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Abstract—Source-channel coding in time-varying
channels without perfect side information at the trans-
mitter suffers from uncertainty which may not always
be averaged out. In channel coding, a main approach
to address such uncertainty has been the outage
formulation. In source coding, the main approaches to
deal with such uncertainty have been multiple descrip-
tion coding (MDC) and successive refinement (SR). In
this paper, we consider layered source-channel coding
schemes relying on the MDC technique, originally
proposed by Laneman et al, and the SR technique. We
introduce the concept of distortion-diversity tradeoff,
akin to the rate-diversity tradeoff, to consider the per-
formance of these schemes. Our distortion-diversity
perspective sheds some light on the performance
comparison between various source-channel coding
approaches in different operation regions.

I. INTRODUCTION

The nature of wireless channels, such as fading,
shadowing and interference, can cause the channel
quality to fluctuate over time. This time variation
property of wireless channels induces uncertainty
for communication, especially at the transmitter. If
the time scale of channel variation is longer than the
application delay constraints, then the channel qual-
ity uncertainty may not be averaged out. The clas-
sical approach to address this non-ergodic issue is
the outage formulation of channel coding [1], which
ensures a fixed level of reliability that the receiver
is able to reconstruct the source to a certain level
of accuracy. However, this type of schemes does
not take advantage of good channel realizations.
To allow for graceful degradation of the source
reconstruction quality, several source coding tech-
niques have been proposed in the application layer,
including MDC [2] and SR [3]. To simultaneously
address the channel uncertainty issue and the source

reconstruction issue, we consider layered source-
channel coding schemes, which have been recently
proposed and studied (see [4], [5] and references
therein). As the first step, we study two double-
layer source-channel coding schemes, which rely
on the MDC technique [4] and the SR technique,
respectively. We characterize the performance of
each scheme through the achievable distortion dis-
tribution. Particularly, in the high resolution regime
of the source and equivalently the high SNR regime
of the channel, the distortion distribution can be cast
as a tradeoff between the distortion exponent and
the diversity order. Unlike the commonly adopted
average distortion performance metric in [4], our
proposed distortion-diversity perspective provides
a more detailed performance comparison between
various source-channel coding approaches in differ-
ent operation regions.

The remaining paper is organized as follows: in
Section II, we introduce the channel model and
the outage formulation; in Section III, we describe
several source coding techniques used in this pa-
per; in Section IV, we analyze two source-channel
coding schemes and characterize an outer bound;
in Section V, we provide performance comparison
and conclude the paper.

II. CHANNEL MODEL & OUTAGE FORMULATION

The channel model we consider is a discrete-
time parallel block fading channel, where the sender
and the receiver are connected by a pair of AWGN
channels subject to independent block Rayleigh
fading. We only consider the single-block case in
this paper, which is represented as follows,

yi[n] = hi xi[n] + wi[n], i = 1, 2, n = 1, · · · , N ,



where N is the block length. The multiplicative
fading coefficients hi are i.i.d. CN (0, 1) and the
additive noise are i.i.d. CN (0, 1). Channel state
information (CSI) consists the instantaneous values
of the fading coefficients. We assume no CSI at
the transmitter (CSIT) while perfect CSI at the re-
ceiver (CSIR). The channel encoder maps a source
message i ∈ {1, · · · ,M} to a pair of length-N
channel input sequences, inducing a channel coding
rate of Rc = lnM

N . The input power constraint on
each channel is SNR units of energy per channel
use (SNR is also the transmit signal-to-noise-ratio),
satisfied by each valid input sequence pair (x1,x2)
as follows,

1

N

N∑
n=1

|xi[n]|2 ≤ SNR , i = 1, 2 . (1)

The channel decoder maps the pair of channel
output sequences to î ∈ {1, · · · ,M}.

Under the per-channel input power constraint of
SNR with no CSIT and perfect CSIR, the single-
block supportable rate of parallel channel with
fading coefficients h1 and h2 is defined to be

I(h1,h2,SNR) ,
∑

i=1,2

ln
(
1 + |hi|2SNR

)
. (2)

Note that the supportable rate (2) is a random
variable rather than a constant, which depend on the
fading coefficients only through their magnitudes.
An outage event, denoted as O(|h1| , |h2| ,SNR),
happens if the channel coding rate Rc exceeds the
supportable rate. Accordingly, the outage proba-
bility is P [O(|h1| , |h2| ,SNR)]. In particular, we
characterize the exponentially decaying speed of the
outage probability w.r.t. SNR, namely the diversity
order, which is defined as follows,

∆O(|h1|,|h2|,SNR) = − lim
SNR→∞

lnP [O(|h1| , |h2| , SNR)]

ln SNR
.

(3)
The diversity order is an important performance
characteristic, especially in the high SNR regime.
A convenient way to compute the diversity order is
through the Laplace principle [1]: let

|hi|2 = SNR−αi , αi > 0 ;

re-formulate the outage event O(|h1| , |h2| ,SNR)
as O′(α1, α2) in the asymptotic of SNR; then the

diversity order can be obtained by computing the
dominant exponent sum as follows,

∆O(|h1|,|h2|,SNR) = min
O′(α1,α2)

(α1 + α2) . (4)

The following form of outage event O′(α1, α2) is
particularly useful in this paper,{

(1− α1)+ + (1− α2)+ < θ
}
, (5)

which is characterized in the following lemma.

Lemma II.1. Suppose that an outage event
O′(α1, α2) takes the form of (5). Then its diversity
order is

∆O′(α1,α2) = 2− θ , θ ∈ (0, 2] . (6)

Proof: The lemma can be verified by examin-
ing Figure 1, while the detailed proof is omitted for
brevity.

Fig. 1. Illustration of (1− α1)+ + (1− α2)+ < θ

III. SOURCE CODING

We consider a source sequence s = (s1, · · · , sn)
that is composed of independent and identically
distributed (i.i.d.) random variables drawn from
the same probability mass function (PMF) p(s).
The reconstructed source sequence is denoted as
ŝ = (̂s1, · · · , ŝn). The source alphabet and the
source reconstruction alphabet are S and Ŝ, respec-
tively. In general, S and Ŝ need not be the same.
The symbol-wise distortion measure is a mapping
d : S × Ŝ → R, and the sequence-wise distortion
is defined as,

d(sn, ŝn) =
1
n

n∑
i=1

d(si, ŝi) , (s, ŝ) ∈ Sn × Ŝn .



A. Multiple Description Coding (MDC)

An MDC quantizer is a mapping from the source
sequence s to two descriptions, i1 and i2,

φn : Sn → {1, · · · ,M1} × {1, · · · ,M2} .

The MDC reconstructor is composed of three sep-
arate reconstructors, namely the side reconstructors
1 and 2 and the central reconstructor. The side
reconstructor 1 (resp. 2) uses the description i1
(resp. i2) only, while the central reconstructor uses
both descriptions (i1, i2),

ψn,1 : {1, · · · ,M1} → Ŝn ,
ψn,2 : {1, · · · ,M2} → Ŝn ,
ψn,0 : {1, · · · ,M1} × {1, · · · ,M2} → Ŝn .

The source description rates are Rs,i = lnMi

n , i =
1, 2. The achieved distortion levels are

Di(φn, ψn,i) = E [ d(sn, ψn,i(φn(sn))) ] , i = 0, 1, 2 .

The quintuple (Rs,1, Rs,2, D1, D2, D0) is
achievable if there exists a sequence of
(Rs,1, Rs,2) MDC quantizer-reconstructor
quadruples (φn, ψn,1, ψn,2, ψn,0) such that,

lim
n→∞

Di(φn, ψn,i) ≤ Di , i = 0, 1, 2 .

The MDC rate distortion region is the closure
of all the achievable rate distortion quintuples
(Rs,1, Rs,2, D1, D2, D0). Though the MDC rate
distortion region has not been completely character-
ized for general sources and distortion measures, an
achievable region has been provided in [6], which
is recapped as follows.

Theorem III.1 (El-Gamal-Cover (EGC) Region
[6]). Let the source PMF be p(s) and the distortion
measure d(·, ·) be bounded. An achievable rate
region for the distortion triple (D1, D2, D0) is the
convex hull of all rate pairs (Rs,1, Rs,2) such that,

Rs,1 > I(s; u) ,
Rs,2 > I(s; v) , (7)

Rs,1 +Rs,2 > I(s; u,v) + I(u; v) ,

for some joint PMF p(s, u, v) = p(s) p(u, v|s) and
reconstruction functions ψ1(·), ψ2(·), ψ0(·, ·) such

that,

D1 = Ed(s, ψ1(u)) ,
D2 = Ed(s, ψ2(v)) ,
D0 = Ed(s, ψ0(u,v)) .

In particular, the symmetric rate distortion re-
gion is achieved by the following joint PMF
p(s,u,v) and reconstruction functions: the joint
PMF p(s,u,v) is induced by

u = s + n1 , (8)
v = s + n2 , (9)

where (n1,n2) is independent of s and distributed
as,

(n1,n2) ∼ CN
([

0
0

]
,

[
σ2 ρσ2

ρσ2 σ2

])
;

the reconstruction functions are

ψ1(u) =
1

1 + σ2
u ,

ψ2(v) =
1

1 + σ2
v ,

ψ0(u,v) =
1

2 + (1 + ρ)σ2
(u + v) ,

which achieves the following distortions,

Dpartial , D1 = D2 =
σ2

1 + σ2
, (10)

Dfull , D0 =
(1 + ρ)σ2

1 + (1 + ρ)σ2
. (11)

Moreover, the rate constraints (7) simplify as fol-
lows,

Rs , Rs,1 = Rs,2 > ln

(
1√

1− ρ2

1 + σ2

σ2

)
. (12)

The codebook generation, quantization and source
reconstruction proceed as follows. First of all, two
codebook C1 and C2 are constructed separately to
include all rows of an enRs×n matrix, the entries of
which are generated i.i.d. according to p(u) in (8)
and p(v) in (9), respectively. The two codebooks
are then revealed to both the quantizer and the
reconstructors. Secondly, given a source sequence
s, the quantizer searches the codebooks C1 and C2
for a codeword pair (u(i1), v(i2)) that is jointly



typical with s according to p(s,u,v). The quan-
tizer outputs (i1, i2) as the quantization result (if
multiple codeword pairs satisfy the joint typicality
criterion, then the quantizer outputs the smallest
index pair). The side and the central reconstructors
output ψ1(u(i1)), ψ2(v(i2)) and ψ0(u(i1),v(i2))
as the reconstructed source sequences, respectively.

B. Successive Refinement (SR)

A SR quantizer [3] maps the source sequence s
to two descriptions, ib and ir, defined as follows,

φn : Sn → {1, · · · ,Mb} × {1, · · · ,Mr} .

The SR reconstructor is composed of two separate
reconstructors, the base reconstructor and the re-
finement reconstructor. The base reconstructor uses
the base description ib only, while the refinement
reconstructor uses both descriptions (ib, ir),

ψn,b : {1, · · · ,Mb} → Ŝn ,
ψn,r : {1, · · · ,Mb} × {1, · · · ,Mr} → Ŝn .

The base description and refinement description
rates are Rs,b = lnMb

n and Rs,r = ln(MbMr)
n ,

respectively. The achieved distortion levels by the
base and the refinement reconstructors are

Db(φn, ψn,b) = E [ d(sn, ψn,b(φn(sn))) ] ,
Dr(φn, ψn,r) = E [ d(sn, ψn,r(φn(sn))) ] .

The rate distortion quadruple (Rb, Rr, Db, Dr)
is achievable if there exists a sequence of
rate-(Rs,b, Rs,r) SR quantizer-reconstructor triples
(φn, ψn,b, ψn,r) such that,

lim
n→∞

Db(φn, ψn,b) ≤ Db ,

lim
n→∞

Dr(φn, ψn,r) ≤ Dr .

The SR rate distortion region is the closure
of all the achievable rate distortion quadruples
(Rb, Rr, Db, Dr). Ideally, we want both the base
layer rate distortion pair (Rb, Db) and the refine-
ment layer rate distortion pair (Rr, Dr) achieve
the single description rate distortion boundary si-
multaneously. Reference [3] names this perfor-
mance “successively refinable” and shows that the
quadratic Gaussian sources are successively refin-
able. For a unit-variance complex gaussian source

and squared-error distortion, two distortions levels
Db and Dr can be simultaneously achieved by the
joint distribution of (s, ŝb, ŝr) induced by,

s = ŝr + wr , (13)
ŝr = ŝb + wb . (14)

where ŝb, wb, wr are independently distributed as
CN (0, 1 −Db), CN (0, Db −Dr) and CN (0, Dr),
resp. The codebook generation, quantization and
reconstruction are as follows. First of all, a base
codebook Cb is constructed to include all rows of
an enRb×n complex matrix, the entries of which are
i.i.d. generated from p(ŝb) as defined in (14). For
each codeword ŝb(i) ∈ Cb, a refinement codebook
Cr(i) is constructed to include all rows of an
en(Rr−Rb) complex matrix, the entries of which are
i.i.d. generated from p(̂sr|ŝb(i)) as defined in (14).
The base codebook and the refinement codebooks
are revealed to both the quantizer and the recon-
structors. Given a source sequence s, the quantizer
searches the base codebook Cb for a base codeword
ŝb(ib) that is jointly typical with s. To guarantee
that at least one base codeword satisfies the joint
typicality criterion, we set the base description rate
to be Rb(Db) = ln 1

Db
. The quantizer then searches

the corresponding refinement codebook Cr(ib) for
a refinement codeword ŝr(i

′
r) that is jointly typical

with (s) conditional on ŝb(ib). To guarantee that at
least one refinement codeword satisfies the condi-
tional joint typicality, we set the parameter Rr to
be Rr(Dr) = ln 1

Dr
. The quantizer outputs (ib, ir),

where ir , (ib, i′r), as the quantization results (if
multiple codeword pairs satisfy the above joint typ-
icality criterion, the quantizer outputs the smallest
pair). Given that the index pair ib, ir is correctly
received, the base reconstructor outputs ŝb(ib) and
the refinement reconstructor outputs ŝr(i

′
r) ∈ C(ib)

as the reconstructed source sequence, respectively.

IV. SOURCE-CHANNEL SCHEMES

We consider point-to-point communication be-
tween a sender and a receiver. The sender collects
a length-N source sequence s, maps it to length-
N channel codewords x1 and x2 using a source-
channel encoder and sends them over the parallel



fading channel to the receiver. The receiver recon-
structs the source sequence as ŝ from the channel
output sequences y

1
and y

2
using a source-channel

decoder. In this paper, we consider the bandwidth
expansion ratio 1 case only, equivalently N source
symbols sent over N channel uses.

A. MDC with Joint Decoding (MDC-JD)

The MDC-JD scheme was proposed in [4] and is
illustrated in in Figure 2.

Fig. 2. MDC-JD Diagram

For the source coding part, the MDC-JD scheme
employs the EGC quantizer. We consider the sym-
metric case only, where Rs denotes the rate of each
source description. The two descriptions from the
EGC quantizer, i1 and i2, are separately encoded
to channel input sequences x1 and x2. We use Rc
to denote the channel coding rate on each chan-
nel. Note that each description is associated with
both a source quantization sequence and a channel
codeword. Given the channel output sequences y

1
and y

2
, the receiver creates two lists, L1 and

L2, of the possible source descriptions, î1 and î2
and the associated source quantization sequences,
u(̂i1) and v(̂i2), respectively. The receiver searches
L1 × L2 for a source description pair (̂i1, î2) such
that (u(̂i1),v(̂i2)) is jointly typical w.r.t. the joint
distribution of u and v, which is defined after
Theorem III.1. If only one jointly typical source
description pairs found, then the receiver obtains a
“full” reconstruction with the central reconstructor
ψ0(·, ·). If more than one jointly typical source
description pair is found, then the receiver checks
the cardinalities of L1 and L2. If either |L1| = 1
or |L2| = 1, then the receiver obtains partial
reconstruction using the side reconstructor ψ1(·) or
ψ2(·). Note that the reconstructors ψ0, ψ1 and ψ2

are specified after Theorem III.1.

To achieve a partial reconstruction distortion of
Dpartial and a full reconstruction distortion of Dfull,
the EGC quantizer parameters σ2 and ρ are set
according to (10) and (11) as follows,

σ2 =
Dpartial

1−Dpartial
, (15)

ρ = −1 +
2Dfull/(1−Dfull)

Dpartial/(1−Dpartial)
. (16)

The source description rate constraint (12) reduces
to

Rs >
1

2
ln

(1−Dfull)
2

4(1−Dpartial)Dfull(Dpartial −Dfull)
.

(17)
In the high SNR regime, we re-parameterize the
distortion levels as

Dpartial = SNR−dp , Dfull = SNR−df , (18)

where 0 < dp < df . Then the rate constraint (17)
reduces to

lim
SNR→∞

Rs
ln SNR

≥ dp + df
2

, (19)

In the following, we assume equality holds in the
above rate constraint. Moreover, the channel coding
rate Rc is the same as the source coding rate
Rs for the no bandwidth expansion case we are
considering. The full reconstruction outage event,
Ofull(Rc,h1,h2,SNR), is characterized in [4] as
follows, ∑

i=1,2

(Rc − I (hi,SNR))+ > I(u; v)

 . (20)

where I(u; v) = ln (1+σ2)2

(1+σ2)2−(1+ρσ2)2 . With σ2 and
ρ specified in (15) and (16), the above I(u; v)
expression reduces in the high SNR regime to

lim
SNR→∞

I(u; v)
ln SNR

= dp . (21)

The outage event of the partial reconstruction is

Opartial(Rc,h1,h2,SNR) = O1∩O2∩Ofull , (22)

where Oi is the event that channel i’s output se-
quence is not sufficient to decode description i,

Oi(Rc,hi,SNR) = {Rc − I (hi,SNR) > 0 } , i = 1, 2 .



We visualize the relationship between the outage
events Oi, Ofull and Opartial in Figure 3. Note that
Oc1 ∩ Oc2 implies Ocfull.

Fig. 3. Venn Diagram relating O1, O2, Ofull and Opartial

Lemma IV.1 (MDC-JD Diversity Orders). For the
MDC-JD scheme, the full reconstruction and the
partial reconstruction diversity orders are as fol-
lows: for 0 < dp < df < 2,

∆partial = 2− df , (23)

∆full =
{

1− (df − dp)/2 , if dp + df < 2 ,
2− df , if dp + df > 2 .

(24)

Proof: The proof is omitted for brevity.
Combining (18) with Lemma IV.1, we are able

to characterize the distortion-diversity tradeoff of
(dp,∆partial, df ,∆full) on both layers achieved by
the MDC-JD scheme. We visualize this distortion-
diversity tradeoff along the direction of (dp, df ) =
(d, αd) in Figure 4 for several α values,

Fig. 4. Single-Block Distortion-Diversity Tradeoff of the MDC-
JD Scheme, (dp, df ) = (d, αd)

Remark The parameter α controls the closeness
between the two source quantization sequences
u(i1) and v(i2). The α close to 1 case can be
achieved by setting ρ close to 01, indicating that,
in the high SNR regime, the two descriptions u(i1)
and v(i2) are generated by adding two independent
noise. This provides good partial reconstruction
quality but no significant improvement for the full
reconstruction. On the other hand, the large α case
can be achieved by setting σ2 close to 1 and ρ close
to −1, indicating that, in the high SNR regime,
the two source descriptions are generated by adding
two nearly-perfectly-negatively-correlated noises of
power level close to the source signal. This provides
good full reconstruction but poor partial reconstruc-
tion.

The parameter α also affects the joint decoding
reliability and the diversity orders. If α is close to
1, then I(u; v) achieves its maximum and therefore
the joint decoder provides the most significant addi-
tional protection to the full reconstruction. However,
if α is large, the joint decoder degenerates to
become a pair of separate channel decoders.

Example: green point in Figure 4 The coordi-
nates of this point are (5/3, 1, 1/3), which corre-
spond to α = 1 and d = 1/3. The EGC quantizer
parameters are set as follows,

σ2 = SNR−1/3 , ρ = 0 .

According to (8) and (9), the two source descrip-
tions are generated by adding independent Gaussian
noise of power SNR−1/3 to the source sequence.
The mutual information between the two source
descriptions is I(u; v) = 1/3 ln SNR. The recon-
struction functions ψ0, ψ1 and ψ2 are the MMSE
estimators of the source sequence. From (10) and
(11), the partial reconstruction and the full recon-
struction distortion levels are,

Dpartial = SNR−1/3 ⇒ dpartial = 1/3 ,

Dfull = SNR−1/3 ⇒ dfull = 1/3 ,

Applying Lemma II.1, the outage events (20) and
(22) reduce to Figure 5. If we proceed along the

1From (16), setting ρ close to any constant in (−1, 1] also
yields α = 1



Fig. 5. Example: MDC-JD Outage Events Relationship

direction of decreasing α1 +α2 in Figure 5, we can
read off the smallest α1 + α2 in each outage event
as follows,

∆partial = 5/3 , ∆full = 1 .

The green point is therefore achieved.

B. SR with Superposition Coding (SR-SPC)

A block diagram of the SR-SPC scheme is shown
in Figure 6.

Fig. 6. SR-SPC Diagram

The sender quantizes a length-N source sequence
s into two descriptions, ib ∈ {1, · · · ,Mb} and
ir ∈ {1, · · · ,Mr}, using a successive refinement
source quantizer. The source description rates are
Rs,b = lnMb

N and Rs,r = lnMb+lnMr

N , respectively.
Since the quadratic Gaussian source is succes-
sively refineable, the above source description rates
achieve the following base layer and refinement
layer distortion exponents,

db(rb, rr) = rb , dr(rb, rr) = rr . (25)

The two source descriptions are then encoded into
the channel input sequences by a SPC channel
encoder as follows: the sender splits the input
power SNR between the two source descriptions as
Pb = SNR− SNR1−β and Pr = SNR1−β , (β > 0);
two channel codebooks, Cb (Mb codewords, each

codeword being a 2×N matrix) and Cr (Mr code-
words, each codeword being a 2 × N matrix), are
generated separately with entries i.i.d. according to
CN (0, Pb) and CN (0, Pr), respectively; given the
source description pair (ib, ir), the sender transmits
the sum of the ithb codeword of Cb and the ithr
codeword of Cr through the parallel fading channel.
The channel coding rates are Rc,b = lnMb

N and
Rc,r = lnMb+lnMr

N , respectively. Note that Rs,b =
Rc,b and Rs,r = Rc,r, respectively. We let the base
layer soruce/channel coding rate and the refinement
layer source/channel coding rate scale with SNR as
Rc,b = rb ln SNR (rb > 0) and Rc,r = rr ln SNR
(rr > rb), respectively. At the receiver, the succes-
sive interference cancelation decoder proceeds as
follows: searches for the base description codeword,
treating the refinement codeword as noise; subtracts
the decoded base description codeword; searches
for the refinement codeword. Therefore, the single-
block supportable rate for the base layer is

Ib(β,h1,h2,SNR) =
∑
i=1, 2

ln

(
1 +
|hi|2(SNR− SNR1−β)

1 + |hi|2SNR1−β

)
,

where the refinement layer power SNR1−β is
counted as noise. Moreover, we have the following
conditional single-block supportable rate for the
refinement layer given that the base layer has been
correctly decoded and subtracted,

Ir(β,h1,h2,SNR) =
∑
i=1, 2

ln
(

1 + |hi|2SNR1−β
)
.

Therefore, the base reconstruction outage event
Ob(β,Rc,b, β,h1,h2,SNR) is

{ Ib(β,h1,h2,SNR) < Rc,b } , (26)

and the refinement reconstruction outage event
Or(β,Rc,b, Rc,r, β,h1,h2,SNR) is

Ob
⋃
{ Ir(β,h1,h2,SNR) < Rc,r −Rc,b } .

(27)

Lemma IV.2 (SR-SPC Diversity Orders). The SR-
SPC scheme achieves the following base layer and
refinement layer diversity orders,

∆b(rb, rr) = (2− rb) + k(1− β) , (28)



∆r(rb, rr) = min {∆b, (2(1− β)− (rr − rb)) } ,
(29)

where kβ < rb < (k + 1)β and k = 0, 1.

Proof: The proof is omitted for brevity.
Combining (25) with Lemma (IV.2), we obtain

the distortion-diversity tradeoff achieved by the SR-
SPC scheme. We visualize the above distortion-
diversity tradeoff along the direction of (db, dr) =
(d, αd) for the special cases of α = 1 and α = 3
in Figures 7 and 8, respectively.

Fig. 7. Single-Block Distortion-Diversity Tradeoff of SR-SPC,
(db, dr) = (d, d)

Fig. 8. Single-Block Distortion-Diversity Tradeoff of SR-SPC,
(db, dr) = (d, 3d)

Example: green point in Figure 7 This coordi-
nates of this point are (5/3, 4/3, 1/3), which corre-
spond to the α = 1 case. Since db = dr = 1/3, we

assign the source/channel coding rates as follows,

lim
SNR→∞

Rs,b
ln SNR

= lim
SNR→∞

Rc,b
ln SNR

=
1
3
,

lim
SNR→∞

Rs,r
ln SNR

= lim
SNR→∞

Rc,r
ln SNR

= 0 .

The power allocation is SNR−SNR2/3 and SNR2/3

for the base layer and the refinement layer, respec-
tively. The base reconstruction and the refinement
reconstruction outage events (26) and (27) reduce
to Figure 9. If we proceed along the direction of

Fig. 9. Example: SR-SPC Outage Event Relationship

decreasing α1+α2 in 9, we can read off the minimal
α1 + α2 of each outage event as follows,

∆b = 5/3 , ∆r = 4/3 ,

which, combined with the fact that db = dr =
1/3, yields the desired distortion-diversity point
(db,∆b, dr,∆r) = (1/3, 5/3, 1/3, 4/3).

C. Performance Outer Bound

To derive the performance outer bound, we first
obtain the distortion-diversity tradeoff for single-
layer source-channel coding schemes. A block di-
agram of the single-layer scheme is shown in
Figure 10. For the source coding part, we use a

Fig. 10. Single-Layer Sour-Channel Scheme

source quantizer operating on the single description
rate distortion boundary and quantizes a length-N



complex Gaussian source sequence into a single
description i ∈ {1, · · · ,M}. For the channel cod-
ing part, we consider a random channel codebook
C composed of M space-time codewords (each
codeword is a 2 × N matrix, (x1(i),x2(i)), the
entries of which are i.i.d. generated according to
CN (0,SNR)). The source coding rate and the chan-
nel coding rate are

Rs =
lnM
N

(nats/ss) , Rc =
lnM
N

(nats/cu) .

The channel decoder searches the channel codebook
C for the codeword (x1(̂i),x2(̂i)) that is jointly typ-
ical with the channel output sequence pair (y

1
,y

2
)

w.r.t. the instantaneous fading coefficients.
Recall that the single-block supportable rate of

the parallel fading channel (2) is,

I(h1,h2,SNR) =
∑
i=1,2

ln
(
1 + |hi|2SNR

)
.

Note that the supportable rate, when averaged over
the fading coefficients, grows with SNR as 2 ln SNR
in the high SNR regime. To achieve a vanishing out-
age probability as SNR increases, we let the channel
coding rate Rc scale with SNR as Rc = r ln SNR
(0 < r < 2). The outage event is defined as follows,

O(|h1|, |h2|, Rc,SNR) = { I(h1,h2,SNR) < Rc } .

which reduces in the high SNR regime to,

O′(α1, α2, r) =
{

(1− α1)+ + (1− α2)+ < r
}
.

(30)
Applying Lemma II.1, the diversity order of the
above outage event is

∆(r) = ∆O′(α1,α2,r) = 2− r . (31)

If the outage does not happen, then the distortion
level achieved by the source coding rate Rs is

D(Rs,SNR | Oc) = e−Rs = SNR−r ,

since Rs = Rc = r ln SNR. We focus on the
exponentially decreasing speed of the distortion
level and define the distortion exponent as

d(Rs) , − lim
SNR→∞

lnD(Rs,SNR | Oc)
ln SNR

, (32)

which, in this case, reduces to

d(r) = − lim
SNR→∞

ln SNR−r

ln SNR
= r . (33)

Expressions (31) and (33) provide a parametric
characterization of the tradeoff between the diver-
sity order ∆ and the distortion exponent d for the
single reconstruction layer,

∆ = 2− d, 0 < d < 2 . (34)

Any double-layer scheme achieves two different
reconstructions, under the name high-priority recon-
struction and low-priority reconstruction, respec-
tively. Note that the partial reconstruction achieved
by MDC-JD and the base reconstruction achieved
by SR-SPC belong to the high-priority recon-
structions, while the full reconstruction by MDC-
JD and the refinement reconstruction by SR-SPC
belong the low-priority reconstructions. We use
(dH ,∆H) to denote the distortion exponent and
the diversity order of the high-priority reconstruc-
tion, (dL,∆L) for the low-priority reconstruction.
The distortion-diversity outer bound is obtained
as follows: (dH ,∆H) is bounded by the single
layer distortion-diversity boundary ∆H = 2 − dH ;
similarly, (dL,∆L) is bounded by ∆L = 2 − dL;
naturally, ∆H > ∆L, implied from their names.
The fact that the single layer distortion-diversity
boundary bounds the performance of both layers
can be understood by treating the single layer
scheme as a special case of the double layer scheme
where we are concerned with the performance
of only one reconstruction. The above distortion-
diversity outer bound for double layer schemes is
summarized as follows, ∆H = 2− dH ,

∆L = 2− dL ,
0 < dH < dL < 2 .

 . (35)

V. PERFORMANCE COMPARISON

We compare the MDC-JD scheme, the SR-SPC
scheme and the performance outer bound by over-
laying their distortion-diversity regions along the
direction of (dp, df ) = (db, dr) = (dL, dH) =
(αd, d) (α > 1). The special cases of α = 1
and α = 3 are illustrated in Figures 11 and 12,
respectively.



Fig. 11. Single-Block Distortion-Diversity Regions: MDC-JD,
SR-SPC and Outer-Bound. (dp, df ) = (db, dr) = (dL, dH) =
(d, d)

Fig. 12. Single-Block Distortion-Diversity Regions: MDC-JD,
SR-SPC and Outer-Bound, (dp, df ) = (db, dr) = (dL, dH) =
(3d, d)

Remark For the α = 1 case, there is no clear
winner between the MDC-JD scheme and the SR-
SPC scheme, as shown in Figure 11. However, for
the α = 3 case, the SR-SPC scheme outperforms
the MDC-JD scheme, since the MDC-JD distortion-
diversity region is subsumed in the SR-SPC region,
which can be observed from Figure 12.

We further illustrate the comparison of the single-
block distortion-diversity regions along the direc-
tion of (dp, df ) = (db, dr) = (dL, dH) = (αd, d)
(α > 1) and (∆partial,∆full) = (∆b,∆r) =
(∆H ,∆L) = (γ∆,∆) (γ > 1). We have plot-
ted the ∆ − d curves in four (α, γ) settings
{(1, 1), (1, 2), (3, 1), (3, 2)}, as shown in Figure 13.

(a)
(α, γ) = (1, 1)

(b) (α, γ) =
(1, 2)

(c) (α, γ) = (3, 1) (d) (α, γ) = (3, 2)

Fig. 13. Single-Block Distortion-Diversity Regions: MDC-JD,
SR-SPC and Outer-Bound
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