]. Materials
based on proteins hold particular promise because of their great flexibility in usage
and their applications and the potential integration of technology and biology, allow-
ing translation of nature’s structural concepts into engineered materials [13].

The motivating factor for the coarse-graining of both carbon nanotubes and col-
lagen fibrils (and fibers) is the investigation of the materials at the mesoscopic hier-
archical level. For carbon nanotubes, a well-known behavior is intertube bonding
due to weak van der Waals interactions, which results in the formation of bundles
that contain hundreds or thousands of individual nanotubes (Figure 3.1a, inset). At
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the microscale, collagen fibrils consisting of staggered, crosslinked tropocollagen
molecules form the basis for biological tissues such as tendon and bone. The forma-
tion of these mesoscopic structures complicates the full atomistic investigation of the
mechanical properties. However, due to the homogeneous and fibrillar structure of
both carbon nanotubes and tropocollagen, the formulation of their respective coarse-
grain models is the same.

3.2.1 MoDEL DEVELOPMENT

The coarse-grain model developed is intended to capture two essential components
of both carbon nanotubes and tropocollagen: (1) the mechanical behavior of the
fibrillar structure for both stretching and bending and (2) the intermolecular inter-
actions between adjacent macromolecules. The intent is to apply a coarse-graining
approach to achieve a mechanical response while maintaining atomistic interactions,
an approach more apropos than equivalent continuum or elasticity techniques due
to the system dependence on intermolecular interactions. We thus define the energy
landscape as

ECG = Ebond + Eangle + Epair (31)

To obtain the necessary parameters for these potentials, the atomistic behavior
of each must be investigated and full atomistic molecular dynamics simulations are
undertaken to determine key mechanical property values.

For the current fibrillar structures, the coarse-grain bond potential, E, 4, is repre-
sentative of axial strain. Furthermore, the intended coarse-grain application is lim-
ited to tensile stretching. Thus, a simple simulation is developed to determine the
force-displacement or stress-strain relationship of the macromolecule. We apply ten-
sile deformation by keeping one end of the molecule fixed and slowly displacing the
other end in the axial direction (Figure 3.2a). In terms of mechanical properties, this
relationship can be converted to Young’s modulus, E. It is noted that the atomistic
behavior is not meant to correspond one-to-one with continuum properties such as
Young’s modulus, which is typically limited to an elastic isotropic material, but such
properties provide appropriate, conventional, and convenient measures for behavior
such as axial stretching.

From the full atomistic results (Figure 3.3), the axial stretching behavior of both
carbon nanotubes and tropocollagen consists of two regimes. For carbon nanotubes,
there is nonlinear softening and plastic deformation due to the yielding of carbon
bonds, whereas tropocollagen undergoes nonlinear stiffening due to the extension
and unfolding of the helical arrangement and transition to direct straining of the
protein backbone. Both carbon nanotubes and tropocollagen fracture at an ultimate
strain. Although the nonlinear behavior is the result of complex atomic interactions,
it is a trivial simplification to integrate the desired effect into the coarse-grain poten-
tial. We can determine Young’s modulus either directly from stress-strain results, or
indirectly via force-displacement results, depending on the output and sophistication
of the full atomistic simulation, where
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FIGURE 3.2 Atomistic “test suite” and corresponding coarse-grain potential behavior:
(a) axial stretching, bond potential; (b) three-point bending, angle potential; (c) surface adhe-

sion; pair potential.

(a) (b)
3lell
5
4
< 3 Z
5 Z
= =
w )
8 o
g 2 5
=
w =]
e Atomistic 1.6 km/sec
= Atomistic 0.4 km/sec \
1 Atomistic 0.2 km/sec I
== Mesoscale model
/ Small-strain result '-!
0 = L i i i L 1
0.00 0.05 010 015 020 025 0.30 0.00 0.1 0.2 0.3 0.4 0.5
Strain Strain

FIGURE 3.3 (See color insert following page 146.) Full atomistic simulation results for
the axial stretching of (a) a single-walled carbon nanotube (From Buehler, M.J., J. Mater. Res.
21(11), 2855-2869, 2006. With permission.) and (b) a tropocollagen molecule (From Buehler,
M.J., J. Mater. Res., 21(8), 1947-1961, 2006. With permission.). The nanotube results depict
a softening behavior as the carbon bonds yield at high strain, while the tropocollagen results
depict a stiffening behavior, as the molecule undergoes extension of the helical structure
before direct straining of the protein backbone.
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E= E?EZ,,H £§EZ,-‘1EL,é§§i 3.2
de  Ae A, Ar (32)

where o and € are the stress and strain, ' and r are the force and displacement,
and A_ and r, are the cross-sectional area (assumed constant) and initial length. For
small deformation (initial stretching regime), the Young’s modulus for a (5,5) single-
walled carbon nanotube was calculated to be approximately 2 TPa, while the modu-
lus for tropocollagen was determined to be on the order of 8 GPa. For nonlinear
behavior, the Young’s modulus is calculated for each regime independently. The total
bond energy of the coarse-grain system is given by the sum over all bonded interac-
tions or:

%m=22@m (3.3)

bonds

For axial stretching, a simple harmonic spring is used to determine the energy
between all bonded pairs of particles in the system, given by

2

1 1
@mwzg@p—%)_ghm% (G.4)

with k, as the spring constant relating distance, r, between two particles relative to the
equilibrium distance, r,. We assume each linear regime can be approximated using
the equivalent elastic strain energy,

A ENr?

1 — 1
U(s)—EJ‘(GS)dV—E .

=U(Ar) (3.5)

\4

For the integration over the volume, V, we assume a constant cross-section, A, such
that V = A1y, define strain, € = Ar/ry, and stress, o = Ee. We note that we utilized
the full atomistic simulations to determine Young’s modulus specifically to allow
this formulation of strain energy in our parameterization. Caution must be taken
not to overextend the significance of the atomistic to continuum equivalence. Here,
we only apply Young’s modulus to characterize the work required to stretch our
atomistic model and thus train the coarse-grain potential. It is not implied that either
carbon nanotubes or tropocollagen can be suitably modeled by elastic formulations.
Indeed, unlike the Young’s modulus of elastic isotropic materials, the modulus deter-
mined by atomistic simulation can differ depending on system properties, atomistic
force field, boundary conditions, and loading rates (see Buehler [3.4], for example).
For equivalent energy and consistent mechanical behavior, we let ¢,(Ar) = U(Ar)
and find
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k, == (3.6)

To account for the nonlinear stress-strain behavior under tensile loading, a bilinear
model that has been used successfully in previous studies [15,16] is applied where:

) %kto(r—ro)z, r<mn
9,(r) = H (e = 7) : 37

1 2
/3(’”)"'5/6,1(7—1”1) . T2

where H(rp,.ue — 1) 18 the Heaviside function H(a), which is defined to be 0 for a <
0 and 1 for a > 0, k’ and k, are the spring constants for the different deformation
regimes, and f(r) is obtained from continuity conditions where:

ﬁ(r):%k?(rl—r0)2+k,0(r1—r0)(r—rl) (3.8)

A schematic of the resulting force-displacement relationship is shown in Figure
3.4. The same technique can be extended to multiple linear regimes, maintaining
a computationally inexpensive harmonic potential while incorporating nonlinear
effects.

For the angle potential, £, the bending stiffness and force-displacement behav-
ior of each structure is required. A simple three-point bending test is simulated via
full atomistic representation, with the macromolecule subjected to bending by a cen-
ter point load (Figure 3.2b). From the results, we can determine the bending stiffness
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FIGURE 3.4 Plot of bilinear force model to account for nonlinear stiffening (collagen) or
softening (carbon nanotubes) and fracture, as described by the potential in Equation 3.24.
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of the molecule, which we label EI, using continuum beam theory to describe the
mechanics of our system:

L(F
EI = 48(61), (3.9)

where L is the bent length of the molecule, F is the applied load at the center of
the span, and d is the maximum displacement (at the load point). Application of
beam-theory to atomistic simulations is a matter of judgment, as considerations
must be made for deformation mechanisms (i.e., the presence of nonlinear plastic
hinging or shear deformation). Furthermore, it is again stressed that the continuum
interpretation of EI, the product of Young’s modulus and area moment of inertia, is
not applicable to all atomistic simulations. Here we use EI as a convention to char-
acterize the bending stiffness of the molecule and assist in the formulation of the
coarse-grain potential. However, for a rigid molecule such as a carbon nanotube, a
continuum approximation can provide support to help validate resultant simulation
values. Indeed, for the (5,5) single-walled carbon nanotube, full atomistic simulated
bending results in a bending stiffness, EZ, of 6.65 x 10-26 N-m?2. Using the previously
determined E of 2 TPa, with a conservative approximation of / (assuming a solid cyl-
inder with diameter 6.8 A), we calculate a bending stiffness, EI .,y Of 2.1 X 10726
N/m?, which is on the same order of magnitude as the atomistic results. The bending
energy is given by a sum over all triples in the system, given by

Epge = 2% ©) (3.10)

triples

For bending, a rotational harmonic spring potential is used to determine the energy
between all triples of particles in the system:

¢9(9)=%k9(0—90)2, G.11)

with k, as the spring constant relating bending angle, 6, between three particles rela-
tive to the equilibrium angle, 6, = 180°. Using the equivalent elastic energy [17],

48EI

(20)

For small deformation, 6 — 6, = 2d/r,, and letting ¢,(d) = U(d):

Ud)= d’ 3.12)

_3E

h

k, (3.13)
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We next characterize weak interactions (van der Waals interactions) between all pairs
of coarse-grain elements, E,,;,.. The weak interactions represent the adhesion between
adjacent macromolecules, thus a full atomistic simulation with two molecules (usu-
ally copies of the original) is simulated to determine the adhesion energy (Fig-
ure 3.2¢). The energy barrier and equilibrium distance can be quickly determined by
minimizing the atomistic system at two distinct states: (1) when the molecules are in
contact energy minimum and (2) when the molecules are arbitrarily separated such
that the interaction is negligible (the required separation is dependent on the rela-
tive adhesion strength of the simulated system). Differences in energy minima can
be used to extract potential energy gain of adhesion (E, . .,), While the geometric
configuration at contact can be used to determine equilibrium distances (D pesion)- A
more sophisticated approach would be to determine the potential energy as a func-
tion of separation for a more accurate fitting of the coarse-grain potential. However,
here we assume a LJ 12:6 function to represent adhesion, requiring only the potential
energy well depth and equilibrium spacing for parameterization.

For the current bead-spring representation, we require the adhesion energy per
unit length. From the atomistic simulation results, with an adhesion energy gain,
E ihesion> and a total molecular contact length, L, we define the adhesion energy per
unit length, E|, as

1 Eypq
. adnesion 3.14
5 (3.14)

E, =
The total adhesion energy of the coarse-grain system is given by the sum over all
pairs or

Eping = Z% (r) (3.15)

pairs

We use the LJ 12:6 function for each pair interaction:

pur)=del| —| —|— 1| |, (3.16)
r r

where € describes the energy well depth at equilibrium, and ¢ is the distance param-
eter. We assume that a pair-wise interaction between different particles is sufficient to
describe the adhesion between the coarse-grain elements, and that there are no mul-
tibody considerations. For both carbon nanotubes and tropocollagen, this assump-
tion is deemed appropriate. As the coarse-grain particles are fundamentally point
masses, we must assign a representative thickness to our representation via the pair
potential. For the carbon nanotube, this is representative of the diameter of the tube.
For a molecule such as tropocollagen, a thickness is approximated based on the
molecular cross-section and assumed boundaries of atomistic interaction. We can
then determine the distance parameter for the LJ function:
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D,

adhesion +1

o=— "=,
2

GB.17)

where D, gp...on 1S the equilibrium distance between macromolecules determined via
atomistic simulation, and ¢ is the representative thickness. To illustrate, the equilib-
rium distance between two (5,5) single-walled carbon nanotubes was determined to
be 3.70 A, and each tube has a diameter of approximately 6.8 A. Using the Equation
3.17, we find 6 ~ 9.35 A. Note that the equilibrium spacing between coarse-grain
particles is now approximately 10.5 A, on the order of the bead-spring bond length.
Choice of bond length, r,, and choice of thickness, ¢, are critical parameters deter-
mining bead-bead interactions, and a balance may be required if intermolecular
adhesion is a pertinent system behavior (Figure 3.5).

If the bond length is much greater than the equilibrium distance of the pair poten-
tial, r, >> ry, it is possible for coarse-grain molecules to be in close contact, or
even pass through each other under certain conditions. If the bond length is rela-
tively large, r, > r ;, the energy landscape about the equilibrium conformations is not
smooth and can result in a “stick-slip” mechanism for molecules in contact as par-
ticles pass from neighbor to neighbor. Further, if the bond length is relatively short
in comparison to equilibrium separation, r, < r| ;, configurations may occur where a
particle is in equilibrium with its second-nearest neighbors, while being repelled by
the closest molecular surface. All arrangements of bond distance maintain energy
equivalence between atomistic and coarse-grain potentials, but do not result in
consistent mechanical behavior. In general, the bond length is chosen around the
pair potential equilibrium distance, to ensure consistent mechanical behavior and
a smooth energy landscape. For carbon nanotubes, we choose an equilibrium bead-
spacing, r,, of 10 A (r,, = 10.5 A), while for tropocollagen, we choose a bead-spacing
of 14 A (r,, = 16.5 A).

The potential minimum, represented by the adhesion energy per unit length, E| ,
is given by € for the LJ 12:6 function. This parameter in the coarse-grain model is
chosen such that the interaction of a single pair of beads is the same as the adhesion
energy for the representative length of the full atomistic model. For nearest neigh-
bors only, we find:

e=Er, (3.18)

To account for the interactions of next-nearest neighbors in the energy contribution
to the atomistic results, we note, at equilibrium:

Eirg=¢V(ry) + 9Py + ¢Ors) + ... + ¢ (3.19)

Or, the total adhesion energy along the coarse-grain element length is the summation

of the nearest-neighbor interactions, and “n” next-nearest neighbor interactions, ¢®
(r,), at distances r,. Thus, for more than one nearest neighbor,

-1
e=Er, [(1+7r(2) w7442 } (3.20)
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FIGURE 3.5 Energy landscape as a result of the relative magnitudes of bond distance, r,
and pair potential equilibrium distance, r,. (a) r, >> r;;, potentially resulting in false equi-
librium configurations, or allowing the passing of particles through bonds; (b) r, > | ;, rough
energy landscape resulting in a “stick-slip” mechanism for adjacent molecules; (c) r, ~ 7y,
best practice for consistent mechanical behavior and smooth energy landscape; (d) r, < 7y,
potential equilibrium with next-nearest neighbor, particle (ii) while being repelled by nearest
neighbor, particle (iii), yet attracted to third-nearest neighbor, particle (i), resulting in incon-
sistent mechanical behavior.

where 70 = ¢V (r ))/pO(r). We define the term (1 + z@ + 7 + ... + z™) = ™, and

then the above equation reduces to

e ‘;%0 : 3.21)

where f® is a numerical factor to account for next-nearest neighbor interactions.
The calculation ® depends on the geometry of the coarse-grain system, as well as
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consideration for the cutoff of the pair potential (which dictates the extent of considered
neighbors). For the current model of bead-springs for carbon nanotubes and tropocol-
lagen, we use the first six nearest neighbors, and find f© = 1.1. The factor, f®, thus
represents a reduction in the energy well depth of individual pairs, as the full atomistic
representation implicitly accounts for the interaction with next-nearest neighbors.

The final consideration for the mesoscopic coarse-grain model is the assignment
of mass to the particles. The mass of each bead is determined by assuming a homo-
geneous distribution of mass in the molecular model. Given the homogeneous struc-
ture of CNTs and tropocollagen, this is a reasonable approximation. The mass of
each bead will scale with the selection of equilibrium bond distance, r,, as each bead
is representative of a larger portion of the full atomistic model. It behooves us to note
that the full implication of this mass assignment approach to coarse-grain models
on such thermodynamic properties as temperature effects has not been thoroughly
investigated. However, the approach has proven adequate for investigations focusing
on mechanical behavior at constant temperature conditions.

Finally, we can now define the mesoscopic model potentials by six parameters:
k, 1y, kg, 0, 0, and e. The results from the described atomistic simulations are used
to determine these six parameters via equilibrium conditions (r,, 8,, o) and energy
conservation (k,, k,, €) by imposing energy equivalence and consistent mechanical
behavior. The parameters can be extended to represent nonlinear effects, as illustrated
by the bilinear function implemented for the softening or stiffening of the carbon
nanotube or tropocollagen respectively. As such, the parameter k, can be thought of
as a set of parameters, depending on the complexity of the developed potential. All
parameters of the coarse-grain potentials developed for a (5,5) SWCNT and a tropo-
collagen molecule are given in Table 3.1, derived completely from the results of full

TABLE 3.1
Summary of Coarse-Grain Parameters for the Bond, Angle, and Pair
Potentials of a (5,5) SWCNT and a Tropocollagen Molecule

Parameter SWCNT Tropocollagen
Equilibrium bead distance, r, (f\) 10.00 14.00
Tensile stiffness parameter, k’ (kcal/mol/A?) 1000.00 17.13
Tensile stiffness parameter, k,l (kcal/mol/Az) 700.00 97.66
Hyperelastic parameter, r, (A) 10.50 18.20
Fracture parameter, r,.. (A) 13.20 21.00
Equilibrium angle, 6, (degrees) 180.00 180.00
Tensile stiffness parameter, &, (kcal/mol/ rad?) 14300.00 15.00

LJ parameter, € (kcal/mol) 15.10 10.6

LJ parameter, o (A) 9.35 14.72

Source: Buehler, M. J., J. Mater. Res., 21(11), 2855-2869, 2006; Buehler, M. J., J. Mech. Behav. Biomed.
Mater., 1(1), 59-67, 2008.
Note: Derived from atomistic modeling and corresponding to Equations 3.23, 3.30, 3.34, and 3.38, as
well as Section 3.3.1 (units in brackets).
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atomistic simulations and the formulation described herein, specifically Equations
3.6, 3.13, 3.17, and 3.21.

It is noted that in the case of tropocollagen, which is typically found in solution,
the influence of the solvent on the behavior of the macromolecules is captured in
the aforementioned model constants, such that no explicit modeling of solvent is
required. Typically, such models do not require an explicit solvent nor an implicit
solvent force field or frictional coefficient. The effect of solvation is captured implic-
itly by the derived parameters and integrated into the coarse-grain potentials.

3.2.2 MODEL APPLICATIONS

3.2.2.1 Application 1: Self-Folding of Large Aspect Ratio
Carbon Nanotubes and Nanotube Bundles

Large aspect ratio CNTs are extremely flexible and can be deformed into almost
arbitrary shapes with relatively small energetical effort [1]. As illustrated by the
development of the coarse-grain pair potential, different adjacent CNTs attract each
other via van der Waals forces. If different parts of the same tube come sufficiently
close, these attractive forces can initiate the formation of self-folded structures,
where adjacent tube sections align, forming a racket-like structure. Such structures
have been observed in MD simulations [18] as well as experimentally [19]. The
stability, self-assembly, and mechanical properties of these structures are difficult
to probe experimentally, and become computationally expensive for full atomistic
simulations as the length of required nanotube increases. The described coarse-grain
model was implemented to investigate the stability of folded structures, as well as the
variation of folded configurations as a function of adhesion strength. Further, coarse-
grain nanotubes were simulated in bundled configurations (up to 100 nanotubes per
bundle) to determine mechanical properties and behavior under compressive, tensile,
and bending deformations (see Figure 3.6).

The simple mesoscale model developed can easily be adapted for different types
of carbon nanotubes, and allows the direct simulation of hierarchical bundled struc-
tures. Such investigations can potentially be of use for the development of carbon-
nanotube-reinforced nanocomposites that attempt to utilize the adhesion properties

FIGURE 3.6 Simulation snapshot of response of a CNT bundle under mechanical com-
pressive loading depicting significantly deformed/buckled shape. The bundle consists of
81 nanotubes using coarse-grain representation. (From Buehler, M.J., J. Mater. Res. 21(11),
2855-2869, 2006. With permission.)
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of nanotube clusters and exploit energetically favorable folded configurations and
manipulate stable adhesion domains.

3.2.2.2 Application 2: Mechanical and Surface Properties
of Vertically Aligned CNT Arrays

Synthesis techniques have become adept at producing arrays of carbon nanotubes
consisting of thousands of aligned tubes with similar diameters, lengths, and aspect
ratios [2,20]. The properties of such arrays can be exploited to produce novel materi-
als with unique, amplified, and controlled mechanical properties. Again, it is dif-
ficult to simulate such systems via full atomistic representations due to the sheer
number of required nanotubes and timescales required to mimic real physical and
experimental processes.

A vertically aligned array of nanotubes was constructed using the discussed
coarse-grain CNT model, and then subjected to nanoindentation simulations (Figure
3.7). The goal was to probe the global behavior and mechanical properties of the array,
through variations in nanotube parameters and application of external forces (in the
form of a magnetic field). We again stress the use of a coarse-graining approach to
investigate the system-level response of the array as opposed to the constituent nano-
tubes (component-level).

The coarse-grain model inherently allows the efficient varying of array geom-
etry (aspect ratios, array spacing, etc.) to investigate behavior dependencies and pat-
tern formation. Combined with a representation of physical experimental techniques
(nanoindentation) to derive physical properties, such models can serve to facilitate
empirical investigations by providing efficient means of prediction and a theoretical
basis for behavior, thereby providing a crucial link between simulation and reality.

3.2.2.3 Application 3: Mechanical Property Variation

through Collagen Fibril Crosslink Density
Natural collagen-based tissues are composed of staggered arrays of ultralong tro-
pocollagen molecules extending to several hundred nanometers [4]. Although the
macroscopic properties of collagen-based tissues (such as bone and tendon) have

()

® Center of Indentation (b)

600 A 500 A

FIGURE 3.7 Depiction of nanoindentation simulation of coarse-grain nanotube array con-
sisting of a 30 x 30 grid of nanotubes with a height of 30.0 nm [2]. (a) Top view, indenter not
shown. (b) Side view with relative size of indenter depicted. The coarse-grain simulation
consists of approximately 30,000 beads, whereas the equivalent full atomistic representation
of the system would consist of over 4 million carbon atoms.
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FIGURE 3.8 (See color insert following page 146.) Mesoscale model of collagen fibril,
consisting of a two-dimensional array of ultralong coarse-grain tropocollagen molecules.
The snapshots show the molecular structure as the fibril undergoes tensile deformation,
where the color is defined by the magnitude of the slip vector [61]. A detailed analysis of the
molecular deformation mechanisms suggests that intermolecular slip plays a major role in
mediating large tensile strains in collagen fibrils leading up to failure, following a significant
elastic regime. (Adapted from Tang, Y., Ballarini, R., Buehler, M. J., and Eppell, S. J., J. Roy.
Soc. Interface, 71(46), 839, 2010.)

been studied extensively, less is known about the nanomechanical properties at the
mesoscale—the hierarchical structure formed by the staggered tropocollagen mol-
ecules. A coarse-grain representation is uniquely suited to investigate the behavior
of the structure and interaction of collagen fibrils. One such investigation probed the
effect of crosslink density on the mechanical strength, deformation, yield, and frac-
ture behavior on collagen fibrils (Figure 3.8). Crosslink-deficient collagen fibrils show
a highly dissipative deformation behavior with large yield regimes, while increasing
crosslink densities leads to stronger fibrils that display increasingly brittle behavior.
Collagen is such a fundamental constituent of biological materials that an
improved understanding of the relevant nanomechanics can facilitate the devel-
opment of novel biomimetic materials and aid in the understanding of injury and
pathology processes. Indeed, the mutable collagenous tissue of echinoderms serves
as an inspiration of new pharmacological agents and composite materials with bio-
medical applications [21]. In addition, diseases such as osteogenesis imperfecta [22]
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are caused by defects in the molecular structure of collagen, altering the intermo-
lecular and molecular properties due to genetic mutations [23-26]. Investigations of
the effects of such mutations on the subsequent mechanical behavior and properties
of collagen structures can serve to elucidate the characterization and diagnosis of
diseased tissues and the pathology of similar genetic diseases [27,28]. Such investi-
gations are only possible via multiscale coarse-graining approaches that transcend
the hierarchy of collagen fibrils, from the constituent polypeptides to tropocollagen
molecules to collagen fibrils, penultimately leading to a deeper understanding of
biological tissues such as nascent bone and associated disease states.

3.3 CASE STUDY II: FOLDING/UNFOLDING OF
ALPHA-HELICAL PROTEIN DOMAINS

Proteins constitute the critical building blocks of life, providing essential mechani-
cal functions to biological systems, and the focus of many molecular and atomistic
level simulations [29,30]. In particular, alpha-helical (AH) protein domains are the
key constituents in a variety of biological materials, including cells, hair, hooves,
and wool. While continuum mechanical theories have been very successful coupling
the atomistic and macro scales for crystalline materials, biological materials and
soft condensed matter (such as polymer composites) require different approaches to
describe elasticity, strength, and failure. The fundamental deformation and failure
mechanisms of biological protein materials remain largely unknown due to a lack
of understanding of how individual protein building blocks respond to mechanical
load.

It has been determined both experimentally [31] and via simulation [32] that the
mechanical response of biological materials is a combination of molecular unfolding
or sliding, with a particular significance of rupture of reversible chemical bonds such
as hydrogen bonds (H-bonds), covalent crosslinks, or intermolecular entanglement.
The dominance of specific mechanisms can emerge at different time and length
scales, chemical environments of the protein, and hierarchical arrangements/struc-
tures. As such, it is difficult to generalize fully atomistic results from nano to macro.
Figure 3.9 displays an example hierarchical alpha-helical protein system.

A coarse-grain model is developed here to investigate the unfolding behavior
of alpha-helical domains. The coarse-grain representation integrates parameters
that define the energy landscape of the strength properties of alpha-helical protein
domains, including energy barriers, unfolding and refolding distances, and the loca-
tion of folded and unfolded states, and is implemented to investigate the variations
of strength with respect to length and loading rate of alpha-helical protein filaments.
Although unfolding of short alpha-helical segments can be modeled using full atom-
istic techniques, a coarse-grain representation is required to fully investigate the
length dependence on mechanical response, as well as integration of alpha-helices
into higher-level hierarchical arrangements. Such an approach intends to extend a
known atomistic behavior to larger systems via coarse-grain potentials, which dif-
fers from the intent of the aforementioned carbon nanotube or collagen models that
focused on system-level behavior and mechanical response.
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FIGURE 3.9 (See color insert following page 146.) Schematic depicting hierarchical
structure of alpha-helix protein-based intermediate filaments (IFs), which provide structural
tensegrity to the cytoskeleton of cellular membranes. Over seven levels of hierarchy are tran-
scended, from hydrogen bonds to alpha-helical turns, alpha-helical proteins (which are the
focus of coarse-graining discussed here), dimers (coiled-coiled protein domain), tetramers,
unit-length filaments, and full-length filaments to the cellular level. (Adapted from Qin, Z.,
Kreplak, L., and Buehler, M.J., PLos ONE, 4(10), €7294, 2009.)

3.3.1 MoDEL DEVELOPMENT

The setup of the coarse-grain model for alpha-helical protein domains is based on
the geometry of an AH, which features a linear array of turns or convolutions sta-
bilized through the presence of H-bonds between sequential amino acid residues.
During mechanical loading, any one of these convolutions can possibly rupture. As
such, the coarse-grain representation is rationally discretized into bead-spring ele-
ments representing a single convolution consisting of approximately 3.6 amino acid
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residues. To achieve the coarse-grained description, the entire sequence of amino
acids that constitute the alpha-helices is replaced by a collection of mesoscopic bead-
spring elements (see Figure 3.10).

Similar to the previous linear, one-dimensional bead-spring models, we define
the energy landscape of the coarse-grain system by three potentials:

Exy=Eioa+ Eppote + E (3.22)

angle pair

Here, the bond potential must represent the structural backbone protein domain,
and also the energetic features of the stabilizing H-bonds. The aim is to capture the
structural and energetic features of an alpha-helical protein domain. A double-well
potential is chosen to capture the existence of two equilibrium states for a convo-
lution, folded and unfolded (see Figure 3.11). The model does not involve explicit
solvent; rather, the effect of the solvent on the breaking dynamics of alpha-helical
convolutions is captured by an effective double-well potential, parameterized by full
atomistic simulations that implemented explicit solvent.

X

FIGURE 3.10 (See color insert following page 146.) Schematic of coarse-graining proce-
dure, in which full atomistic representation is replaced by a mesoscopic bead-spring model.
A pair of beads represents one turn in the alpha-helix (also called a convolution), and thus 3.6
residues with the corresponding mass. (a) Full atomistic representation depicting all atoms
and bonds; folded states of the turns are stabilized by the presence of hydrogen bonds between
residues (not shown); water molecules not shown for clarity. (b) Ribbon representation of pro-
tein, illustrating alpha-helical folded conformation of backbone chain and individual convo-
lutions; explicit solvent (water molecules) shown. (c) Developed coarse-grain representation,
with a single bead per convolution; need for explicit solvent eliminated in coarse-grain model,
as effects are integrated into coarse-grain potentials.
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The bond potential can describe the microscopic details of the rupture mecha-
nism of the convolution H-bonds under force, as well as the transition from a folded
to unfolded state, through the prescribed energy barrier of the potential. The descrip-
tion is sufficiently coarse to enable significant computational speedup and efficiency
compared with a full atomistic description.

Again, the total bond energy of the alpha-helical system is given by the sum over
all bonded interactions or:

Eons = X Brona () (3.23)

bonds

The double-well potential, ¢, (%), is given by

ﬂ(x—)ctr)z(x—x,, —\/E-xh)(x—x,,+ 2 -x,,), x<x,

Xp
¢b0nd (-x) = E ) (324)
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FIGURE 3.11 (See color insert following page 146.) Double-well profile of the bond-
stretching potential of the coarse-grain model, representing the energy landscape associated
with the unfolding of one convolution (see Equation 3.24). The values of the equilibrium states,
X, and x,, energy barriers, E, and E,, and the transition state, x,,, are obtained from geometric
analysis of the alpha-helix geometry, as well as the full atomistic simulations. The transition
state (local energy peak) corresponds to the breaking of hydrogen bonds between convolu-
tions of the alpha-helix. After failure of these weak bonds, the convolution unfolds to a second
equilibrium state with a large interparticle distance. Under further loading, the covalent bonds
begin to stretch, which leads to a second increase of the potential at large deformation.
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The first equilibrium reaction coordinate, x,, (first potential minimum), corresponds
to the folded state of one alpha-helical convolution under no force applied. The tran-
sition state (energy barrier E,), with position x,, (peak of potential between the two
wells), corresponds to the breaking of the H-bonds between alpha-helical convolu-
tions. After failure of these weak bonds, the alpha-helix unfolds to a second equilib-
rium state. This corresponds to the second potential minimum with a larger interbead
distance, x,. Under further loading, the backbone bonds begin to be stretched, lead-
ing to a second increase in the potential (see Figure 3.11). This formulation does
not include the rupture of the covalent backbone bonds. The parameters x, and E,
represent the distance and energy barrier required to unfold one convolution, which
x, and E, correspond to the refolding process. It is noted that the energy barrier for
refolding, E,, must be smaller than the energy barrier for unfolding, E,, since the
folded state is the most favorable state for a convolution in equilibrium [33].

The representation of two equilibrium states also requires a transition of the
bending stiffness from a folded to unfolded state. In order to distinguish the bending
stiffness for each state (which entails a severe structural change), we define a stiff-
ness parameter, K,, as a function of bead distance, x:

T

Ky ()= Ky {a (- (arctan(IOO(x -x,))- ;H : (3.25)
with

K
o= b,unfold (3.26)
Kb,fold

From full atomistic simulations, the bending stiffness of the protein, EI, is deter-
mined. We let

3EIfolcl and Kb anfold = 3EIunfold ,
X0 ’ X

(3.27)

K b.fold —

where El, and EI ., are the bending stiffnesses of the folded and unfolded AH,
respectively. Again, the total bending energy of the alpha-helical system is given by
the sum over all bead triples (angles), or:

Eangle = z ¢angle ()C, 0) (328)

triples

We can then define the coarse-grain angle potential as

Pungre (X,60) = %Kb (x)(6-6,) (3.29)

Finally, the total intermolecular interaction energy, E,,;, is again represented by

the sum over pairwise interactions between beads of different alpha-helical protein



56 Multiscale Modeling: From Atoms to Devices

TABLE 3.2

Summary of Parameters for a Coarse-Grain Alpha-Helical Protein Model
Parameter Numerical Value
Equilibrium distance, folded state, x, (A) 54
Equilibrium distance, unfolded state, x; (A) 10.8
Distance between folded state and transition state, x,, (f\) 1.2
Energy barrier, folded state and transition state, E, (kcal/mol) 11.1
Energy barrier, unfolded state and transition state, E, (kcal/mol) 6.7
Bending stiffness, folded state, K, 4 (kcal/mol/rad?) 21.6
Bending stiffness, unfolded state, K}, 4 (kcal/mol/rad?) 0.665
Equilibrium angle, 6, (degrees) 180
Pair potential, LJ distance parameter, ¢ A) 10.8
Pair potential, LJ energy parameter, € (kcal/mol) 6.815
Mass of mesoscale bead (amu) 400

Source: Bertaud, J., et al., J. Phys. Condens. Matter, 2009.

Note: Derived from atomistic modeling, corresponding to Figure 3.12 and representing the constants
required for the coarse-grain potentials as discussed in Section 3.3.1 and Equations 3.22 through
3.29 (units in brackets).

domains. The adhesion potential (¢,,,;,) is again formulated by a LJ 12:6 potential, via
an energy minimum (g) and distance parameter (c), in a manner discussed in Section
3.2.1. Table 3.2 lists the parameters implemented in the mesoscopic bead-spring
alpha-helix model, from previous full atomistic simulations [29,32,34] depicted in
Figure 3.12. The mass of each bead corresponds to the approximate average mass of
each convolution (400 amu).

It is quite apparent that, although a similar double-well potential can be developed
for other systems with distinct equilibrium conformations, the current coarse-grain
description is uniquely developed for the alpha-helix. Specifically, it represents the
atomistic rupture behavior of alpha-helical protein domains during mechanical load-
ing under a limited range of loading rates (pulling speeds under 0.3 m/s) at a spe-
cific temperature (300 K) and particular environmental conditions (explicit waterbox)
implemented in the full atomistic simulations in which the distance and energy barrier
parameters were obtained [32,34]. However, the model could be easily adapted to other
classes of protein filaments that feature serial arranged domains that undergo unfold-
ing or a transition to distinct equilibrium states under mechanical loading and strain.

3.3.2 MODEL APPLICATIONS

3.3.2.1 Application 1: Time Scale Extension

The developed coarse-grain model for the alpha-helix was implemented to investi-
gate the length and rate dependence of the Bell model, a theoretical strength model
that can be applied to describe the mechanical behavior of molecules with reversible
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FIGURE 3.12 (See color insert following page 146.) Full atomistic tests of alpha-helical
protein (single-helix and coiled-coiled conformations) used to parameterize the coarse-grain
model. (a) Force-strain results of direct tension simulations. The first regime (I) consists of a
linear increase in force, until a strain of approximately 13% for the single alpha-helix, noted
as the angular point (AP), which corresponds to the rupture and unfolding of an alpha-helix
convolution. The second regime (II) represents the unfolding of the helix under approxi-
mately constant force. The third regime represents a nonlinear increase in strain due to
backbone stretching of the protein. (b) Force-displacement results of three-point bending
simulations. The slope of the curve is proportional to the bending stiffness. Only the single
alpha-helix values were used in the development of the coarse-grain representation. (Adapted
from Ackbarow, T., and Buehler, M.J., J. Mater. Sci., 42(21), 8771-8787, 2007.)

bonds (see Bell [35], Evans [36], Evans and Ritchie [37], and Walton, Lee, and Van
Vliet [38], in addition to the primary references, Bertaud et al. [29,30], for details).
Essentially, the Bell model presents a logarithmic relationship between reversible
bond strength and loading rate (or molecule pulling speed). Full atomistic simula-
tions are limited to time scales on the order of nanoseconds, limiting the pulling of
alpha-helix stretching to approximately 0.01 m/s. Such a relatively high loading rate
prevents a one-to-one correspondence with experimental results. However, the use
of the coarse-grain potential extends the accessible time-scales to an order of micro-
seconds, allowing pulling speeds on the order of 0.0001 m/s, representing a 100-
fold increase in time scale. Experimental results of stretching and breaking single
AH domains [39,40] report forces corresponding to the force level predictions at
ultraslow pulling speeds of the coarse-grain model. Additionally, the coarse-grain
representation can still be implemented at time scales on the order of full atomistic
studies, allowing the validation of mesoscopic and full atomistic results.

3.3.2.2 Application 2: Length Dependence

The model was further implemented to investigate the length dependence on the
rupture strength of proteins to extend the Bell model to ultralong protein regimes.
Both experimental and full atomistic investigations are limited to an alpha-helix
length on the order of 10 nm. This limitation only represents approximately 20
bead-spring elements of the coarse-grain representation, and thus can be easily sur-
mounted using the coarse-grain model. Extending the length of AH protein domains
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to approximately 50 nm, coarse-grain simulations resulted in a logarithmic decrease
in rupture strength as the protein length increased or

fily=aln(L/Ly)+b (3.30)

Due to the logarithmic dependence on length, this relation can only be investigated
by simulating proteins with lengths extending several orders of magnitude. Such an
expanse of scales is not accessible to full atomistic representations. This weakening
behavior can be attributed to an increase in potential H-bond locations as the number
of convolutions increases, each of which can break with the same probability. Since
failure of one convolution is sufficient to initiate failure of the entire system, we expect
longer molecules to be weaker, as observed in the coarse-grain simulations and previous
investigations [41].

3.3.2.3 Application 3: Characterizing Intermediate Filament Networks

Individual, isolated alpha-helices are rarely found in biology. Thus, the developed
coarse-grain model can facilitate the investigation of hierarchical structures of pro-
teins and protein filaments [42]. Indeed, AH-based protein networks constitute the

FIGURE 3.13 (See color insert following page 146.) Snapshots of protein network deforma-
tion, where coarse-grain representation of alpha-helix proteins was implemented. The defor-
mation mechanism is characterized by the molecular unfolding of the alpha-helical protein
domains, leading to the formation of large plastic yield regions, providing energy dissipation
and preventing catastrophic failure. The blowups depict the atomistic structural arrangement
of the alpha-helical protein domains based on the known correspondence with the coarse-
grain mapping. (Adapted from Ackbarow, T., et al., PLos ONE, 4(6), e6015, 2009.)
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intermediate filament structure in the cell’s cytoskeleton and the nuclear membrane.
Using a network of coarse-grain bead-spring structures, large meshes reflecting an
assembly of intermediate filaments can be constructed and probed for mechanical
properties and behavior (Figure 3.13).

It was found that the characteristic properties of alpha-helix-based protein net-
works are due to the particular nanomechanical properties of the protein constit-
uents, enabling the formation of large dissipative yield regions around structural
flaws, effectively protecting the protein network against catastrophic failure. The
direct simulation of such large networks is only possible through the use of such
multiscale coarse-grain models under discussion.

3.4 CASE STUDY lll: MESOSCOPIC AGGREGATION
OF FULLERENE-POLYMER CLUSTERS

Modification of nanoparticles by attachment of polymer chains can, in principle,
allow manipulation of the geometry and interaction of particles on the nanoscale,
allowing a tunable method of controlling their self-association [43,44]. A complete
understanding of such interactions can result in unique binding properties or con-
trolled self-assembly. Simulations implementing coarse-grain models have shown
that nanoparticles tethered by polymer chains with various degrees of asymmetry,
chain length, and polymer/particle interaction exhibit a rich spectrum of nanostuc-
tures, including spherical, cylindrical, lamellar, sheetlike, and bicontinuous mor-
phologies [45]. Experimental observations also show self-assembly of such tethered
nanoparticles into spherical vesicles [46] and nanorods [47]. Here we focus on
poly(ethylene oxide) (PEO)-grafted fullerenes (Cy,-PEO nanoparticles). The thermo-
dynamics of self-assembly of these nanoparticles, including the strong dependence
of cluster distribution and average cluster size on concentration, indicate that the self-
assembly process resembles the formation of wormy or spherical micelles, taking
advantage of the water-soluble PEO and the hydrophobic fullerene.

Investigation of the formation and aggregation of such nanostructures is limited
using full atomistic approaches, as there is a significantly large computational expense
to compute the interactions of the nanoparticle (such as the carbon—carbon interac-
tions of the fullerene) and the behavior of the polymer—nanoparticle interactions.
Such computations are inconsequential, as it is known a priori that the mesoscopic
structure is stable. Thus, coarse-graining methods are developed to investigate the
subsequent hierarchical level of nanoparticle interactions and aggregation, circum-
venting the details of full atomistic behavior.

The coarse-graining approach to such systems has a threefold purpose:

1. To reduce the number of degrees of freedom to be simulated

2. To focus on the nanoparticle—nanoparticle interactions

3. To reproduce the molecular distributions and aggregations of the nano-
particles

Specifically, the goal of the coarse-grain model is to adequately reproduce the
intramolecular and intermolecular structure of aqueous Cg,-PEO systems, the
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distribution of PEO segments around the fullerenes, and the energetic landscape
between nanoparticles.

It is noted that the intended mesoscopic investigation is not focused on mechani-
cal behavior, and thus mechanical properties such as Young’s modulus and bending
stiffness, critical parameters in the previous potentials (Sections 3.2 and 3.3), are not
part of the current coarse-grain model development. However, the C,-PEO coarse-
grain system provides an illustration of both the finer-trains-coarser multiscale para-
digm, as well as the system-dependent approach to coarse-grain model development
expressed throughout this chapter.

3.4.1 MobEL DEVELOPMENT

The coarse-grain model is parameterized based on fullerene—fullerene, fullerene—
PEO, and PEO-PEO interactions. Of critical concern, as the nanoparticles aggregate
in solution, is the integration of the influence of water on all interactions. Indeed,
elimination of the explicit solvent results in the primary reduction of degrees of
freedom. Fullerenes were condensed to a single-particle representation, while PEO
chains were developed consisting of one particle per CH,—O—CH, functional group
(Figure 3.14). The coarse-graining approach for polymer systems is unique in the
fact that polymer systems are typically governed by entropic effects (as opposed
to the rigid structures of CNTs or tropocollagen). As such, the coarse-grain model
focuses on interactions and molecular distributions rather than replication of specific
structural or mechanical properties.
We define the energy of the system as

(3.31)

EPEo-C60 =E

pair »
such that

(3.32)

FIGURE 3.14 Representative snapshots of (a) two interacting Cq,—PEO nanoparticles
obtained from atomistic, explicit solvent simulations (water molecules and PEO chains on the
right fullerene omitted for clarity) and (b) three coarse-grain C,,—PEO nanoparticle repre-
sentations (PEO beads of the center nanoparticle shaded differently to differentiate adjacent
molecules). (Reprinted with permission from Bedrov, D., Smith, G. D., and Li, L., Langmuir,
21, 5251-5255, 2005. Copyright 2005 American Chemical Society.)
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Here, the coarse-grain potential is defined by the interactions alone. To account
for bonding and angular geometry, the SHAKE algorithm was implemented [48]
(which applies bond and angle constraints). As the intent of the coarse-grain model
is not the mechanical behavior of the nanoparticles, less emphasis is placed on the
accurate representation of molecular deformation, and application of the SHAKE
algorithm is sufficient to maintain accurate geometry and polymer tether response
during aggregation. Each interaction pair was investigated at the atomistic level sep-
arately, and can subsequently be considered part of the discussed atomistic test suite,
with a focus on molecular interactions rather than molecular mechanical response.
Atomistic investigations include

1. PEO-PEO and PEO-water intermolecular and PEO-PEO intramolecular
interactions representing both hydrophilic and hydrophobic ether—water
interactions [49]

2. Fullerene—fullerene interactions using full atomistic carbon—carbon poten-
tial to develop a coarse-grain Cy,—Cy, pair potential [50]

3. Water—carbon interactions [51] as the basis for water—fullerene interac-
tions [52]

It is noted that each investigation focused on a particular molecular interaction,
similar to previous case studies in which the atomistic test suites focused on indi-
vidual molecular responses, such as stretching, bending, or adhesion. The interac-
tions were then defined by

¢puir = ¢AB’ (333)

where ¢, is derived from the atomistic test suite. The AB indices indicate the pos-
sible fullerene—fullerene, PEO-PEOQO, or PEO—fullerene interactions. As the atom-
istic studies did not determine all possible combinatorial parameters, standard
mixing rules were implemented:

Eap =\ E€aEp (3.34)

Gy = %(GA +0y) (3.35)

Using the known atomistic interactions as well as the mixing rules, behavior
was investigated between Cq,,—PEO nanoparticles in full atomistic and coarse-grain
simulations. Nonbonded coarse-grain PEO—-PEOQ interactions were parameterized to
reproduce the PEO monomer—-monomer interactions. Bonds and bends in the PEO
chains were developed to match intramolecular correlations (end-to-end distance
and radius of gyration). Parameterization of the coarse-grain potentials was then
adjusted to reflect accurate radial distribution functions and coordination number of
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FIGURE 3.15 Full atomistic and coarse-grain results for model parameterization and vali-
dation for C4,—PEO nanoparticles. (a) PEO—PEO monomer intermolecular radial distribution
function as obtained from atomistic, explicit solvent and coarse-grained, implicit solvent MD
simulations of two PEO aqueous solutions. (b) Integrated coordination number of PEO seg-
ments in the C,,—PEO in an aqueous solution system as a function of their separation from
the center of fullerene. (Reprinted with permission from Bedrov, D., Smith, G. D., and Li, L.,
Langmuir, 21, 5251-5255, 2005. Copyright 2005 American Chemical Society.)

the C¢,—PEO system, i.e., the distribution of the polymer tethers about the fullerene
(Figure 3.15).

Validation was carried out by calculation of the potential of mean force between
two C4—PEO nanoparticles via full atomistic (explicit solvent) and coarse-grain
(implicit solvent) simulations. The coarse-grain model captures the most important
features of the PMF, namely, the weak long-range attraction and strong short-range
attraction. Again, we see how full atomistic investigations are applied to validate
the behavior of a system component (as described in Section 2.3.5), after which the
coarse-grain model can be extended to investigate larger systems.

3.4.2 MODEL APPLICATIONS

3.4.2.1 Application 1: Large Systems of Aqueous C,,—PEO Nanoparticles
The coarse-grain representation was implemented to compare the aggregation of
1000 bare fullerene or 1000 C,—PEO nanoparticles in solution, with fullerene
volume fractions ranging from 0.07 to 0.25 [43]. Full atomistic simulation of such
systems would expend the majority of computational cost on the explicit solvent
calculations, consisting of thousands of water molecules with negligible interac-
tions with the nanoparticles, yet a large system is required to investigate the spatial
and density effects of nanoparticle aggregation. It was shown that bare fullerenes
form dense clusters with interactions between many fullerene neighbors, while the
introduction of PEO tethers results in a polymer “hugging” phenomena (coverage of
adjacent fullerenes by PEO chains). With an increase in surface coverage, the steric
interactions between PEO chains and between PEO and fullerenes become dominant
and shield the fullerene from interactions with other fullerenes, resulting in chain-
like cluster configurations (Figure 3.16).
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FIGURE 3.16 Representative coarse-grain simulation snapshots of (a) 1000 bare Cy, fuller-
enes in aqueous solution (water not shown); (b) 1000 PEO-tethered Cg, fullerenes, with equiv-
alent volume fraction as (a) (water and PEO chains are not shown for clarity); and (c) two
representative PEO—Cy clusters from the configuration shown in (b). (Reprinted with per-
mission from Bedrov, D., Smith, G. D., and Li, L., Langmuir, 21, 5251-5255, 2005. Copyright
2005 American Chemical Society.)

3.4.2.2 Application 2: Systematic Variation of Polymer

Architecture on C.,—PEO Nanoparticles
The effect of polymer architecture was investigated using the developed coarse-grain
model, by manipulating the number and chain-length of the attached PEO tethers
[44]. PEO-grafted fullerenes were comprised of a single tether of 60 repeat units
(PEO functional groups), a three-arm star with 20 units per chain, or a six-arm star

()

(b)

FIGURE 3.17 (See color insert following page 146.) Schematic overview of the types of
coarse-grain nanoparticles employed in the clustering study. (a) Constant architecture motif,
with each chain in a three-armed star with lengths of 5, 10, 20, and 40 PEO units, respectively.
(b) Constant mass motif, where each nanoparticle has 60 total PEO units with arrangements
in a linear, three-armed, or six-armed fashion, respectively. Note explicit solvent molecules
are neither depicted nor required in the coarse-grain simulations. (Reproduced with permis-
sion of the PCCP Owner Societies. Copyright 2009. Hooper, J. B., Bedrov, D., and Smith,
G. D., Phys. Chem. Chem. Physics, 11, 2034-2045, 2009.)
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FIGURE 3.18 Representative snapshots for the constant mass series of clusters as depicted
in Figure 3.17b: (a) Single, 60-unit PEO chains; (b) three-armed configuration, 20 units each;
(c) six-armed configuration, 10 units each. The red spheres represent the fullerene core, while
the surrounding polymer is depicted as a solvent-accessible isosurface. (Reproduced in part
with permission of the PCCP Owner Societies. Copyright 2009. Hooper, J. B., Bedrov, D.,
and Smith, G. D., Phys. Chem. Chem. Physics, 11, 2034-2045, 2009.)

with 10 units per chain (Figure 3.17b). In addition, the influence of tether length of
the three-chain configuration was investigated, from 5 to 40 units per chain (Figure
3.17a). Variation of number of PEO segments and segment length serve to control
aggregate size and shape during self assembly.

It was concluded that higher molecular weight PEO (longer arms) and more com-
pact PEO (more arms but constant total number of units) resulted in greater steric
repulsion between fullerenes, engendering greater aggregate surface curvature and
resulting in more spherically shaped aggregates (Figure 3.18).

It is emphasized that while the coarse-grained simulations were able to eliminate
solvent degrees of freedom, the degrees of freedom of the tethered polymer chains
cannot be excluded due to the nontrivial and nonisotropic contribution of the func-
tional monomer groups into the interaction between Cy,-PEO nanoparticles. Again,
care must be taken to ensure such pertinent effects are included in any developed
coarse-grain representation.

Such studies illustrate that chemical modifications of nanoparticles can result in
unexpected interaction/self-assembly behavior due to interplay between nanoscale
phenomena—~phenomena that may be beyond the scope of atomistic investigations.
The understanding of nanoparticle aggregations such as polymer-tethered fullerenes
can facilitate the development of complex nanoscale structures with potential bio-
medical applications (i.e., drug delivery, binding to biological molecules) or advance
polymer nanocomposites with superior mechanical properties.

3.5 SUMMARY AND CONCLUSIONS

Model formulation is dependent on the molecular system to be represented, as well
as the intent of the coarse-grain simulations. In the model development for carbon
nanotubes and tropocollagen molecules, a focus was on structure—property rela-
tions of secondary hierarchical structures such as CNT bundles or arrays and col-
lagen fibrils. The intent of the investigation was to probe the mechanics of the larger
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hierarchical systems, and care was taken to accurately represent the mechanical
response of the coarse-grain potential. Consequently, this lead to the integration of
molecular softening and stiffening of carbon nanotubes and tropocollagen molecules
within the coarse-grain response. The intention of the coarse-grain representation of
alpha-helix protein domains, in contrast, was to extend well-known atomistic behav-
ior to time and length scales inaccessible to full atomistic molecular dynamics. The
integration of the unfolding behavior of an alpha-helix reduced the complex phe-
nomena of hydrogen-bond rupture to a simple bond potential, via a unique “double
well” potential formulation. In effect, the coarse-grain representation can accurately
represent the response of two distinct configurations of the protein—both helical
and unfolded—within the same model. For nanoparticle aggregation, the coarse-
grain model development concentrated on polymer—nanoparticle interactions, with
limited focus on mechanical properties. The intended application is not to produce
a mechanical response, but rather to systematically study the effects of nanopar-
ticle concentration and polymer architecture on self-assembly processes. As such,
accurate mechanical properties and associated potentials were not required, further
optimizing the computational efficiency of the simulations, required atomistic tests,
and development of the coarse-grain model.

It is apparent that current coarse-graining methods are neither as accurate nor as
predictive as all atom simulations. Future coarse-graining techniques can explore
more rigorous parameterization methodologies for more accurate representations of
the system. Indeed, full atomistic force fields and algorithms are constantly updated
to improve the accuracy of results and versatility of applications. With an inevitable
increase in computing power, larger and larger systems can be simulated via full
atomistic representations, providing a counterargument for the development of any
coarse-graining approaches. In addition, coarse-graining methods are inherently at
a disadvantage due to their system-dependent nature—complex and diverse interac-
tions must be described by a small number of parameters. The finer-trains-coarser
multiscale paradigm implemented here attempts to illustrate the possible utility and
advantages of coarse-graining methods through the delineation of component-level
material properties and system-level mechanical behavior. The convergence of struc-
ture and mechanical properties is apparent in both natural and synthetic hierarchical
systems, requiring new approaches to analyze and explicate the reciprocity of mate-
rial properties, mechanical function, and structural arrangement. It is the contention
of all multiscale methods that component-level behaviors can be adeptly represented
by coarse-grain potentials, and thus serve to clarify structure-property relations
without resorting to more complex models.
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