
ON THE CODING-LINK COST TRADEOFF
IN MULTICAST NETWORK CODING

Minkyu Kim∗, Muriel Médard∗, Varun Aggarwal†, and Una-May O’Reilly†
∗Laboratory for Information and Decision Systems

†Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, Cambridge, MA 02139

Email: {minkyu@, medard@, varunag@, unamay@csail.}mit.edu

Abstract—We investigate the issue of the tradeoff between
network coding and link usage in multicast network coding.
Network coding makes minimum-cost multicast, an NP-complete
problem with traditional routing alone, polynomially solv able, but
if we consider the network coding capability as a resource, the
link cost is actually minimized at the expense of the coding cost.
We show that identifying such a tradeoff is NP-hard. For this
problem, we propose an evolutionary approach that generalizes
our previously proposed algorithms for coding resource optimiza-
tion. Based on an existing multi-objective genetic algorithm, we
develop a novel selection mechanism that utilizes some specific
characteristics of the problem. We then show that the algorithm
can be implemented in a distributed manner and evaluate the
algorithm’s performance by performing experiments on several
topologies.

I. I NTRODUCTION

Network coding has been shown to allow for minimum-
cost multicast, whereas with traditional routing alone, the
problem to achieve minimum-cost multicast is NP-complete
and only suboptimal approximation methods are available [1].
Therefore, network coding transforms a presumably intractable
task to a polynomially solvable problem.

Network coding, however, may incur some additional cost
such as computational overhead or transmission delay, and
thus the network coding capability can be considered a re-
source subject to optimization. In essence, what one may
achieve with the method in [1] is to get the cost of link
usage minimized at the expense of the cost of network coding.
It is pointed out in [2] that network coding advantage can
often be achieved with performing coding operations only ata
subset of nodes. In particular, though it is necessary to allow
network coding at all possible nodes initially to calculatea
minimum-cost subgraph, there may be very few nodes in the
resulting subgraph where network coding is actually required.
Thus, as illustrated in [2], a two-stage method, where we first
assume network coding everywhere and then try to minimize
the number of coding nodes/links on the resulting minimum-
cost subgraph, may be an effective tool to achieve minimum-
cost multicast.

However, if network coding becomes necessary at some
nodes after we constrain the information flow onto a selected
subgraph, one may be interested in finding whether providing
some extra capacities would eliminate the requirement of net-
work coding, i.e., there may be a possible tradeoff opportunity

between the coding and link costs. Consider the following
example where each link has a unit capacity and a unit cost,
and the desired multicast rate froms to t1 and t2 is 2.

Example 1: In network A (Fig. 1(a)), the target multicast
rate is achievable without coding, incurring link cost of 10.
To reduce link cost to 9, we have to remove one of the two
links between nodesz and w, making coding necessary at
nodez. In networkB (Fig. 1(b)), by removing link(x, z), we
can establish multicast connections of rate 2 without coding
using only 9 links, whereas removing one of the two links
between nodess andy first necessitates coding at node in the
remaining graph. In networkC (Fig. 1(c)), though one of the
two links between nodesy andz is redundant, coding at node
z is necessary regardless whether one of the redundant links
is removed or not. �

t
s

t
x yzw

a ba ba ba bb a
(a) NetworkA

t
s

t
x yzw

a b aba abb b
(b) NetworkB

t
s

t
x yzw

a ba ba a � b ba � b a � b
(c) NetworkC

Fig. 1. Sample Networks for Example 1

As illustrated in Example 1, reducing link usage first by
subgraph selection may give rise to necessity of coding in the
remaining subgraph, but we may also choose not to do coding
while allowing some extra link cost. For some networks, such
as networkA, minimizing link usage first always increases the
requirement of coding, whereas for some others, like network
B, it depends on how a minimum-cost subgraph is chosen.
Also, there are networks, e.g., networkC, where reducing link
cost first does not increase coding cost. Hence, whether there
exists such a tradeoff can be considered a topological property
of a network.

If it is possible to identify the tradeoff in a given network,
one may use the information to make decisions on the de-
ployment of the network coding capability such that coding
happens only at the places where significant amount of link

cost is saved, or one may not want to employ network coding
at all if the amount of saved link cost turns out to be negligible
for the topology. On the other hand, if the given network is
known to have no such tradeoff, we can employ the aforemen-
tioned two-stage method without sacrificing optimality.

However, as will be discussed later, determining whether
there exists such a tradeoff turns out to be NP-hard. In this
study, we further extend our previously proposed evolutionary
approaches [2], [3] to investigate the issue of the tradeoff
between coding and link costs. One way to address the
problem indirectly is suggested in [3], where the coding and
links costs are combined to make a single objective. Such
a method, however, can only provide a single solution that
minimizes the combined cost. Alternatively, we may apply the
method in [2] repeatedly to determine a minimal set of coding
nodes/links while varying the link cost by choosing different
combinations of the links to be used. This type of method,
however, can be very inefficient since the possible range of
link cost can be very wide.

Evolutionary algorithms, in fact, can serve more effectively
as a method to identify such tradeoffs [4]. In this paper, we
propose a distributed evolutionary algorithm that may reveal
the utility of network coding in comparison with the amount
of saved link cost, which has been unable to measure so far
with any other method.

The rest of the paper is organized as follows. Section
II presents the problem formulation and summarizes related
work. Section III describes the problem-specific selection
mechanism. Section IV presents the distributed implementa-
tion of our algorithm, while Section V analyzes the algorithm’s
overhead. Section VI shows experimental results and Section
VII concludes with topics for future research.

II. PROBLEM FORMULATION AND RELATED WORK

A. Problem Formulation

We assume that the network is given by a directed multi-
graph G = (V, E), where each link has a unit capacity.
Connections with larger capacities are represented by multiple
links. Only integer flows are allowed, hence there is either no
flow or a unit-rate flow on each link. We consider the single
multicast scenario in which a single sources ∈ V wishes to
transmit data at rateR to a setT ⊂ V of sink nodes, where
|T | = d. Rate R is said to be achievable if there exists a
transmission scheme, involving network coding or not, that
enables alld sinks to receive all the information sent. We
consider only linear coding, where a node’s output on an
outgoing link is a linear combination of the inputs from its
incoming links. Linear coding is sufficient for multicast [5].

We assume that the given target rateR is achievable when
coding is allowed at all nodes. A transmission scheme is called
feasible if it achieves the target rateR. Each link e ∈ E is
assigned link costle, which is incurred when the link is used
for transmission, and coding costce, which is incurred if the
transmission on the link involves network coding rather than
simple forwarding.

Let fc(x) andfl(x) denote the total coding and link costs,
respectively, for any transmission schemex. We then wish to
find the Pareto optimal frontP (which can be shown to be
unique) defined as follows:

Definition 1: The Pareto optimal front is the set of the cost
pairs(f∗

c , f∗

l) of a feasible transmission scheme such that there
exists no other schemex that is feasible and satisfies{fc(x) <
f∗

c , fl(x) ≤ f∗

l } or {fc(x) ≤ f∗

c , fl(x) < f∗

l }.
Theorem 1:Finding the Pareto optimal front between the

coding and link costs for multicast is NP-hard.
Proof: The problem to determine whether employing network
coding at more nodes/links decreases link cost is NP-hard,
because to which the NP-complete problem of computing the
minimum cost for multicast without network coding [6] is
reduced. To decide the converse, i.e., whether removing links
increases the minimum number of coding nodes/links, is also
NP-hard [3]. �

B. Evolutionary Algorithms for Network Coding

Genetic Algorithms (GAs) operate on a set of candidate
solutions, called apopulation, which improves sequentially
via mechanisms inspired by biological evolution [7]. Each
candidate solution is typically represented by a bit string,
called achromosome. Each chromosome is assigned afitness
value that measures how well the chromosome solves the
problem at hand, compared with other chromosomes in the
population. From the current population, a new population is
generated typically using three genetic operators:selection,
crossoverandmutation. Chromosomes for the new population
are selected randomly (with replacement) in such a way that
fitter chromosomes are selected with higher probability. For
crossover, survived chromosomes are randomly paired, and
then two chromosomes in each pair exchange a subset of
their bit strings to create two offspring. Chromosomes are then
subject to mutation, which refers to random flips of the bits
applied individually to each of the new chromosomes. The
above process is iterated with the newly generated population
successively replacing the current one. For further details of a
standard simple GA, the reader is referred to [3], [7].

For the problem of network coding resource optimization,
[3] proposes a GA-based evolutionary approach, demonstrat-
ing its benefits over other existing approaches in terms of the
solution quality and the applicability to a variety of generalized
scenarios. Along the same direction, [2] develops a novel
representation method and the associated operators, which
is shown to lead to a substantial gain in the algorithm’s
performance, as analyzed more in depth in [8]. Furthermore,
[2] presents a distributed version of the algorithm, where the
resource optimization can be done on the fly integrated into a
decentralized network coding framework.

C. Evolutionary Algorithms for Multi-Objective Optimization

For optimization with multiple objectives, i.e., the coding
and link costs in our case, a number of algorithms have been
proposed to obtain the Pareto optimal front in a single run
[4]. Commonly in those algorithms, if solutionx is inferior

to another solutiony with respect to one or more of the
optimization criteria while the two are the same in all the
remaining criteria,x is said to bedominatedby y. More
formally, in the case of the minimization problem with the
two objectivesfc andfl, the notion of domination is defined
as follows:

Definition 2: For chromosomesx andy, x is dominated by
y (or y dominatesx) if either {fc(x) > fc(y), fl(x) ≥ fl(y)}
or {fc(x) ≥ fc(y), fl(x) > fl(y)} holds.

Multi-objective GAs share largely the same structure with
ordinary simple GAs, with some notable differences in the
selection mechanism. Multi-objective selection mechanisms
employ various algorithmic techniques to locate the resulting
population as close to the actual Pareto optimal front as
possible [4]. First, while selection in simple GAs puts more
weights on the solutions with better fitness values with respect
to a single objective, multi-objective GAs employ a mech-
anism that assigns higher probabilities for selection to less
dominated solutions. In addition, multi-objective GAs employ
the mechanism that preserves diversity among the solutions
in an effort to obtain the full Pareto optimal front. Out of
many existing multi-objective GAs, we primarily focus on Deb
et al.’s NSGA-II [4], based on which we implement a novel
selection mechanism specific to our problem, as will discussed
in the next section.

III. SELECTION MECHANISM

The purpose of evolutionary algorithms in general is to serve
as a stochastic search method that does not rely on any specific
structures of the problem, i.e., a “black box” optimization
method, so that they can be applied to as a wide variety
of problems with little known structures as possible. Given
a specific problem at hand, however, the desired properties of
an optimization method can be very different since it is often
beneficial to utilize as many structures of the given problemas
possible. The insight gained from our previous applicationof
evolutionary algorithms in the context of network coding [2],
[3] is that, though the entire structure of the problem is still
not known much, utilizing some problem-specific knowledge,
such as the modularity among variables imposed by the
given network topology, can lead to a substantial gain in the
algorithm’s performance. In this section, we discuss the unique
characteristics of our problem that can be incorporated into the
framework of multi-objective GAs to obtain a more close-to-
optimal Pareto front. Let us begin by introducing the original
selection mechanism proposed by Deb et al. [4].

A. Original Approach

In the original NSGA-II [4], selection is done based on two
criteria: non-domination rank and crowding distance. After
calculating the fitness values, the algorithm finds the first
non-domination frontF1, the set of the chromosomes that
arenot dominated by any other chromosome, assigningnon-
domination rank1 to those chromosomes. Fori ≥ 2, i-
th non-domination frontFi consists of the chromosomes in
P \ {F1 ∪ · · · ∪ Fi−1} that are not dominated by others, to

which non-domination ranki is assigned. It can be shown
that eachFi(i ≥ 1) is nonempty unless we exhaust all the
chromosomes, and thus there are only a finite number of non-
domination fronts.

The chromosomes belonging to the same non-domination
front are sorted with respect to each of the objectives, one after
another, and the crowding distance of each chromosome is the
sum of the differences between its next better and next worse
chromosomes along each axis of the objectives. Intuitively,
crowding distance is a measure of the densities on each non-
domination front such that a chromosome in the sparse region
has a high distance.

Let Pt denote the population at generationt. Then, an
intermediate populationQt of the same sizeN is created using
a binary tournament selection, where we repeat the following
procedure untilQt is filled: a random pair of chromosomes
is chosen and the one with a lower non-domination rank is
selected, or if the ranks are the same, the one with a higher
crowding distance is selected. After calculating the fitness
values ofQt, the N best chromosomes out ofPt ∪ Qt are
selected for the actual populationPt+1 for the next generation
t + 1. At the end of the algorithm,F1 of the last population
is the resulting Pareto optimal front.

It is shown in [4] that non-domination rank and crowding
distance can be efficiently calculated inO(MN2) time, where
M is the number of objectives andN is the population size.
This NSGA-II is then evaluated to show that it surpasses other
multi-objective optimization algorithms in terms of minimiz-
ing various classes of continuous-valued functions.

B. Problem-Specific Selection Mechanism

1) Different Convergence Time:Our problem displays some
unique characteristics that cannot be well handled with the
above selection mechanism alone. One of the hurdles in
applying the above selection mechanism to our problem is
that it is likely to produce only a part of the actual Pareto
optimal front. More specifically, the resulting final front has a
strong tendency to be skewed toward the low link cost region
of the desired front.

0 1 2 3 4 5 6 7 8
62

63

64

65

66

67

68

69

70

Coding Cost

Li
nk

 C
os

t

Fig. 2. Skewed Front Obtained for NetworkG

Example 2:Consider the network constructed by cascading
a number of copies of networkA in Example 1(Fig. 1(b))
such that the source of each subsequent copy ofA is replaced

by an earlier copy’s sink. Let networkG be a depth-3 full
binary tree consisting of 7 copies ofA, where the source is
the tree’s root node and the sinks are 8 leaf nodes, and the
coding and link costs of each link are both 1. For this network,
the minimum number of coding links is known to be zero,
but there exists a tradeoff opportunity for each copy ofA.
Hence, the desired Pareto front appears as the circles in Fig.
2. If we apply the evolutionary algorithm presented in [2] with
the selection mechanism replaced by that in NSGA-II [4], we
almost always obtain a skewed front as depicted in Fig. 2 by
the stars in the lower right part of the desired full front.�

This phenomenon can be understood from the different
difficulties of the optimization along the two objectives, i.e.,
while minimizing coding cost is NP-hard, minimizing link
cost regardless of coding cost is polynomially solvable. In
the context of GA, this difference translates into different
convergence times to the optimal regions of the two objectives.
Before the chromosomes with a low coding cost emerge, those
having a low link cost are more likely to appear in earlier
generations. For the same link cost, the chromosomes with
a lower link cost dominate the ones with a higher link cost
and thus are favored in the selection process. This selection
pressure toward the low link cost region often dominates the
early stage of evolution, making it hard for the population to
evolve into the high link cost region which may eventually
lead to low coding costs.

Therefore, we need to ensure that the chromosomes having
high link costs initially, though dominated by the ones with
low link costs through the middle of the iteration, are not
prematurely lost, providing the algorithm with the time to
find possibly the chromosomes with low coding cost and
high link cost that may eventually become not dominated.
To this end, we define thecoding frontC1 as the set of the
chromosomes having the least coding cost for each link cost
level. More specifically, for each chromosomex ∈ C1 there
exists no feasible chromosomey that satisfies{fc(y) < fc(x),
fl(y) = fl(x)}; F1 is in fact a subset ofC1. We then assign
non-domination rank 1 also to the chromosomes inC1 \F1 so
that those chromosomes are not lost prematurely.

2) Degeneracy: Evolutionary algorithms for multi-
objective optimization, as mentioned above, are typically
applied to optimizing various kinds of continuous-valued
function for performance evaluation [4]. In most such cases,
each chromosome is directly mapped to a different value
of the functions’ variable(s). In our problem, however, each
chromosome determines the operations performed at the
interior nodes and the two discrete-valued objectives are the
resulting coding and link costs, which in a sense are expressed
in a parameterized form of the chromosome. Hence, there
can be a substantially large number of different chromosomes
that correspond to the same coding and link costs, yielding
many chromosomes with zero crowding distance.

Within the original selection mechanism, the chromosomes
with zero crowding distance are those least favored on the
same non-domination front. However, we observed from our
experiments that two chromosomes with zero crowding dis-

tance may be very different, i.e., the Hamming distance
between the two may be very large. In fact, having those
chromosomes that are “neutral” with respect to fitness land-
scape but “diverse” in terms of Hamming distance on a non-
domination front may promote finding even better recombined
chromosomes.

Hence, for those chromosomes with zero crowding distance,
we use Hamming distance as a secondary measure of distance.
More specifically, suppose that chromosomesx and y, hav-
ing the same rank and zero crowding distance, compete for
selection. We then computeh(x), defined as the Hamming
distance fromx to the closest one among the remaining
chromosomes having the identical objective values, andh(y),
defined similarly, and finally select the one with largerh(·).

IV. D ISTRIBUTED IMPLEMENTATION

It is shown in [2] that coding resource optimization can
be done in a distributed fashion integrated into a decentral-
ized network coding framework, which is claimed as the
key benefit of the approach. This characteristic carries over
to the proposed evolutionary algorithm for multi-objective
optimization. As can be noticed from the previous section,
the changes introduced as we generalize an ordinary simple
GA to a multi-objective GA involve the selection part only.
Those changes translate into the modification of the data
collected and distributed by the source node as well as some
additional calculation at the source node, without disrupting
the algorithm’s main structure.

We assume that each link can transmit a fixed-size unit
packet per unit time in the given direction. Each link is also
assumed to be able to send some amount of feedback data,
typically much smaller than the forward packet size, in the
reversedirection. Also, we assume that each interior node
operates in a burst-oriented mode; i.e., for the forward (back-
ward) transmission, each node starts updating its output only
after an updated input has been received from all incoming
(outgoing) links.

The overall flow of our proposed distributed algorithm is
shown in Fig. 3 with the locations of each procedure specified.
We now proceed to describe each procedure of the algorithm
in the order of the occurrence.[P 1] i n i t i a l i z e ; (a l l n o d e s)[P 2] r u n f o r w a r d e v a l u a t i o n p h a s e ; (a l l n o d e s)[P 3] r u n b a c k w a r d e v a l u a t i o n p h a s e ; (a l l n o d e s)[P 4] c a l c u l a t e f i t n e s s ; (s o u r c e)[P 5] w h i l e t e r m i n a t i o n c r i t e r i o n n o t r e a c h e d (s o u r c e){[P 6] c a l c u l a t e c o o r d i n a t i o n v e c t o r ; (s o u r c e)[P 7] r u n f o r w a r d e v a l u a t i o n p h a s e ; (a l l n o d e s)[P 8] p e r f o r m s e l e c t i o n , c r o s s o v e r , m u t a t i o n ; (i n t e r i o r n o d e s)[P 9] r u n b a c k w a r d e v a l u a t i o n p h a s e ; (a l l n o d e s)[P 1 0] c a l c u l a t e f i t n e s s ; (s o u r c e)}

Fig. 3. Flow of Distributed Algorithm

1) Initialization [P1]: The source node initiates the algo-
rithm by transmitting the “initialize” packet containing the
following predetermined parameters: the target multicastrate
R, the sizeN of the population, the sizeq of the finite field
to be used, crossover probability, and mutation rate. Each
participating node that has received the packet forwards the
packet to its downstream nodes.

Upon receiving the “initialize” packet, each node withdin

incoming links anddout outgoing links generates a set of
dout random binary vectors, each of which, referred to as a
coding vector, has lengthdin. Note that thei-th bit of the
j-th coding vector indicates whether the input from thei-th
incoming link would contribute, as multiplied by a random
coefficient to be determined later, to the linearly coded output
on the j-th outgoing link. A set ofdout coding vectors is
required to evaluate each chromosome, hence each node needs
to manageNdout coding vectors for evaluation. However, as
will be discussed later, each node must store the intermediate
populationQ while performing genetic operations, thus the
actual size of memory required at each node is2Ndindout

bits.
2) Forward Evaluation Phase [P2, P7]: Let us first

introduce the data structure used for the feasibility test of
chromosomes. For each chromosome, each node transmits a
pilot vectorthat consists ofR components, each of which is an
element of the finite fieldFq. Thei-th component (1 ≤ i ≤ R)
represents the coefficient used to encode thei-th source data.
We assume that a set ofN pilot vectors is transmitted together
by a single packet.

The source initiates the forward evaluation phase by sending
out a packet containingN random pilot vectors on each of its
outgoing links. Each downstream node transmits on each of
its outgoing links a random linear combination of the received
pilot vectors, computed based on the node’s coding vectors as
follows. Let us consider a particular outgoing link and denote
the associateddin coding vectors byv1, v2, ..., vdin

. Let ui

(1 ≤ i ≤ N) be the output pilot vector to be transmitted onto
the outgoing link for evaluation thei-th chromosome. We then
define the setJ of indices as

J = {1 ≤ j ≤ din| the i-th component ofvj is 1}. (1)

For each of thedin incoming links, we denote thei-th input
pilot vector, out of theN pilot vectors received, byw1, w2,
..., wdin

. Then,ui is calculated as

ui =
∑

j∈J

wj · rand(Fq), (2)

where rand(Fq) denotes a nonzero random element fromFq.
If set J is empty,ui is assumed to be zero.

3) Backward Evaluation Phase [P3, P9]: To calculate the
fitness value of each chromosome, the source node requires
three kinds of information: 1) whether all the sinks can decode
the data of rateR, 2) how many links are used for coding,
and 3) the total cost of the links used for (either coded or
uncoded) transmission.

Each sink can determine, by computing the rank of the
collection of received pilot vectors, whether data of rateR
is decodable for each of theN chromosomes. By inspecting
its coding vectors used in the forward evaluation phase, each
node can compute the number of its outgoing links where
coding is needed as well as the link cost incurred at the node.

For the feedback of this information, each node transmits
upstream afitness vectorconsisting ofN components, whose
i-th component conveys the information needed to calculate
the fitness value of thei-th chromosome. Each component
of a fitness vector contains two information: the coding cost
and link cost up to the location where the fitness vector is
generated. An infeasible chromosome is signified by theinfi-
nite coding and link costs. The remaining backward evaluation
phase proceeds the same way as in [2], hence we omit the
details here.

4) Fitness Calculation [P4, P10]: The source calculates
the fitness values ofN chromosomes simply by summing
the received fitness vectors component-wise. Note that if an
infinite cost were generated byany of the sinks, it should
dominate the summations all the way up to the source, and
thus the source can detect the infeasible chromosomes.

5) Termination Criterion [P5]: The source node can de-
termine when to terminate the optimization by counting the
number of generations iterated thus far.

6) Coordination Vector Calculation [P6]: In our algo-
rithm, we let each interior node manage the portion of the
population that specifies the local operations at the node.
However, overall genetic operations need to be performed ina
coordinated fashion throughout the network with the following
information shared: 1) which chromosomes are selected for
the next generation, 2) how the selected chromosomes are
paired for crossover. This information is carried by acoordi-
nation vectorcalculated at the source. The coordination vector
essentially conveys the outcome of the selection mechanism
described in the previous section.

We now show how the selection mechanism is implemented
in our distributed setup and a coordination vector is con-
structed. Let us assume that, at generationt, the fitness values
(not the actual chromosomes) ofPt and Qt are available
at the source, which will be shown to be valid later. From
those fitness values indexed properly, the source node can
calculate the non-domination rank and crowding distance of
Pt and Qt, and then determine the indices representing the
chromosomes that comprisePt+1. Note that, from just those
indices, each interior node can retrieve its relevant portion
of Pt+1, if the actual chromosomes ofPt and Qt (without
the fitness values) were stored at those interior nodes. Hence,
the coordination vector consists of the indices of the selected
chromosomes, permuted randomly, which thus provides the
paring information for crossover as well. The coordination
vector is then transmittedpiggybackonto the pilot vectors
during the next forward evaluation phase, without requiring
an additional procedure dedicated to it.

7) Genetic Operations [P7]: Based on the received coordi-
nation vector, each node can locally perform genetic operations

and renew its portion of the population. For selection, each
node now retains, out ofPt and Qt saved at the node, the
coding vectors that correspond to the indices contained in the
received coordination vector to constructPt+1.

After crossover and mutation, which are performed in
exactly the same manner as in [2] (hence details are omitted),
the relevant portion ofQt+1 is constructed at each node. The
fitness values ofQt+1 start to be calculated as the algorithm
proceeds to the forward evaluation phase of generationt + 1.
Note that sincePt+1 was a subset ofPt ∪Qt, the source node
already had the fitness values ofPt+1, and at the time when
the coordination vector for generationt+1 is constructed at the
source node, the fitness values ofQt+1 will become available
at the source, which validates the assumption we made in the
coordination vector calculation procedure.

V. A LGORITHM’ S OVERHEAD

A. Complexity

For evaluation of a single chromosome, each nodev com-
putes random linear combinations of inputs in the forward
evaluation phase, which requiresO(dv

indv
outR). Feasibility

test at each sinkt is done by calculating the rank of a
dt

in × R matrix, where we assumedt
in ≥ R, hence it

requiresO(dt
in

2
R). In the backward evaluation phase, update

of a fitness vector takesO(dv
in + dv

out). For genetic oper-
ations, each nodev requiresO(Ndv

indv
out). Therefore, the

total computational complexity required for each generation is
O(

∑
v∈V dv

indv
outNR +

∑
t∈T dt

in

2
NR). Note, however, that

the complexity at each node depends on just local parameters
rather than the overall size of the network.

B. Population Sizing

The size of the population often serves as an important
factor for the ability of a GA to find a good solution [9].
Though it is not an easy task to predict the accurate population
size required for a specific problem, it is always desirable to
allow some level of flexibility in adopting a large-sized pop-
ulation when needed, without incurring too much complexity
overhead.

In our distributed framework, the population size can be
adjusted mainly by modifying the size of the packets to be
used for fitness evaluation. The key observation is that the
length of a pilot vector depends onR, the desired multicast
rate represented as a multiplicative factorrelative to the unit
capacity, but not the actual data rate which amounts toR
times the data rate corresponding to a unit capacity. Hence,a
large number (typically several hundreds) of pilot vectorscan
possibly be handled with a single packet transmission.

Example 3:To determine the size of a single pilot vector
for our running example on networkG, we first choose the
size of the finite field upon which we construct the random
linear code. The limiting factor on the field size is the error
probability of the randomized feasibility test, whose upper
bound is given by1 − (1 − d/q)ν , whereν is the maximum
number of links in any set of links constituting a flow solution
from the source to any receiver [10]. InG, d = 8 (number

of sinks) and ν = 12. If we desire to keep the error
probability below 0.01, the smallest powerq of 2 that meets
the error bound is 14 and thus the length ofN pilot vectors is
NR log2 q = 28N bits. Also, the length of the fitness vector
is N · ⌈log2(|E| + 2)⌉ = 7N (|E| = 70) bits, and the length
of the coordination vector isN(⌈log2 2N⌉) bits.

For example, if the unit packet size is 1500 bytes (the
maximum Ethernet packet size), the largestN such thatN
pilot vectors and a coordination vector fit into a single packet
turns out to be 321. �

As the population sizeN varies, the size of memory used
at each node to store the chromosomes must also be adjusted
accordingly. Also, the computational complexity requiredat
each node during the forward and backward evaluation pro-
cedures, as well as the genetic operations, scale linearly with
N . However, since each node stores only the relevant portion
of the chromosomes and also the computation at each node
involves only that portion of the chromosomes, the impact of
increasedN may be considered insignificant relative to its
impact on the packet transmission.

VI. EXPERIMENTAL RESULTS

0 1 2 3 4 5 6 7 8
62

63

64

65

66

67

68

69

70

Coding Cost

Li
nk

 C
os

t

(a) NetworkG

0 2 4 6 8 10 12 14 16
134

136

138

140

142

144

146

148

150

Coding Cost

Li
nk

 C
os

t

(b) NetworkH

Fig. 4. Calculated Non-Domination Fronts

We demonstrate the performance of our algorithm by carry-
ing out simulations on various network topologies, assuming
each link has the unit coding and link costs. The parameters
used for the experiments are as follows: population size

N = 200 and the iteration terminates after 1000 generations.
Crossover and mutation rates are 0.8 and 0.02, respectively

First, we apply our algorithm, combined with the selection
mechanism described in Section III-B, to networkG. Note
that, as depicted in Fig. 4(a), the algorithm now succeeds
to find the whole Pareto optimal front. We also try a bigger
networkH of the same type, which is a depth-4 binary tree
containing 15 copies ofA having 16 receivers. The resulting
front is depicted by the stars in Fig. 4(b) while the triangles
represent the chromosomes belonging toC1 \ F1 and the
circles are the desired Pareto optimal front. Note that the
chromosomes marked by the triangles, though dominated by
the chromosomes below, are actually kept in the first front.
Those chromosomes may eventually converge to the desired
front if they were allowed more time.

We also evaluate the performance of our algorithm based
on the two topologies generated by the algorithm in [11] with
the following parameters: (50 nodes, 87 links, 10 sinks, rate
5) and (75 nodes, 156 links, 15 sinks, rate 7), which are also
experimented in [2], [8]. For the first network with 50 nodes,
the obtained front is shown in Fig. 5, from which we find
that it requires network coding at some links, but coding does
not save the link cost. The network with 75 nodes turns out
to have a non-domination front consisting of a single point,
which also implies that there is no tradeoff opportunity.

VII. C ONCLUSION AND FUTURE WORK

We have proposed an algorithm, based on a multi-objective
GA, that serves as a method to identify the tradeoff between
the coding and link costs in multicast network coding. Our
algorithm operates in a distributed manner integrated into
a decentralized network coding protocol. With the proposed
problem-specific selection mechanism, we have demonstrated
that our algorithm effectively finds the utility of network
coding in comparison with the amount of saved link cost,
which has been unable to measure so far with any other
method.

In the future, we may further apply the time-distributed
population management scheme proposed in [13] where the
population consists of a number of subpopulations updated by
successive packet transmissions in different time slots. Since
our multi-objective GA share the overall structure with an or-
dinary GA, this scheme may lead to a substantial improvement
on the algorithm’s convergence time also in our problem. It
may be also interesting to compare the performance of our
algorithm, e.g., solution quality, efficiency, etc., with that of
the two-stage method discussed in Section I and [2].

REFERENCES

[1] D. Lun, N. Ratnakar, R. Koetter, M. Médard, E. Ahmed, andH. Lee,
“Achieving minimum-cost multicast: a decentralized approach based on
network coding,” inProc. IEEE Infocom, 2005, pp. 1607–1617.

[2] M. Kim, M. Médard, V. Aggarwal, U.-M. O’Reilly, W. Kim, C. W. Ahn,
and M. Effros, “Evolutionary approaches to minimizing network coding
resources,” inProc. IEEE Infocom, 2007.

[3] M. Kim, C. W. Ahn, M. Médard, and M. Effros, “On minimizing
network coding resources: An evolutionary approach,” inProc. NetCod,
2006.

0 1 2 3 4 5
83

84

85

86

87

88

Coding Cost

Li
nk

 C
os

t

Fig. 5. Non-Domination Front Showing No Tradeoff

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,”IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, 2002.

[5] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inform. Theory, vol. 49, no. 2, pp. 371–381, 2003.

[6] S. Ramanathan, “Multicast tree generation in networks with asymmetric
links,” IEEE/ACM Trans. Networking, vol. 4, no. 4, pp. 558–568, 1996.

[7] M. Mitchell, An Introduction to Genetic Algorithms. MIT Press, 1996.
[8] M. Kim, V. Aggarwal, U.-M. O’Reilly, and M. Médard, “Genetic repre-

sentations for evolutionary minimization of network coding resources,”
in Proc. EvoWorkshops, 2007.

[9] G. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L. Miller,“The gam-
bler’s ruin problem, genetic algorithms, and the sizing of populations,”
Evolutionary Computation, vol. 7, no. 3, pp. 231–253, 1999.

[10] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros, “The benefits
of coding over routing in a randomized setting,” inProc. IEEE ISIT,
2003.

[11] G. Melançon and F. Philippe, “Generating connected acyclic digraphs
uniformly at random,”Inf. Process. Lett., vol. 90, no. 4, pp. 209–213,
2004.

[12] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISPtopologies
with rocketfuel,” in Proc. ACM/SIGCOMM, 2002, pp. 133–145.

[13] M. Kim, V. Aggarwal, U.-M. O’Reilly, and M. Médard, “A doubly dis-
tributed genetic algorithm for network coding,” inProc. ACM GECCO
(to appear), 2007.

