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Appedix A: Supplemental Materials of Amyloid 
Fibrillation Model 
 
This supplement contains four sections that support the main text including: 1. details of 
the methods used for parameter estimation, 2. comparisons of the model predictions 
against a simple empirical model, 3. a sensitivity analysis study that identifies key 
variables, 4. the MATLAB® [1] computer codes used to implement the  parameter 
estimation and numerical solution of the fibrillation kinetics, and 5. The abstract of the 
paper entitled “Osmolyte Controlled Fibrillation Kinetics of Insulin” which deals with 
additive-induced heterogeneous fibrillation.  It is the manuscript we wrote together with 
Nayak and Prof. Belfort from Rensselaer Polytechnic Institute. 
 

A.1 Parameter estimation 
 
Nonlinear least squares regression [3] was used to estimate the model parameters.  The 
mathematical statement of the optimization problem including the physical constraints is 
of the form:  
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where Ф(θ) is the objective function to be minimized and θ is vector of np parameters to 
be estimated from Yi, the measurements of fibril amount at the nexp time points.  The 
solution to the model built in the main paper describing the kinetics of fibril 
concentration at the time points is denoted by f.  A local minimum for Eq. (A.1) can be 
found by solving the system of algebraic equations. 
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Both the optimization problem and the embedded differential equations, describing the 
kinetics, were solved with MATLAB® and its library programs nlinfit, nlparci, and 
nlpredci. (A copy of the MATLAB code is included in Section 4).  The algebraic 
equation solver nlinfit uses the Levenberg-Marquardt method to solve the nonlinear 
system Eq. (A.2)  After a limited number of iterations, the calculation converged to the 
local minimum. Different starting points were used to ensure that the solution to Eq. (A.2) 
was indeed a global minimum.   
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Three different metrics were used to assess the goodness-of-fit for the parameters θ.  One 
was the coefficient of determination (R2), which is the ratio of sum of squared errors due 
to regression to the total sum of square errors.  Another was the Root Mean Square Error 
(RMSE). A third measure of the quality of the statistic fit were the confidence intervals 
for each of the estimates.  Several computational steps were required to calculate the 
standard error of the confidence intervals.  First, the population variance s2 was estimated 
from the residual errors,  
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where ν is the rank of design matrix and equal to the number of experimental points 
minus  the number of parameters (nexp – np).  The half-width confidence interval, given 
the level of significance, was calculated using 
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where tν,α/2 is the Student t-distribution with degree of freedom ν and significance level α.  
The significance level used here was 0.317 which corresponds to one standard deviation.  
X is the linearized design matrix also known as the Jacobian.  
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Originally there were two forward and two reverse rate constants to be determined but 
after exploring parameter variations by sensitivity analysis, we found that knu- did not 
influence the response significantly (Figure A.3-2) and so the estimated parameter vector 
θ  has the components {knu,1, kfb,1, kfb} 
 
 

A.2 Comparison of the Kinetic Model against an Empirical Function 
 
In many previous experimental studies regarding fibrillation (see [2] for example), the 
sigmoidal responses were fitted with an empirical expression of the form.   
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where the coefficients (yi, mi, yf, mf, t0, τ) were adjusted to fit the time response. Given the 
often good match to the data it is natural to ask if there is any physical basis for the model. 
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In general, the set of differential equations defined in our model need to be solved 
numerically except for some special cases.  One is when the natural insulin hexamer is 
assumed to dissociate instantaneously and the critical size n is as small as two. Under 
these assumptions there are two chemical species left: soluble monomers and insoluble 
fibrils.  Since the kinetic model now consists of only two distinct stages (Eq. (A.7)): the 
slow nucleation process, and the fast fibrillation stage, the nucleation and the fibril 
elongation reactions both follow second order kinetics.  
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In this model fibril dissociation is first order with respect to fibril concentration.   
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If the fibrils were on average composed of N monomers then the time derivative of 
monomer concentration should have been N times as large as that of fibril concentration.  
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Under these conditions the monomer concentration, A1 could be expressed in terms of 
initial concentrations (A0) and F by a mass balance; thus, the time derivative of fibril now 
becomes a single variable differential equation.  
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Since, at steady state, the right hand side of Eq. 10 was equal to zero, it is a second order 
algebraic equation in F and we know that the system had at least one stable steady state, 
so there must be two real roots (r1, r2) [4].   
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The set of differential equations were simplified into the form explicitly showing the loci 
of two roots; one the attractor and the other the repeller (say for r1 < r2) as in Figure 
A.2-1.   
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Each time derivative is a parabolic function of its specie concentration where one is 
concave and the other is convex in schematic Figure A.2-1.  Referring to Figure A.2-1 
(left), we can track the fibrillation response from a different perspective.  At first, the 
fibril concentration was zero and dF/dt was positive.  This gave the accelerated 
concentration until it reached the stationary point which corresponded to the inflection 
point of F(t). Then, the fibril concentration kept on increasing but in a decelerated way 
until it reached the stable steady state (saturation condition). A similar argument can be 
made with respect to monomer concentration by using Figure A.2-1 (right).   
 
Eq. 13 has a similar form to the Verhurst equation [5] and can be solved analytically to 
give 
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where the constants are given by         
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Given that there were no fibrils present at the beginning of the experiment, the analytic 
solution to the equation shares the same functional form as Eq. (A.6) when mi and mf are 
equal to zero.  The models Eq. (A.6) and Eq. (A.14) can now be seem to be related to 
several experimentally measurable parameters. First, 1/τ is the apparent growth rate 
constant kapp.  Second, t0 is the inflection point where the second order derivative of F(t) 
equal to zero.  Finally, the delay time can be calculated as t0-2τ.   
    
A B 
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Figure A.2-1  (A) Time derivative of the fibril concentration as a function of the fibril 
concentration. (B) Time derivative of the monomer concentration as a function of the 
monomer concentration. Solid circles are attractors (stable steady states); open circles are 
repellers (unstable steady states). 
 
 

A.3 Sensitivity analysis 
 
Sensitivity analysis was conducted to evaluate the impact of each of the four parameters.  
The partial derivative of the model response with respect to the j-th parameter was 
computed by a finite difference method.   
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To obtain a good estimate of the first derivate as well as to minimize the round-off error, 
the optimal value of Δθj was chosen to be 10-4 of θj.  Due to the fact that rate constants 
estimated in this study had different units and their values span several orders of 
magnitude, the logarithmic from of Eq. 17 provided a better way to compare the relative 
contributions, 
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Figure A.3-2 shows the results of logarithmic sensitivity analysis as a function of time 
demonstrating the impact of each parameter at different stages of fibrillation.  Notice that 
changing the value of knu- several fold did not affect the Y response significantly 
compared with perturbing the other parameters so knu- was not considered in the 
parameter estimation.  The rate constant knu,1, followed by kfb- was the most significant 
parameter influencing the earlier stage of fibrillation; thus, the delay time is determined 
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by both knu,1 and kfb-.  Finally, the equilibrium gain of the signal roughly depended on the 
products of knu,1 and kfb- divided by kfb,1.  
 

 
 

Figure A.3-2  ∂lnY/∂lnk represents the logarithmic sensitivity analysis of the rate constant 
influence on the fibrillation response around the standard condition. Note that Y is ThT 
fluorescence intensity and rate constants include knu,1 (black), knu- (red), kfb,1 (blue), and 
kfb- (magenta). 
 
 

A.4 MATLAB® Codes of the Model 
The results shown in Fig. 2A and 2B in the main paper were obtained using MATLAB® 
[1] and two m-file functions: solveode_fibril and dA_dt=ode_fibril(t,A,n,theta). 
The function solveode_fibril, sets up the parameters for the kinetic model and then 
solves the resulting set of differential equations using the MATLAB® function ode23s. 
The outputs include the fibrillation response and oligomer concentrations as functions of 
time. The right hand side of the differential equations are evaluated using the function 
dA_dt = ode_fibril(t,A,n,theta). 
 
 
function solveode_fibril; 
% % % % % % % % % % % % % % % % % % % % %  % % % % % % % % % % % % % %                
% This function solves the set of differential equations defined @   %     
% ode_fibril, and plots sigmoidal curves of fibril and oligomer conc.%                 
% % % % % % % % % % % % % % % % % % % %  % % % % % % % % % % % % % % %  
 
% The following is the list of parameters and initial conditions 
n=6; % Critical number of monomers to form a neucleus 
b=6e5; % The proportional constant of signal response 
theta=[3.54e-2,2.73e6,1.94e3]; % The rate constants [knu1, kfb1, kfb_] 
hex0_mg=2; % Initial insulin wt conc. of insulin hexamers (mg/mL) 
insulin_kD=6; % The molecular weight of insulin monomer (kD) 



 7

hex0_mM=hex0_mg/insulin_kD/6; % Convert unit from mass to molar conc(mM) 
Y0=zeros(1,n+1); % The initial concentration of insulin hexamers (mM) 
Y0(n+1)=hex0_mM; 
  
% Run the simulation and plot the results 
close all 
slots=201; % Specify number of simulation points 
t_range=linspace(0,8,slots); % Specify the time scale vector 
[t_val,Y_val]=ode23s(@ode_fibril,t_range,Y0,[],n,theta); 
signal=Y_val(:,n)*b; % Fluores Signal is proportional to fibril conc. 
 
% Plot the data of UV-vis signal and simulation results 
plot(t_val, signal,'b-','LineWidth',1.5); 
xlabel('Time (h)','FontSize', 14); 
ylabel('UV-vis absorbance @ 600 nm','FontSize', 14); 
 
% Plot the concentration of natural insulin hexamer, monomer, and dimer 
figure 
plot(t_val, Y_val(:,n+1)*6,'r:',t_val, Y_val(:,1),'b-',t_val, ... 
Y_val(:,2),'k-.','LineWidth',1.5);  
legend('natural hexamer','monomer','dimer');  
xlabel('Time (h)','FontSize', 14); 
ylabel ('Cluster Concentration (mM)','FontSize', 14) 
 
% Plot the concentration of 3-mers, 4-mers, and 5-mers 
figure 
plot(t_val, Y_val(:,3),'r:',t_val, Y_val(:,4),'b-',t_val, 
Y_val(:,5), ... 
'k-.','LineWidth',1.5); 
legend('3-mer','4-mer','5-mer','location','southeast');  
xlabel('Time (h)','FontSize', 14); 
ylabel ('Cluster Concentration (mM)','FontSize', 14) 
 
 
function dA_dt=ode_fibril(t,A,n,theta)  
% % % % % % % % % % % % % % % % % % % %  % % % % % % % % % % % % % % %  
% Defines the set of ODEs to be solved to simulate fibrillation      % 
% A(1~n-1) is the vector of i-mer concentrations (i=1~n-1)           %      
% A(n) is fibril conc. and A(n+1) is natural hexamer conc.           %      
% t is time and dA_dt is the first order derivatives of A vector     %      
% n is the critical size of clusters and is assigned to be 6         %      
% theta vector is the set of rate constants [knu1, kfb1, kfb_]       %      
% % % % % % % % % % % % % % % % % % % %  % % % % % % % % % % % % % % %  
 
dA_dt=zeros(size(A)); % First order derivatives of i-mer concentrations 
Jnu=zeros(size(A)); % Flux of i-th nucleation reaction 
Jfb=zeros(size(A)); % Flux of i-th fibrillation reaction 
  
% The following is the list of rate constants 
khex=3; % Forward rate constant of insulin hexamer dissociation 
knu=ones(n,1)*theta(1); % First foward nucleation rate constants  
for i=1:n-1 
   knu(i)=theta(1)/2*(1+i^(-1/3)); % Correct knu(i) by Stokes-Einstein 
Eq. 
end 
knu_=ones(n,1)*1e-3; % Reverse nucleation constants 
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kfb=ones(n,1)*theta(2); % First forward fibrillation rate constant  
for i=1:n-1 
   kfb(i)=theta(2)*i^(-1/3); % Correct kfb(i) by Stokes-Einstein Eq. 
end 
kfb_=ones(n,1)*theta(3); % Reverse fibrillation rate constant 
  
% Definitions of reaction fluxes Jhex, Jnu, and Jfb 
Jhex=khex*A(n+1); % The flux of hexamer decomposition reaction 
for i=1:n-1 
   Jnu(i)=knu(i)*A(1)*A(i)-knu_(i)*A(i+1); % The flux of nucleation rxn 
   Jfb(i)=kfb(i)*A(n)*A(i)-kfb_(i)*A(n); % The flux of i-mer elongation  
end 
  
% There are n+1 equations representing the conc. change of n+1 species 
dA_dt(1)=6*Jhex-sum(Jnu(1:n-1))-Jnu(1)-Jfb(1); % Derivative of [monomer]  
for i=2:n-1 % from dimer to (n-1)-mer 
   dA_dt(i)=-Jnu(i)+Jnu(i-1)-Jfb(i); % Derivatives of [oligomer] 
end 
dA_dt(n)=Jnu(n-1); % Derivative of fibril concentration 
dA_dt(n+1)=-Jhex; % Derivative of insulin hexamer concentration 
 

A.5 Abstract of osmolyte controlled fibrillation kinetics of insulin 
 
 How proteins, implicated in amyloid diseases, impart toxicity is unknown.  What 
is known is that they are converted from their native-fold to long 鵰-sheet-rich fibrils in a 
typical sigmoidal time-dependent curve.  This reaction process from monomer or dimer 
to oligomer to nuclei and then to fibrils is the subject of intense study.  Here, we probe 
this reaction process using a model protein, human insulin, through the addition of a 
comprehensive series of stabilizing and destabilizing osmolytes and quantify the analysis 
using our new kinetic rate model.  The results are then collated into a cogent explanation 
using the preferential exclusion and accumulation of osmolytes away from and at the 
protein surface during nucleation, respectively.  Both the heat of solution and the neutral 
molecular surface area of the osmolytes correlate linearly with two fitting parameters of 
the kinetic rate model, i.e. the lag-time and the nucleation rate prior to fibril formation.  
Also, the action of osmolytes on the reaction appears to be independent and additive.  
These kinetic and thermodynamic results support the preferential exclusion model and 
the existence of oligomers including nuclei and larger structures that could induce 
toxicity.   
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