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Abstract

We present a new algorithm for automatic protection
switching (APS) which creates node (edge) redundant
trees on any node (edge)-redundant network. These
trees are desirable for performing multicasting with
APS. Our algorithm is based on constructing trees with
appropriate associated directions. The algorithm gives
great flexibility in the choice of trees.

1 Introduction.

The increasing reliance upon data networks has mo-
tivated research in the area of network reliability. In
particular, for high speed networks, rapid recovery from
failure is important, as even a short down time may en-
tail the loss of much data. Self-healing networks, which
restore their functionality autonomously in case of a
failure, have therefore been the subject of an active area
of research and are rapidly coming into widespread use.
For example, self-healing features are incorporated in
the SONET protocols. Another issue of increasing im-
portance in networks is that of multicasting. Multicas-
ting is already a common application in DoD networks
and is increasingly important in civilian high-speed net-
works. In networks which allow duplication at nodes, a
link need only carry at most a single copy of a multicast
signal. Most networks, e.g. SONET, ATM, IP, and all-
optical networks, allow such duplication. In such net-
works, multicasting is preferably performed with trees.

In this paper, we present a protection mechanism for
arbitrary edge (node) redundant graphs using trees. To
ensure very rapid failure recovery, we concentrate on au-
tomatic protection switching (APS), in which response
to a failure is pre-planned. APS requires pre-planned
spare capacity, since restoration is “hard-wired”, but
offers very rapid failure recovery. For example, with
mechanical add-drop multiplexers (ADMs), the restora-
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tion time is of the order of tens of ms ([7]). Very rapid
switching, of the order of us, may be achieved with
acousto- or electro-optic switches, e.g. [8, 4]. In this
paper, we do not address the issue of excess capacity,
only that of the topology of the network. For instance,
in fiber optic networks, there is usually excess capacity
available in the fiber but the cost of laying down the
fiber is very high.

The design of SONET networks with APS has usually
been considered in terms of the building blocks of self-
healing rings (SHRs), possibly combined with diversity
protection (DP) ([5, pp. 315-325]). Unidirectional Path
Switched Rings (UPSR) use path protection where a
back-up stream is simultaneously sent over a path dis-
joint from that of the primary stream. In the event of a
failure, a node will switch from listening to the primary
stream to listening to the back-up stream. Alterna-
tively, Bi-directional Line Switched Rings (BLSR) use
loop-back protection where in the event of a failure, the
primary stream is redirected in the opposite direction
it was originally traversing until it reaches the other
side of the failure, where is rejoins its original route.
Path protection is generally faster but in general re-
quires more spare capacity than loopback.

However, interconnected rings place topological re-
strictions on the design of the network thereby possibly
increasing cost. In addition, interconnected rings do
not provide end-to-end path protection. Rather, each
ring is individually protected. Although suflicient for

link failure, failure of a node interconnecting two rings
may require time consuming re-routing.

Menger’s theorem insures the existence of edge -
(node) disjoint paths between any source and any des- -
tination in an edge (node) redundant graph {12]. Path
protection schemes using this fact have been proposed
usually associated with some sort of shortest path selec-
tion, see e.g. [9, 10]. However, when used for multicast-
ing, the union of these disjoint paths does not guarantee
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trees.

Since UPSR uses disjoint nrimary and back-up paths,
it is natural to consider using disjoint spanning trees for
multicasting in arbitrary redundant graphs. Reference
(11] considers a pair of disjoint undirected trees, but
such an approach is not applicable to arbitrary redun-
dant graphs. Disjoint directed trees (or branchings)
([6]) exist in any redundant graph. However, when we
model bidirectional communication links as two arcs
with reverse directions, the loss of a link entails the loss
of two arcs which share their end nodes. Hence, arbi-
trary disjoint directed trees do not guarantee protection
against a link (node) failure.

In ([1, 2]), we presented an algorithm to construct
disjoint directed trees which do guarantee protection
against edge (node) failures on arbitrary edge (node)
redundant graphs. Having two such redundant trees
was first presented in [3] for edge redundant graphs. In
this paper, we present a generalization of ({1, 2]) which
allows the construction of a larger variety of redundant
trees than in ([1, 2, 3])

First, in Section 2, we present a motivating example.
The algorithm is presented in Section 3. The paper
ends with a summary and conclusions in Section 4.

2 APS Multicasting Protection on
an Example Network

Consider the network shown in figure 1 consisting
of switching nodes and - bi-directional communication
links. We use the term edge and link interchangeably
whereas an arc refers to one direction of a link. Note
that the example network is edge and node redundant
in that failure of any edge or node leaves the network
connected.

In this example, there is a broadcast communication
ifrom source node s to all other nodes. We present here
ithe variety of protection mechanism discussed above.

First consider using Menger’s theorem to construct
edge and node disjoint paths from s to all other nodes.
(Clearly, unless the primary paths are chosen carefully,
the resulting union of the paths will not produce a tree.
liven if a tree was chosen for the primary communica-
tion, the union of the back-up paths would not neces-
siarily form a tree. Figure 1.a shows a pair of vertex-
clisjoint paths between the source and vertex a and a
pair of vertex-disjoint paths between the source and
viertex b. The two primary paths together form a di-
rected tree, but the two secondary paths do not form a
clirected tree.
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Next consider using edge disjoint spanning trees.
Figure 1.b shows two edge-disjoint spanning trees.
The topological constraint in [11] is, however, 4-
connectedness, which is greater than the edge redun-
dancy requirement, i.e. 2-connectedness. A simple ex-
ample of an edge-redundant graph which does not allow
edge-disjoint spanning trees is given in figure 2. If [, d]
is in the primary tree, then ¢ must be reached in the
secondary tree through [b, c] and b is reached in the sec-
ondary tree through [a,b). Thus, b cannot be reached
in the primary tree.

Figure 1.c shows two arc disjoint spanning trees. As
stated earlier, any any redudant graph contains at least
two such trees. Note that the failure of the edge in-
dicated on the figure entails the failure of both arcs
associated with that edge and thus vertex b becomes
disconnected from the source.

Figure 3 shows two arc disjoint spanning trees using
[1, 2, 3]. We call the trees Multicast Forward Backward
(MFB) Trees. Here, failure of a link will not disconnect
any node from s. However, the algorithms in [1, 2, 3]
unnecessarily limit the tree choices. Figure 4 shows a
pair of trees which the algorithm in [1, 2] and in this
paper can achieve but which cannot be achieved by [3].
Figure 5 shows a pair of trees which the algorithm in
this paper can achieve but which cannot be achieved
with [1, 2]. Such choices may be more desirable for a
variety of reasons, e.g. available bandwidth, transmis-
sion distance (as in this example), link costs, etc. We do
not explicitly consider application dependent cost met-
rics in this paper, but rather focus our attention here on
extending the possible multicast routing choices hereto-
fore available, as illustrated in the above examples. ‘

3 Automatic protection switching
with trees.

Let us consider that we have a node redundant undi-
rected graph G(N, £). In the following, we shall use the
terms “node” and “vertex” interchangeably. We shall
say that the arcs (z;,z2) and (z2,z;) correspond to the
undirected edge [z, z2]. We wish to show that, for any
source node s € N, we may create two directed trees,
which we shall name B and R, for Blue and Red, such
that, after eliminating any node (in the node redun-
dant case) or any edge (in the edge redundant case), s
remains connected to all nodes of M through B and/or
through R deprived of the eliminated node or edge, re-
spectively.

We start by choosing a cycle containing s. If this



cycle does not include all nodes in the graph, we then
choose a path that starts on some node in the cycle,
passes through some set of nodes not on the cycle, and
ends on another node on the cycle. If the cycle and
path above do not include all nodes of the graph, we
again construct another path, starting on some node al-
ready included, passing through one or more nodes not
included, and then ending on another already included
node. The algorithm continues to add new nodes in
this way until all nodes are included.

We must also assign directions on the paths. Assign-
ing directions is best thought of in terms of an anal-
ogy. Put a voltage source in node s, and put positive
resistors on each edge of the cycle and added paths
(removing all other edges of the original graph from
consideration). The directions are then the directions
of current flow. The nodes are also ordered in terms
of their voltage (node s is special, and has two volt-
ages, one on each side of the battery). Any such set
of directions will yield B and R trees with the desired
properties, and the algorithm below simply chooses one
of these possible sets of directions.

We start with a node redundant graph, G = (N, ¢£)
and a source node s. The algorithm chooses a cycle,
and then subsequent paths, and also orders the node
‘voltages’ as they get included in the cycle or one of
the paths. We associate two arbitrary ‘voltages’ with
s, namely vB(s) and vE(s), where vB(s) > vE(s). For
simplicity, we also sometimes refer to vZ(s) as v(s) in
the algorithm. The set of nodes which have already
been assigned a voltage at stage j of the algorithm is
denoted by Nj. At each stage j of the algorithm, a Blue
(B;) tree, (N;,EP) and an Red (R;) tree (J\fj,SJR) are

J
formed, both of which span the set of nodes Nj.

ALGORITHM FOR THE NODE REDUN-
DANT CASE
1) Set j =1

2) Choose any cycle (s, ¢y, - .., ¢k, s) in the graph with

k > 2. Let N be the set of nodes {s,c1,...,cr} and
order these nodes by vB(s) > v(c1) > -+ > v(ck) >
vR(s)

3)

EE = {(s,c1),(c1,¢2),- -, (cho1,k)}
8{2 = {(3’ Ck), (ck) ck—~1)) sy (02701)}

4) f N; = N, then set B = Bj, R = R; and termi-
nate
5)3:=3+1
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6) Choose a path (a:j,o,a:j,l, .. ,a:j,[,j) ,Lj > 2,in the
graph such that .'L‘j)oE/\/j-l, Tj,L; E./\/j_1, with U(Ij,o) >
v(zj,L;). The other nodes, z;;,1 <4 < L; are chosen
outside of Nj_;

NN, =N U {1, ,250,-1}

8) Order the new nodes by v(z;0) > v(zj1) > - >
v(Tj.L;-1) > Umaz Where

ez = max [vR(s), max (u(a) s o) < v(az0))

9)
& =&4U
{lz10,231): [250, 2ibs - [, -2, 850,11}
SJR = EJE—IU
{[zj,L,-,fL'j,L,—l]a [e5L,-1,250;-2] - - - [25,2, 171,1]}

10) Go to step 4

For the sake of brevity, we omit the proof of validity.

In the case of switch protection for link failure, the
above algorithm for node failure protection does not
work in this case, because it is not always possible at
a stage j > 2 to find paths as above. Sometimes, it is
necessary to find a cycle that leaves the set of nodes
Nj-1 on one node and returns to the same node, i.e.
with z;0 = z;1;. This can be handled by letting each
node z have two ‘voltages,” v®(z) and v®(z) associated -
with it. The ordering in step 2 of the algorithm is then -
replaced with

vB(s) > vB(c1) > vE(c1) > vB(c2) > vR(e2) > -+~

> vB(cr) > vR(ck) > vR(s).
The ordering in step 8 of the algorithm is replaced in
a similar way. )
Finally, note that in the previous algorithm ([1, 2]),
the selection of the paths or cycles in Step 6 was limited .
to start on a particular node.

4 Conclusions.

We have extended an algorithm which, on any node
(edge) redundant network, forms two directed trees
such that failure of any node (link) leaves the source .
connected to every unfailed node over at least one of



the trees. Such trees are highly applicable for auto-
mated path protection for multicast and broadcast ap-
plications. The current algorithm produces the most
general known construction for redundant trees over ar-
bitrary redundant topologies and hence provides more
freedom in network design and operation. In addition,
the new algorithimn is conceptually simpler than the pre-
vious approach.

Note that the above algorithm chooses the cycle or
paths fairly arbitrarily but that various cost functions
or constraints can be applied in the selection process.
Thus, cost functions, such as transmission distance,
congestion, and delay minimization, which are often
associated with Steiner trees for multicasting can be
taken into account when we select our trees. Of course,
such considerations may increase the complexity of the
algorithm.

There are several other possibilities for further in-
vestigation of which the issue of capacity constraints
is probably the most natural extension. Another ex-
tension is the construction of trees tolerant of multiple
failures.
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Figure 2: An example of a network which cannot have
edge-disjoint trees.

Figure 4: Trees which can be built by our algorithms
but not by {3].
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Figure 5: Trees which can be built by the algorithm in J

Figure 3: Application of our algorithm for an edge--  this paper but not by (1, 2.
redundant graph. ‘
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