
Genetic Representations for Evolutionary
Minimization of Network Coding Resources

Minkyu Kim1, Varun Aggarwal2, Una-May O’Reilly2,
Muriel Médard1, and Wonsik Kim1

1 Laboratory for Information and Decision Systems
2 Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology, Cambridge, MA 02139, USA
{minkyu@, varun ag@, unamay@csail., medard@, wskim14@}mit.edu

Abstract. We demonstrate how a genetic algorithm solves the prob-
lem of minimizing the resources used for network coding, subject to
a throughput constraint, in a multicast scenario. A genetic algorithm
avoids the computational complexity that makes the problem NP-hard
and, for our experiments, greatly improves on sub-optimal solutions of es-
tablished methods. We compare two different genotype encodings, which
tradeoff search space size with fitness landscape, as well as the associated
genetic operators. Our finding favors a smaller encoding despite its fewer
intermediate solutions and demonstrates the impact of the modularity
enforced by genetic operators on the performance of the algorithm.

1 Introduction

Network coding is a novel technique that generalizes routing. In traditional rout-
ing, each interior network node, which is not a source or sink node, simply
forwards the received data or sends out multiple copies of it. In contrast, net-
work coding allows interior network nodes to perform arbitrary mathematical
operations, e.g., summation or subtraction, to combine the data received from
different links. It is well known that network throughput can be significantly
increased by network coding [1, 2, 3]. While network coding is assumed to be
done at all possible nodes in most of the network coding literature, it is often
the case that network coding is required only at a subset of nodes to achieve the
desired throughput. Consider Example 1:

Example 1. In the canonical example of network B (Fig. 1(a)) [1], where each
link has unit capacity, source s can send 2 units of data simultaneously to the
sinks t1 and t2, which is not possible with routing alone. But only node z needs to
combine its two inputs while all other nodes perform routing only. If we suppose
that link (z, w) in network B has capacity 2, which we represent by two parallel
unit-capacity links in network B′ (Fig. 1(b)), a multicast of rate 2 is possible
without network coding. In network C (Fig. 1(c)), where node s is to transmit
data at rate 2 to the 3 leaf nodes, network coding is required either at node a
or at node b, but not at both. �

M. Giacobini et al. (Eds.): EvoWorkshops 2007, LNCS 4448, pp. 21–31, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

22 M. Kim et al.

t1

s

t2

x y

z

w

a b

a b

a a b b

a b a b

(a) Network B

t1

s

t2

x y

z

w

a b

a b

a ba b

b a

(b) Network B′

t1

s

t3

x z

a

c

b

d

t2

y

a b

a b

a

a

a b

a b a b

b

b

b b

a

(c) Network C

Fig. 1. Sample networks for Example 1

Example 1 leads us to the following question: To achieve the desired throughput,
at which nodes does network coding need to occur? This question’s answer is
valuable because eliminating unnecessary coding nodes will save computation at
the application layer if that is where network coding is handled. Alternatively,
if network coding is integrated in the buffer management of routers, it will re-
duce the number of routers that need to perform coding operations without
compromising communication capacity. For a GA, the problem can be posed as
the minimization of coding cost (in links or nodes) subject to the constraint of
feasibility (achieving the desired throughput).

The problem of determining a minimal set of nodes where coding is required
is NP-hard; its decision problem, which decides whether the given multicast rate
is achievable without coding, reduces to a multiple Steiner subgraph problem,
which is NP-hard [4]. It is shown that even approximating the minimum number
of coding nodes within any multiplicative factor or within an additive factor
of |V |1−ε is NP-hard [5]. Note, however, that once the set of coding nodes is
identified, a network code achieving the desired throughput can be efficiently
constructed for the multicast scenario, either in a deterministic [6] or randomized
fashion [7].

In the network research community, [8] and [9] have documented results that
demonstrate the benefit of the GA over other existing approaches in terms of
reducing the number of coding links or nodes and its applicability to a variety of
generalized scenarios. These contributions emphasized the computational “how-
to” aspects of feasibility checking and the transformations of the network graph
into secondary graphs that express possible coding situations uniformly since
these are key to evaluating the fitness function of the GA.

In the course of investigating the feasibility checks, graph transformations,
and value of using a GA, we experimented with two different genotype encod-
ings1 and associated operators. For both encodings, we use a genotype composed
of a number of blocks, each of which consists of a set of variables indicating the
link states. For a block of length k, using an alphabet of cardinality 2, the Bi-
nary Link State (BLS) encoding represents all possible 2k states of k links. On
the other hand, for the Block Transmission State (BTS) encoding, we group

1 To minimize confusion, throughout the paper, the term “encoding” refers to “geno-
type encoding” only, while the term “coding” means “network coding.”

Genetic Representations for Evolutionary Minimization 23

those link states into (k + 2) transmission states. Despite the smaller search
space size of BTS encoding, it is not clear that it should be superior to BLS
encoding because in grouping many link states into one, less information that
would relate the fitness of solutions intermediate to the best solution is avail-
able in contrast to BLS encoding which provides more information through its
intermediate solutions.

In this paper we focus on the two different encodings with associated genetic
operators and conduct a more comprehensive comparison between them. Specif-
ically relevant to the GA community, we consider into the GA encoding tradeoff
issues related to search space size and fitness landscape. The rest of the paper is
organized as follows. Section 2 presents the problem formulation, and Section 3
describes the network coding GA (NCGA) with the two different encodings and
associated operators. Section 4 sets up a set of experiments into relative values
of the encodings and discusses the results. Section 5 presents a summary of the
results and our conclusions.

2 Problem Formulation

We assume that a network is given by a directed multigraph G = (V, E) as
in [10] where each link has a unit capacity whose unit can be arbitrarily chosen,
e.g., k bits per second for a constant k, or a fixed size packet per unit time,
etc. Links with larger capacities are represented by multiple links. Only integer
flows are allowed, hence there is either no flow or a unit rate of flow on each
link. We consider the single multicast scenario in which a single source s ∈ V
wishes to transmit data at rate R to a set T ⊂ V of sink nodes. Rate R is said
to be achievable if there exists a transmission scheme that enables all |T | sinks
to receive all of the information sent. We only consider linear coding, where a
node’s output on an outgoing link is a linear combination of the inputs from its
incoming links. Linear coding is sufficient for multicast [2].

Given an achievable rate R, we wish to determine a minimal set of nodes
where coding is required in order to achieve this rate. However, whether coding
is necessary at a node is determined by whether coding is necessary at at least
one of the node’s outgoing links and thus, as pointed out also in [5], the number
of coding links is in fact a more accurate estimator of the amount of computation
incurred by coding. We assume hereafter that our objective is to minimize the
number of coding links rather than nodes. Note, however, that as demonstrated
in [8], it is straightforward to generalize the proposed algorithm to the case
of minimizing the number of coding nodes. Furthermore, [8] shows that, with
appropriate changes, the algorithm can be readily applied to more generalized
optimization scenarios, e.g., when links and nodes have different coding costs.

It is clear that no coding is required at a node with only a single input since
these nodes have nothing to combine with [8]. For a node with multiple incom-
ing links, which we refer to as a merging node, if the linearly coded output to
a particular outgoing link weights all but one incoming message by zero, effec-
tively no coding occurs on that link; even if the only nonzero coefficient is not

24 M. Kim et al.

identity, there is another coding scheme that replaces the coefficient by iden-
tity [5]. Thus, to determine whether coding is necessary at an outgoing link of
a merging node, we need to verify whether we can constrain the output of the
link to depend on a single input without destroying the achievability of the given
rate. As in network C of Example 1, the necessity of coding at a link depends
on which other links code and thus the problem of deciding where to perform
network coding in general involves a selection out of exponentially many possible
choices. We employ a GA-based search method to efficiently address the large
and exponentially scaling size of the space.

3 Network Coding GA (NCGA)

Prior to using the NCGA, the given network graph G is transformed into a
secondary graph by either of the two methods presented in [8, 9]2. Regardless
which method is used, mapping the network coding problem to a GA framework
is done as follows.

Suppose a merging node with k(≥ 2) incoming links. To consider the trans-
mission to each of its outgoing links, we assign a binary variable to each of its k
incoming links, which being 1 indicates that the link state is active (the input
from the associated incoming link is transmitted to the outgoing link) and 0
indicates it is inactive. Given that network coding is required for the transmis-
sion only if two or more link states are active, we may need to consider those
k variables together. We refer to the set of the k variables as a block of length
k (see Fig. 2 for an example). The way how those binary variables are actually
encoded as a genotype will be described later in this section.

v

x1 x2 x3

y1 y2

(a) Merging node v

v’

x1 x2 x3

y1

v”

x1 x2 x3

y2

1 0 1 0 1 1

block for y1 block for y2

(b) Two blocks for outgoing links of v

Fig. 2. Node v with 3 incoming and 2 outgoing links results in 2 blocks, each with 3
variables indicating the states of incoming links (x1, x2, x3) onto the associated outgoing
link

Constraint and Fitness Function. A genotype is called feasible if there ex-
ists a network coding scheme that achieves the given rate R with the link states

2 An interested reader is referred to [8,9] for the details of the two methods for graph
transformation and feasibility testing.

Genetic Representations for Evolutionary Minimization 25

determined by the genotype. To calculate the fitness of genotype y, its feasibil-
ity must be checked by either of the two methods in [8], [9] depending on the
secondary graph chosen earlier, and the fitness value F is assigned as

F (y) =

{
number of blocks with two or more active links, if y is feasible,
∞, if y is infeasible.

The NCGA uses a standard generation-based GA control loop with tourna-
ment selection. It terminates at some maximum number of generations. After-
ward, the best solution of the run is optimized with greedy sweep: we switch
each of the remaining 1’s to 0 if it can be done without violating feasibility.
This procedure may only improve the solution, and sometimes the improvement
can be substantial. Reference [9] proves that the NCGA with greedy sweep is
guaranteed to perform no worse than the existing algorithm in [5].

Binary Link State (BLS) Encoding and Operators. This encoding allows
a block of length k to take any of 2k possible binary strings of length k. If we
denote by dv

in and dv
out the in-degree and the out-degree of node v, node v has dv

out

blocks of length dv
in, and we have a total of m =

∑
v∈V dv

indv
out binary variables,

where V is the set of all merging nodes. We must explore the m-dimensional
binary space of 2m candidates to find the desired minimal set of coding links.

For BLS encoding we use uniform crossover, where each pair of genotypes
is selected for crossover with a given probability (mixing ratio) and the two
genotypes in a selected pair exchange each bit independently with another given
probability (crossover probability). For mutation, we use simple binary mutation,
where each bit in each genotype is flipped independently with a given probability
(mutation rate). Since these operators deal with each bit separately, we refer to
the operators used for BLS encoding as bit-wise genetic operators.

Block Transmission State (BTS) Encoding and Operators. As men-
tioned above, once a block has at least two 1’s, replacing all the remaining 0’s
with 1’s has no effect on whether coding is done. Moreover, it can be shown that
substituting 0 with 1, as opposed to substituting 1 with 0, does not hurt the
feasibility. Therefore, for a feasible genotype, any block with two or more 1’s can
be treated the same as the block with all 1’s. Thus we could group all the states
with two or more active links into a single state, coded transmission. This state
is rounded out by k states for the uncoded transmissions of the input received
from one of the k single incoming links and one state indicating no transmis-
sion. Thus BTS encoding emerges where each block of length k can only take
one of the following (k + 2) strings: “111...1”, “100...0”, “010...0”, “001...0”, ...,
“000...1”, “000...0”. The net effect is a reduction in the number of possible states
for a block to (k + 2) rather than 2k. If we let w be the total number of blocks
(i.e., w =

∑
v∈V dv

out) and ki denote the length of the i-th block (i = 1, ..., w),
the search space size is

∏w
i=1(ki + 2). However, the benefit of the smaller space

size in fact comes at the price of losing the information on the partially active
link states that may serve as intermediate steps toward an uncoded transmission
state. This tradeoff will be discussed more in depth in Section 4.

26 M. Kim et al.

To preserve the BTS encoding structure throughout genetic operations, we
need to define a new set of genetic operators, which we refer to as block-wise
genetic operators. For block-wise uniform crossover, we let two genotypes subject
to crossover exchange each block, rather than bit, independently with the given
crossover probability. For block-wise mutation, we let each block under mutation
take another string chosen uniformly at random out of (k + 1) other strings for
a length-k block. If mutation rate is α, the average number of changed bits in
a length-k block is now calculated as 4k2

(k+1)(k+2)α, whereas it is kα for bit-wise
mutation. While the difference becomes more apparent when k is large since the
latter is upper bounded by 4α, those values are still different for k = 2, where
the block structure makes no difference in the space size. Though block-wise
mutation may lead to much smaller number of flipped bits, it is more likely to
cause a sudden change in a genotype.

4 Experiments

4.1 Experiment Setup

The two encodings not only differ in the size of search space, but in the way the
genetic operators are applied. In BTS encoding with the block-wise operators,
crossover is applied at the block boundaries and mutation is performed intra-
block. However, in BLS encoding with the bit-wise operators, crossover and
mutation are randomly applied without respecting any block boundaries. While
evaluating the effect of the search space size reduction, we also want to investigate
whether the exploitation of block level modularity by the block-wise operators
gives any significant improvement in the algorithm’s performance. We thus set
up two experiments: Experiment I compares the effect of the two encodings
combined with associated operators on the performance of the NCGA, while
Experiment II tests the effect of the operators alone by isolating the effect of the
encodings that lead to different space sizes.

Experiment I: We use two acyclic networks, I-50 and I-75, generated by the
algorithm in [11], whose details are given in Table 1. Note that BTS encoding
reduces the size of the search space by 30.3 and 115 orders of magnitude for
networks I-50 and I-75, respectively, compared with that in the case of BLS
encoding. This experiment tests which encoding is better given the tradeoff in
the search space size and ease of traversing the fitness landscape.

Experiment II: We construct a set of synthetic networks with only blocks of
length 2. Note that for a block of length 2, the two encodings have the same
search space size (2k = k + 2 when k = 2), but the block-wise operators re-
tain their modularity. These networks are constructed by cascading a number
of copies of network B′ in Fig. 1(b) such that the source of each subsequent
copy of B′ is replaced by an earlier copy’s sink. We use fixed-depth binary trees
containing 3, 7, 15, and 31 copies of B′ (henceforth called II-3, II-7, II-15, and
II-31, respectively). Parameters of these networks are given in Table 1. All these

Genetic Representations for Evolutionary Minimization 27

network have 0 as the minimum number of coding links, i.e., multicast rate 2 is
achievable without coding. We scale up the network size to investigate the payoff
one gets with modular operators as the search space size increases.

We use the NCGA with the decomposition-based graph transformation and
the max-flow feasibility testing described in [9]. For comparison, we also perform
experiments using the two existing approaches by Fragouli et al. [12] (“Minimal
1”)3, and Langberg et al. [5] (“Minimal 2”), in both of which link removal is done
in a random order. For Minimal 1, the subgraph is selected also by a minimal
approach, which starting from the original graph sequentially removes the links
whose removal does not destroy the achievability.

Table 1. Details of the networks used in the experiments

Network Genotype Number of Avg. length Search space size (log10)
length blocks of blocks (BLS/BTS)

I-50 280 71 3.94 84.29/53.93
I-75 761 130 5.85 229.08/113.47
II-3 32 16 2 9.63/9.63
II-7 80 40 2 24.08/24.08
II-15 176 88 2 52.98/52.98
II-31 368 184 2 110.78/110.78

4.2 Algorithm Parameters

We set the total budget of fitness evaluations to 150,000 (a very small fraction
of the search space size of the networks considered. Preliminary experiments
suggested different tournament sizes and mutation rates for the two encodings:
10 and 0.006 for BLS encoding, and 100 and 0.012 for BTS encoding, respectively.
All other parameters are matched for the two encodings. We perform 30 runs for
each network with both encodings. Table 2 summarizes the parameters used.

Table 2. GA parameters used in the experiments

Population size 150
Tournament size 10(BLS)/100(BTS)
Maximum generations 1000
Mixing ratio/Crossover probability 0.8/0.8
Mutation rate 0.006(BLS)/0.012(BTS)

When randomly initializing the population, we insert an all-one vector, which
represents the solution where coding is done everywhere and thus is feasible by
the assumption that the given rate R is achievable. The role of the all-one vector

3 Though minimizing network coding resources is not its main concern, [12] presents
an algorithm to obtain a subgraph with a minimal number of coding links.

28 M. Kim et al.

as a feasible starting point is crucial to the performance of the algorithm as
discussed in [8].

4.3 Experimental Results

Results for the both experiments are summarized in Table 3. The table shows the
optimal fitness achieved by each algorithm averaged over 30 runs. The statisti-
cal significance of the difference between BTS and BLS encodings is measured by
conducting paired t-tests and the p-values are reported in the last row of the table.

Table 3. Performance of the algorithms for each network. Each value in brackets is
standard deviation.

I-50 I-75 II-3 II-7 II-15 II-31
NCGA/BLS 3.33(1.03) 6.43(1.30) 0.93(0.69) 2.20(1.27) 5.57(1.55) 12.43(2.37)

(w/o greedy sweep) 3.33(1.03) 39.93(2.74) 0.93(0.69) 2.20(1.27) 5.57(1.55) 12.43(2.37)
NCGA/BTS 2.40(0.62) 3.63(0.61) 0.00(0.00) 0.00(0.00) 0.17(0.38) 1.03(0.81)

(w/o greedy sweep) 2.40(0.62) 3.63(0.61) 0.00(0.00) 0.00(0.00) 0.17(0.38) 1.07(0.83)
Minimal 1 4.90(1.37) 9.50(2.16) 3.00(0.00) 7.00(0.00) 15.50(0.00) 31.00(0.00)
Minimal 2 4.33(1.37) 7.90(1.71) 2.13(0.86) 4.37(1.25) 9.90(1.65) 19.97(2.66)

p-value 8.21e−5 2.65e−15 6.7e−10 2.2e−13 2.9e−26 1.55e−32

Experiment I: For both networks I-50 and I-75, the NCGA with greedy sweep,
with either of the two encodings, outperforms the two existing minimal ap-
proaches. Between the two encodings, BTS encoding gives rise to a substantial
performance gain over BLS encoding with the statistical significance confirmed
by the tabulated p-values.

Experiment II: Again the NCGA with BTS encoding outperforms that with
BLS encoding on average for all networks, while either of the two performs signifi-
cantly better than the minimal algorithms. For networks II-3 and II-7, the NCGA
with BTS encoding finds the optimal (0 coding links) in all of the 30 runs. For
networks II-15 and II-31, it succeeds to find the optimal solution 25 and 8 times,
respectively. On the other hand, BLS encoding does not find the optimal number
of coding links in any of the 30 runs for networks II-7, II-15, and II-31.

The average performance of the NCGA with both encodings is plotted against
the logarithm of the search space size in Fig. 3. The plot suggests a linear scaling
of algorithms as the search space size grows exponentially. More data points
would lend more confidence to this hypothesis. The curve for BTS encoding has
a much smaller intercept and slope than BLS encoding, implying that the payoff
of the block-wise operators increases as the search space size increases.

4.4 Discussion of Results

Experiment I clearly indicates that BTS encoding is better than BLS encoding
for the networks considered. We can thus conclude that the benefits of the smaller

Genetic Representations for Evolutionary Minimization 29

0 20 40 60 80 100 120

0

2

4

6

8

10

12

14

Search space size (log)

A
ve

ra
ge

 P
er

fo
rm

an
ce

BTS
BLS

Fig. 3. Average performance of NCGAs with log of search space size

search space trump the challenge of the more difficult fitness landscape. For
network I-50, BTS encoding improves over BLS encoding on average by a single
coding link. Though small, this difference is statistically significant. For network
I-75, without greedy sweep, the average difference in performance between the
two algorithms is much higher, i.e., 34 coding links. This large difference in
performance can be attributed to two specific factors: the much larger search
space size (see Table 1) and larger average block size. The difference also indicates
that the information on the intermediate solutions that BLS encoding provides
may not be particularly useful without guaranteeing that those intermediate
steps ultimately lead to an uncoded transmission state.

Experiment II demonstrates the superiority, by a remarkably large margin,
of the block-wise operators over the bit-wise operators. It also indicates that
both NCGAs scale linearly with an exponentially growing search space size (see
Fig. 3), which is remarkable. This prompts due analysis of the difference be-
tween the two operators. When applied to the pair of blocks “00” and “11”,
the block-wise crossover cannot result in either block “01” or “10”. However,
for the bit-wise crossover, the pair of blocks “00” and “11” may result in “00”,
“01”, “10”, or “11”. It can be shown that with probability 1

4 the two crossovers
behave differently, if the population has equal frequency of all block types. Let
us recall that the block-wise mutation leads to a smaller number of changed bits
on average than the bit-wise mutation (Section 3). Nevertheless, the block-wise
mutation exhibits higher “exploratory power” than the bit-wise mutation in the
sense that it is more likely to lead to changes in multiple bits. For the block-wise
mutation, given any block, the remaining three blocks are equally likely to occur
on mutation. Thus, if mutation rate is α, the probabilities of 0, 1, 2-bit change
are 1 − α, 2

3α, 1
3α, respectively, whereas those probabilities in the bit-wise case

are (1 − α)2, 2α(1 − α), α2, respectively. Provided that α < 1
3 , the probability

of 2-bit change is larger for the block-wise mutation. A similar analysis can be
done for the whole genotype as well.

One may speculate that the better performance of the block-wise operators is
due to the higher exploratory power of the block-wise mutation rather than the
modularity of the operators. To confirm the contrary, we consider a new set of

30 M. Kim et al.

Table 4. Performance of NCGA with MHD operators. Refer to Table 3 for comparison
with NCGAs with bit-wise or block-wise operators.

II-3 II-7 II-15 II-31
NCGA/MHD 0.77(0.68) 2.47(1.33) 5.83(1.68) 12.63(3.23)

operators, called the Matched Hamming Distance (MHD) operators, where the
MHD mutation leads to the statistically same Hamming distance changes as the
block-wise mutation, but exhibits no positional bias as to where the mutation
is applied, and the MHD crossover is the same as the bit-wise crossover which
neither imposes modularity. From Table 4 compared with Table 3, we observe
that the MHD operators perform similarly as the bit-wise operators, but far
worse than the block-wise operators. We can thus confidently claim that the
respect for modularity enforced by the block-wise operators is the main cause of
the superior performance of the block-wise operators.

5 Conclusions and Future Work

For our suite of network coding problems, we have found that the benefits of
the smaller search space and modular operators trump the challenge of the more
difficult fitness landscape. In the future, we will study the effect of exploit-
ing further modularity with BTS operators that cross over at merging node
boundaries and perform intra-block mutations. We could incorporate hierarchi-
cal modularity using domain knowledge of sparsely connected regions, regions
with similar structure or simply neighboring nodes. A hierarchical structure of
crossover boundaries could be formed and applied with different probabilities.
These results will inform the GA community and help push the state-of-art in
algorithms for minimizing network coding resources.

References

1. Ahlswede, R., Cai, N., Li, S.Y.R., Yeung, R.W.: Network information flow. IEEE
Trans. Inform. Theory 46(4) (2000) 1204–1216

2. Li, S.Y.R., Yeung, R.W., Cai, N.: Linear network coding. IEEE Trans. Inform.
Theory 49(2) (2003) 371–381

3. Fragouli, C., Le Boudec, J.Y., Widmer, J.: Network coding: An instant primer.
SIGCOMM Comput. Commun. Rev. 36(1) (2006) 63–68

4. Richey, M.B., Parker, R.G.: On multiple Steiner subgraph problems. Networks
16(4) (1986) 423–438

5. Langberg, M., Sprintson, A., Bruck, J.: The encoding complexity of network cod-
ing. In: Proc. IEEE ISIT. (2005)

6. Jaggi, S., Sanders, P., Chou, P.A., Effros, M., Egner, S., Jain, K., Tolhuizen, L.:
Polynomial time algorithms for multicast network code construction. IEEE Trans.
Inform. Theory 51(6) (2005) 1973–1982

7. Ho, T., Koetter, R., Médard, M., Karger, D.R., Effros, M.: The benefits of coding
over routing in a randomized setting. In: Proc. IEEE ISIT. (2003)

Genetic Representations for Evolutionary Minimization 31

8. Kim, M., Ahn, C.W., Médard, M., Effros, M.: On minimizing network coding
resources: An evolutionary approach. In: Proc. NetCod. (2006)

9. Kim, M., Médard, M., Aggarwal, V., O’Reilly, U.M., Kim, W., Ahn, C.W., Effros,
M.: Evolutionary approaches to minimizing network coding resources. In: Proc.
IEEE Infocom (to appear). (2007)

10. Koetter, R., Médard, M.: An algebraic approach to network coding. IEEE/ACM
Trans. Networking 11(5) (2003) 782–795

11. Melançon, G., Philippe, F.: Generating connected acyclic digraphs uniformly at
random. Inf. Process. Lett. 90(4) (2004) 209–213

12. Fragouli, C., Soljanin, E.: Information flow decomposition for network coding.
IEEE Trans. Inform. Theory 52(3) (2006) 829–848

	Introduction
	Problem Formulation
	Network Coding GA (NCGA)
	Experiments
	Experiment Setup
	Algorithm Parameters
	Experimental Results
	Discussion of Results

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

