Table of Contents

Abstract 3
Acknowledgements 5
Table of Contents 7
List of Figures 8
List of Tables 9
1. Introduction 11
 1.1 General Idea of MEMS Energy Harvester 11
 1.1.1 Electrostatic Energy Harvester 11
 1.1.2 Electromagnetic Energy Harvesting 12
 1.1.3 Piezoelectric Energy Harvesting 12
 1.2 Important Factors Regarding Power Measurement and MEM Design 13
 1.2.1 Linear MEMS System 13
 1.2.2 Nonlinear MEMS System 14
2. Design of the Test System 17
 2.1 Overall Layout of the Test System 17
 2.2 Details Regarding the Charge Amplifier 18
 2.3 Details Regarding the Charge Amplifier 18
 2.4 Details Regarding the DAQ Board 20
3. Experimental Evaluation 21
 3.1 Specifications of Energy harvester Device 21
 3.2 Open Circuit Measurements for the Energy Harvester 23
 3.3 Theoretical Calculation of Power 28
 3.4 Experimental Calculation of Power 30
4. Summary and Conclusion 33
5. Appendices 35
 Appendix A: LabView Setup 33
 Appendix B: ET-126 Shaker Specifications 39
 Appendix C: Charge Amplifier Specifications 41
6. Bibliography 49
List of Figures

Figure 1-1: Possible topologies for MEMS-scale electrostatic energy harvester 11
Figure 1-2: Mechanical schematic of a typical electromagnetic energy harvester 11
Figure 1-3: A diagram of a cantilever beam harvester with a proof mass 12
Figure 1-4: Graph of transmissibility 12
Figure 1-5: Bending and stretching of a double clamped beam 14
Figure 1-6: Deflection vs. frequency for a nonlinear system 15
Figure 2-1: Diagram of the overall layout of the test bench 17
Figure 2-2: Test bench layout with labeled machinery 18
Figure 2-3: Test bench layout with labeled machinery 19
Figure 2-4: Energy harvester mounted on the shaker 18
Figure 2-5: Input and output chord of the charge amplifier 19
Figure 2-6: SOOOb-1O0A charge amplifier with a gain of gain of 100mV/pC 19
Figure 3-1: Diagram ofV21BL energy harvester; measurements are in inches 21
Figure 3-2: Layers ofV21BL 22
Figure 3-3: Graph that shows the relationship between natural frequency and proof mass 22
Figure 3-4: Positive and negative nodes of the energy harvester connected to clamps 23
Figure 3-5: Green wire inserted in Inputl and black wire in Ground of the DAQ board 24
Figure 3-6: Diagram of overall layout of the test bench without charge amplifier 24
Figure 3-7: Open circuit voltage measured at 67Hz 25
Figure 3-8: Plot of open circuit voltage vs: frequency for a V21BL 27
Figure 3-9: Series circuit with voltage source and internal and external impedance 28
Figure 3-10: Pattern seen from plotting Pext (Zext) function 29
Figure 3-11: Resistor connecting the positive and negative nodes of energy harvester 30
Figure 3-12: Graph that plots power vs. resistance data from table 3-2 31
List of Tables

TABLE 3-1: Open circuit voltage created by the energy harvester 26
TABLE 3-2: Power values calculated from the resistance swap 31