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Abstract—We investigate the issue of the tradeoff between between the coding and link costs. Consider the following
network coding and link usage in multicast network coding. example where each link has a unit capacity and a unit cost,
Network coding makes minimum-cost multicast, an NP-complie and the desired multicast rate frosrto ¢, andt, is 2.

roblem with traditional routing alone, polynomially solv able, but . . .

ir;we consider the network cgc])ding cappa)t/)ility asya resource,he Ex_ample.l. In “et"YOka (F'Q- 1("_’1))’ th,e target multicast
link cost is actually minimized at the expense of the codingast. rate is achievable without coding, incurring link cost of. 10
We show that identifying such a tradeoff is NP-hard. For this To reduce link cost to 9, we have to remove one of the two
problem, we propose an evolutionary approach that generaties |inks between nodes and w, making coding necessary at
our previously proposed algorithms for coding resource optniza- nodez. In network B (Fig. 1(b)), by removing linkz, z), we

tion. Based on an existing multi-objective genetic algoriim, we . - - . .
develop a novel selection mechanism that utilizes some sifac  C2" establish multicast connections of rate 2 without ogdin

characteristics of the problem. We then show that the algothm ~ Using only 9 links, whereas removing one of the two links
can be implemented in a distributed manner and evaluate the between nodes andy first necessitates coding at node in the

algorithm’s performance by performing experiments on seveal  remaining graph. In network' (Fig. 1(c)), though one of the
topologies. two links between nodeg and = is redundant, coding at node

z is necessary regardless whether one of the redundant links
is removed or not. O

Network coding has been shown to allow for minimum-
cost multicast, whereas with traditional routing alonee th
problem to achieve minimum-cost multicast is NP-complete
and only suboptimal approximation methods are available [1
Therefore, network coding transforms a presumably indtalet
task to a polynomially solvable problem.

Network coding, however, may incur some additional cost
such as computational overhead or transmission delay, and
thus the network coding capability can be considered a re-
source subject to optimization. In essence, what one may (@) Network A
achieve with the method in [1] is to get the cost of link
usage minimized at the expense of the cost of network coding. Fig. 1. Sample Networks for Example 1
It is pointed out in [2] that network coding advantage can
often be achieved with performing coding operations onlgt at As illustrated in Example 1, reducing link usage first by
subset of nodes. In particular, though it is necessary twall subgraph selection may give rise to necessity of codingen th
network coding at all possible nodes initially to calculate remaining subgraph, but we may also choose not to do coding
minimum-cost subgraph, there may be very few nodes in tiile allowing some extra link cost. For some networks, such
resulting subgraph where network coding is actually rempliir as networkA, minimizing link usage first always increases the
Thus, as illustrated in [2], a two-stage method, where we finequirement of coding, whereas for some others, like né¢wor
assume network coding everywhere and then try to minimiZ& it depends on how a minimum-cost subgraph is chosen.
the number of coding nodes/links on the resulting minimurdlso, there are networks, e.g., netwdrk where reducing link
cost subgraph, may be an effective tool to achieve minimumest first does not increase coding cost. Hence, whethes ther
cost multicast. exists such a tradeoff can be considered a topological psope

However, if network coding becomes necessary at sornga network.
nodes after we constrain the information flow onto a selectedlf it is possible to identify the tradeoff in a given network,
subgraph, one may be interested in finding whether providinge may use the information to make decisions on the de-
some extra capacities would eliminate the requirement tf nployment of the network coding capability such that coding
work coding, i.e., there may be a possible tradeoff oppdtunhappens only at the places where significant amount of link
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cost is saved, or one may not want to employ network codingLet f.(z) and f;(x«) denote the total coding and link costs,

at all if the amount of saved link cost turns out to be neglgibrespectively, for any transmission scheméae then wish to

for the topology. On the other hand, if the given network ifind the Pareto optimal front? (which can be shown to be

known to have no such tradeoff, we can employ the aforemamique) defined as follows:

tioned two-stage method without sacrificing optimality. Definition 1: The Pareto optimal front is the set of the cost
However, as will be discussed later, determining whethpgirs(f*, f;*) of a feasible transmission scheme such that there

there exists such a tradeoff turns out to be NP-hard. In trégists no other schemethat is feasible and satisfi¢g.(z) <

study, we further extend our previously proposed evolaign fF, fi(x) < f;} or {fe(x) < f¥, filz) < f}}.

approaches [2], [3] to investigate the issue of the tradeoff Theorem 1:Finding the Pareto optimal front between the

between coding and link costs. One way to address theding and link costs for multicast is NP-hard.

problem indirectly is suggested in [3], where the coding arféroof: The problem to determine whether employing network

links costs are combined to make a single objective. Suchding at more nodes/links decreases link cost is NP-hard,

a method, however, can only provide a single solution thhécause to which the NP-complete problem of computing the

minimizes the combined cost. Alternatively, we may apply thminimum cost for multicast without network coding [6] is

method in [2] repeatedly to determine a minimal set of codimgduced. To decide the converse, i.e., whether removitkg lin

nodes/links while varying the link cost by choosing diffiere increases the minimum number of coding nodes/links, is also

combinations of the links to be used. This type of methotiP-hard [3]. O
however, can be very inefficient since the possible range of ) ] )
link cost can be very wide. B. Evolutionary Algorithms for Network Coding

Evolutionary algorithms, in fact, can serve more effedjive Genetic Algorithms (GAs) operate on a set of candidate
as a method to identify such tradeoffs [4]. In this paper, wgolutions, called gpopulation which improves sequentially
propose a distributed evolutionary algorithm that may akvevia mechanisms inspired by biological evolution [7]. Each
the utility of network coding in comparison with the amoun¢andidate solution is typically represented by a bit string
of saved link cost, which has been unable to measure so ¢atled achromosomeEach chromosome is assigneditaess
with any other method. value that measures how well the chromosome solves the

The rest of the paper is organized as follows. Sectigifoblem at hand, compared with other chromosomes in the
Il presents the problem formulation and summarizes relatg@pulation. From the current population, a new population i
work. Section Il describes the problem-specific selectiggenerated typically using three genetic operatsedection
mechanism. Section IV presents the distributed implemengfossoverandmutation Chromosomes for the new population
tion of our algorithm, while Section V analyzes the algarite  are selected randomly (with replacement) in such a way that
overhead. Section VI shows experimental results and Sectfiiter chromosomes are selected with higher probability. Fo

VII concludes with topics for future research. crossover, survived chromosomes are randomly paired, and
then two chromosomes in each pair exchange a subset of
Il. PROBLEM FORMULATION AND RELATED WORK their bit strings to create two offspring. Chromosomes heat

subject to mutation, which refers to random flips of the bits
applied individually to each of the new chromosomes. The
We assume that the network is given by a directed mulébove process is iterated with the newly generated populati
graph G = (V, E), where each link has a unit capacitysuccessively replacing the current one. For further detdia
Connections with larger capacities are represented byipteult standard simple GA, the reader is referred to [3], [7].
links. Only integer flows are allowed, hence there is eith@r n For the problem of network coding resource optimization,
flow or a unit-rate flow on each link. We consider the singlg3] proposes a GA-based evolutionary approach, demonstrat
multicast scenario in which a single sourges V' wishes to ing its benefits over other existing approaches in terms ®f th
transmit data at raté to a setT” C V of sink nodes, where solution quality and the applicability to a variety of gealered
|T| = d. Rate R is said to be achievable if there exists &cenarios. Along the same direction, [2] develops a novel
transmission scheme, involving network coding or not, thaépresentation method and the associated operators, which
enables alld sinks to receive all the information sent. Weds shown to lead to a substantial gain in the algorithm’s
consider only linear coding, where a node’s output on gerformance, as analyzed more in depth in [8]. Furthermore,
outgoing link is a linear combination of the inputs from it§2] presents a distributed version of the algorithm, whée t
incoming links. Linear coding is sufficient for multicast][5 resource optimization can be done on the fly integrated into a
We assume that the given target rétes achievable when decentralized network coding framework.
coding is allowed at all nodes. A transmission scheme igdall _ ) o o
feasible if it achieves the target rafe Each linke € E is C. Evolutionary Algorithms for Multi-Objective Optimizan
assigned link cost., which is incurred when the link is used For optimization with multiple objectives, i.e., the codin
for transmission, and coding cogt, which is incurred if the and link costs in our case, a number of algorithms have been
transmission on the link involves network coding rathemthgoroposed to obtain the Pareto optimal front in a single run
simple forwarding. [4]. Commonly in those algorithms, if solution is inferior

A. Problem Formulation



to another solutiony with respect to one or more of thewhich non-domination rank is assigned. It can be shown
optimization criteria while the two are the same in all théhat eachZ;(i > 1) is nonempty unless we exhaust all the
remaining criteria,z is said to bedominatedby y. More chromosomes, and thus there are only a finite number of non-
formally, in the case of the minimization problem with thelomination fronts.
two objectivesf. and f;, the notion of domination is defined The chromosomes belonging to the same non-domination
as follows: front are sorted with respect to each of the objectives, fiee a
Definition 2: For chromosomes andy, = is dominated by another, and the crowding distance of each chromosome is the
y (or y dominatese) if either { f.(x) > f.(y), fi(z) > fi(y)} sum of the differences between its next better and next worse
or {fe(x) > fe(y), fi(x) > fi(y)} holds. chromosomes along each axis of the objectives. Intuitjively
Multi-objective GAs share largely the same structure witbrowding distance is a measure of the densities on each non-
ordinary simple GAs, with some notable differences in thdomination front such that a chromosome in the sparse region
selection mechanism. Multi-objective selection mechasis has a high distance.
employ various algorithmic techniques to locate the rasylt Let P, denote the population at generation Then, an
population as close to the actual Pareto optimal front #dermediate populatio@, of the same sizé&V is created using
possible [4]. First, while selection in simple GAs puts mora binary tournament selection, where we repeat the follgwin
weights on the solutions with better fitness values with éesp procedure untilQ); is filled: a random pair of chromosomes
to a single objective, multi-objective GAs employ a mechs chosen and the one with a lower non-domination rank is
anism that assigns higher probabilities for selection &s leselected, or if the ranks are the same, the one with a higher
dominated solutions. In addition, multi-objective GAs dayp crowding distance is selected. After calculating the fignes
the mechanism that preserves diversity among the solutiossdues of@,, the N best chromosomes out d?, U @, are
in an effort to obtain the full Pareto optimal front. Out ofselected for the actual populatidt; for the next generation
many existing multi-objective GAs, we primarily focus onlbe ¢ + 1. At the end of the algorithmF; of the last population
et al's NSGA-II [4], based on which we implement a noveb the resulting Pareto optimal front.
selection mechanism specific to our problem, as will disetss It is shown in [4] that non-domination rank and crowding

in the next section. distance can be efficiently calculated@{)/ N?) time, where
M is the number of objectives anll is the population size.
. SELECTION MECHANISM This NSGA-Il is then evaluated to show that it surpassesrothe

The purpose of evolutionary algorithms in general is to servnulti-objective optimization algorithms in terms of miniza
as a stochastic search method that does not rely on any spedify various classes of continuous-valued functions.
structures of the problem, i.e., a “black box” optimization, Problem-Specific Selection Mechanism

method, so that they can be applied to as a wide variety _ _ .
of problems with little known structures as possible. Given 1) Different Convergence Timeéur problem displays some

a specific problem at hand, however, the desired properties%ique chara_cteristics tha}t cannot be well handled with thg
an optimization method can be very different since it is ofte?POVe selection mechanism alone. One of the hurdles in
beneficial to utilize as many structures of the given probdam @PPlYing the above selection mechanism to our problem is
possible. The insight gained from our previous applicatén that it is likely to produce only a part of the actual Pareto
evolutionary algorithms in the context of network coding, [2 optimal front. More specifically, the resulting fln_al fromahra .
[3] is that, though the entire structure of the problem i stistrong tendency to be skewed toward the low link cost region
not known much, utilizing some problem-specific knowledg@,‘c the desired front.

such as the modularity among variables imposed by the
given network topology, can lead to a substantial gain in the
algorithm’s performance. In this section, we discuss thiquan
characteristics of our problem that can be incorporatemtime
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framework of multi-objective GAs to obtain a more close-to- v °
optimal Pareto front. Let us begin by introducing the orain éee °
selection mechanism proposed by Deb et al. [4]. . .
A. Original Approach o ®
In the original NSGA-II [4], selection is done based on two * °
criteria: non-domination rank and crowding distance. Afte e,
calculating the fitness values, the algorithm finds the first e
non-domination front#;, the set of the chromosomes that Fig. 2. Skewed Front Obtained for Netwoek
are not dominated by any other chromosome, assigning-
domination rankl to those chromosomes. For > 2, i- Example 2: Consider the network constructed by cascading

th non-domination frontF; consists of the chromosomes ina number of copies of network in Example 1(Fig. 1(b))
P\ {F U---UF;_1} that are not dominated by others, tesuch that the source of each subsequent copy izfreplaced



by an earlier copy’s sink. Let network be a depth-3 full tance may be very different, i.e., the Hamming distance
binary tree consisting of 7 copies of, where the source is between the two may be very large. In fact, having those
the tree’s root node and the sinks are 8 leaf nodes, and tteomosomes that are “neutral” with respect to fithess land-
coding and link costs of each link are both 1. For this networkcape but “diverse” in terms of Hamming distance on a non-
the minimum number of coding links is known to be zerajomination front may promote finding even better recombined
but there exists a tradeoff opportunity for each copyAf chromosomes.
Hence, the desired Pareto front appears as the circles in FigHence, for those chromosomes with zero crowding distance,
2. If we apply the evolutionary algorithm presented in [2{lwi we use Hamming distance as a secondary measure of distance.
the selection mechanism replaced by that in NSGA-II [4], wielore specifically, suppose that chromosomeand y, hav-
almost always obtain a skewed front as depicted in Fig. 2 lnyg the same rank and zero crowding distance, compete for
the stars in the lower right part of the desired full frontC]  selection. We then compute(x), defined as the Hamming
This phenomenon can be understood from the differedistance fromz to the closest one among the remaining
difficulties of the optimization along the two objectivex.j chromosomes having the identical objective values, /and,
while minimizing coding cost is NP-hard, minimizing linkdefined similarly, and finally select the one with larder).
cost regardless of coding cost is polynomially solvable. In
the context of GA, this difference translates into diffdren
convergence times to the optimal regions of the two objestiv It is shown in [2] that coding resource optimization can
Before the chromosomes with a low coding cost emerge, thdse done in a distributed fashion integrated into a decentral
having a low link cost are more likely to appear in earlieized network coding framework, which is claimed as the
generations. For the same link cost, the chromosomes wikifly benefit of the approach. This characteristic carries ove
a lower link cost dominate the ones with a higher link cogb the proposed evolutionary algorithm for multi-objeetiv
and thus are favored in the selection process. This sehectmptimization. As can be noticed from the previous section,
pressure toward the low link cost region often dominates titlee changes introduced as we generalize an ordinary simple
early stage of evolution, making it hard for the population tGA to a multi-objective GA involve the selection part only.
evolve into the high link cost region which may eventuallfhose changes translate into the modification of the data
lead to low coding costs. collected and distributed by the source node as well as some
Therefore, we need to ensure that the chromosomes havéaalitional calculation at the source node, without disngpt
high link costs initially, though dominated by the ones witlthe algorithm’s main structure.
low link costs through the middle of the iteration, are not We assume that each link can transmit a fixed-size unit
prematurely lost, providing the algorithm with the time tgacket per unit time in the given direction. Each link is also
find possibly the chromosomes with low coding cost anassumed to be able to send some amount of feedback data,
high link cost that may eventually become not dominatetpically much smaller than the forward packet size, in the
To this end, we define theoding frontC; as the set of the reversedirection. Also, we assume that each interior node
chromosomes having the least coding cost for each link cagierates in a burst-oriented mode; i.e., for the forward¢kba
level. More specifically, for each chromosomec C; there ward) transmission, each node starts updating its outplyt on
exists no feasible chromosomehat satisfie{ f.(y) < f.(z), after an updated input has been received from all incoming
fily) = filz)}; F1 is in fact a subset of;. We then assign (outgoing) links.
non-domination rank 1 also to the chromosomes;iiy 7; so The overall flow of our proposed distributed algorithm is
that those chromosomes are not lost prematurely. shown in Fig. 3 with the locations of each procedure specified
2) Degeneracy: Evolutionary algorithms for multi- We now proceed to describe each procedure of the algorithm
objective optimization, as mentioned above, are typically the order of the occurrence.
applied to optimizing various kinds of continuous-valued
function for performance evaluation [4]. In most such cases [P1] initialize; (all nodes)
each chromosome is directly mapped to a different valug [P2] run forward evaluation phase; (all nodes)
of the functions’ variable(s). In our problem, however, leac | [P3] run backward evaluation phase; (all nodes)
chromosome determines the operations performed at th{ [P4] calculate fitness; (source)
interior nodes and the two discrete-valued objectives lage t (PS] “;hﬂe termination criterion not reached (source)
resulting coding and link costs, which in a sense are expess | [P6]  calculate coordination vector; (source)
in a parameterized form of the chromosome. Hence, therq [P7]  run forward evaluation phase; (all nodes)
can be a substantially large number of different chromosome| [P8]  perform sclection, crossover, mutation; (interior nodes)
that correspond to the same coding and link costs, yieldind g?g)] run backward evaluation phase; (all nodes)
many chromosomes with zero crowding distance. }
Within the original selection mechanism, the chromosome
with zero crowding distance are those least favored on the
same non-domination front. However, we observed from our Fig. 3. Flow of Distributed Algorithm
experiments that two chromosomes with zero crowding dis-

IV. DISTRIBUTED IMPLEMENTATION

calculate fitness; (source)




1) Initialization [P1]: The source node initiates the algo- Each sink can determine, by computing the rank of the
rithm by transmitting the “initialize” packet containindné collection of received pilot vectors, whether data of ré&te
following predetermined parameters: the target multicat# is decodable for each of th% chromosomes. By inspecting
R, the sizeN of the population, the size of the finite field its coding vectors used in the forward evaluation phaseh eac
to be used, crossover probability, and mutation rate. Eaoshde can compute the number of its outgoing links where
participating node that has received the packet forwards tboding is needed as well as the link cost incurred at the node.
packet to its downstream nodes. For the feedback of this information, each node transmits

Upon receiving the “initialize” packet, each node with, upstream ditness vectoconsisting of N components, whose
incoming links andd,,; outgoing links generates a set ofi-th component conveys the information needed to calculate
d.+ random binary vectors, each of which, referred to asthe fitness value of thé-th chromosome. Each component
coding vector has lengthd;,,. Note that thei-th bit of the of a fitness vector contains two information: the coding cost
j-th coding vector indicates whether the input from thlh  and link cost up to the location where the fitness vector is
incoming link would contribute, as multiplied by a randongenerated. An infeasible chromosome is signified byitlfie
coefficient to be determined later, to the linearly codegott nite coding and link costs. The remaining backward evaluation
on the j-th outgoing link. A set ofd,,; coding vectors is phase proceeds the same way as in [2], hence we omit the
required to evaluate each chromosome, hence each node néethils here.
to manageNd,,; coding vectors for evaluation. However, as 4) Fitness Calculation [P4, P10} The source calculates
will be discussed later, each node must store the intermeedithe fitness values ofV chromosomes simply by summing
population@ while performing genetic operations, thus th¢he received fitness vectors component-wise. Note that if an
actual size of memory required at each nodeiéd;,d,.; infinite cost were generated lgny of the sinks, it should
bits. dominate the summations all the way up to the source, and

2) Forward Evaluation Phase [P2, P7} Let us first thus the source can detect the infeasible chromosomes.
introduce the data structure used for the feasibility test o 5) Termination Criterion [P5]: The source node can de-
chromosomes. For each chromosome, each node transmiterenine when to terminate the optimization by counting the
pilot vectorthat consists of2 components, each of which is annumber of generations iterated thus far.
element of the finite field,. Thei-th componenti < i < R) 6) Coordination Vector Calculation [P6]: In our algo-
represents the coefficient used to encodeittiesource data. rithm, we let each interior node manage the portion of the
We assume that a set &f pilot vectors is transmitted togetherpopulation that specifies the local operations at the node.
by a single packet. However, overall genetic operations need to be performed in

The source initiates the forward evaluation phase by sgndieoordinated fashion throughout the network with the follegy
out a packet containingy random pilot vectors on each of itsinformation shared: 1) which chromosomes are selected for
outgoing links. Each downstream node transmits on eachtbg next generation, 2) how the selected chromosomes are
its outgoing links a random linear combination of the reediv paired for crossover. This information is carried byg@ordi-
pilot vectors, computed based on the node’s coding vecwrsngtion vectorcalculated at the source. The coordination vector
follows. Let us consider a particular outgoing link and denoessentially conveys the outcome of the selection mechanism
the associated,,, coding vectors by, vy, ..., v4,,. Let u; described in the previous section.

(1 < i < N) be the output pilot vector to be transmitted onto We now show how the selection mechanism is implemented
the outgoing link for evaluation thieth chromosome. We thenin our distributed setup and a coordination vector is con-
define the set/ of indices as structed. Let us assume that, at generatidhe fitness values
(not the actual chromosomes) @, and Q; are available
J ={1<j <dy| thei-th component oby; is 1}. (1) at the source, which will be shown to be valid later. From
those fithess values indexed properly, the source node can
calculate the non-domination rank and crowding distance of
P, and @, and then determine the indices representing the
chromosomes that comprigg_ ;. Note that, from just those
indices, each interior node can retrieve its relevant porti
= ij randF,), 2) of P4, if the actual chromosomes df, and Q, (Witho?Jt
the fithess values) were stored at those interior nodes.éjenc
where randF,) denotes a nonzero random element fflBm  the coordination vector consists of the indices of the setec
If set J is empty,u; is assumed to be zero. chromosomes, permuted randomly, which thus provides the

3) Backward Evaluation Phase [P3, P9} To calculate the paring information for crossover as well. The coordination
fitness value of each chromosome, the source node requirestor is then transmittegiggybackonto the pilot vectors
three kinds of information: 1) whether all the sinks can dkxo during the next forward evaluation phase, without reqgirin
the data of rateR, 2) how many links are used for coding,an additional procedure dedicated to it.
and 3) the total cost of the links used for (either coded or 7) Genetic Operations [P7]: Based on the received coordi-
uncoded) transmission. nation vector, each node can locally perform genetic ofmrsit

For each of thel;,, incoming links, we denote theth input
pilot vector, out of theN pilot vectors received, by, wo,
...y Wq,, . Then,u; is calculated as

JjeJ



and renew its portion of the population. For selection, eadf sinks) andv = 12. If we desire to keep the error
node now retains, out o, and Q; saved at the node, theprobability below 0.01, the smallest powgrof 2 that meets
coding vectors that correspond to the indices containetlen tthe error bound is 14 and thus the lengthNofpilot vectors is
received coordination vector to construgt, ;. NRlog, g = 28N bits. Also, the length of the fitness vector
After crossover and mutation, which are performed iis N - [log,(|E| + 2)] = 7N (JE| = 70) bits, and the length
exactly the same manner as in [2] (hence details are omitteof) the coordination vector i&V([log, 2N]) bits.
the relevant portion of);,; is constructed at each node. The For example, if the unit packet size is 1500 bytes (the
fitness values of);; start to be calculated as the algorithmmaximum Ethernet packet size), the largdétsuch thatV
proceeds to the forward evaluation phase of generdtioni.  pilot vectors and a coordination vector fit into a single peck
Note that sinceP, . ; was a subset oP; U Q;, the source node turns out to be 321. [l
already had the fitness values Bf, 1, and at the time when As the population sizeV varies, the size of memory used
the coordination vector for generation1 is constructed at the at each node to store the chromosomes must also be adjusted
source node, the fithess values(@f,; will become available accordingly. Also, the computational complexity requirad
at the source, which validates the assumption we made in #sch node during the forward and backward evaluation pro-
coordination vector calculation procedure. cedures, as well as the genetic operations, scale lineattty w
N. However, since each node stores only the relevant portion
of the chromosomes and also the computation at each node
A. Complexity involves only that portion of the chromosomes, the impact of
For evaluation of a single chromosome, each nodmm- increasedN may be considered insignificant relative to its
putes random linear combinations of inputs in the forwarghpact on the packet transmission.
evaluation phase, which requireg’(d? d° ,R). Feasibility Vi

V. ALGORITHM'S OVERHEAD

in out

test at each sink is done by calculating the rank of a
dt, x R matrix, where we assumé‘, > R, hence it
requiresO(d;?an). In the backward evaluation phase, update
of a fitness vector take®(d}, + d3,,). For genetic oper- op e

out

ations, each node requiresO(NdY dv,,). Therefore, the o .

wn out

total computational complexity required for each generais
O ey dndy s NR+ 3, cr dt,’NR). Note, however, that

the complexity at each node depends on just local parameters
rather than the overall size of the network.

. EXPERIMENTAL RESULTS
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B. Population Sizing

The size of the population often serves as an important
factor for the ability of a GA to find a good solution [9].
Though it is not an easy task to predict the accurate populati
size required for a specific problem, it is always desirable t (a) NetworkG
allow some level of flexibility in adopting a large-sized pop
ulation when needed, without incurring too much complexity o . oa .
overhead.

In our distributed framework, the population size can be °
adjusted mainly by modifying the size of the packets to be H
used for fitness evaluation. The key observation is that the
length of a pilot vector depends aR, the desired multicast
rate represented as a multiplicative factelative to the unit R
capacity, but not the actual data rate which amountsito
times the data rate corresponding to a unit capacity. Hemce,
large number (typically several hundreds) of pilot vectoas
possibly be handled with a single packet transmission.

Example 3:To determine the size of a single pilot vector
for our running example on network, we first choose the
size of the finite field upon which we construct the random Fig. 4. Calculated Non-Domination Fronts
linear code. The limiting factor on the field size is the error
probability of the randomized feasibility test, whose uppe We demonstrate the performance of our algorithm by carry-
bound is given byl — (1 — d/q)", wherev is the maximum ing out simulations on various network topologies, assgmin
number of links in any set of links constituting a flow solutio each link has the unit coding and link costs. The parameters
from the source to any receiver [10]. Id, d = 8 (number used for the experiments are as follows: population size
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N = 200 and the iteration terminates after 1000 generations.
Crossover and mutation rates are 0.8 and 0.02, respectively

First, we apply our algorithm, combined with the selection
mechanism described in Section IlI-B, to netwaik Note
that, as depicted in Fig. 4(a), the algorithm now succeeds
to find the whole Pareto optimal front. We also try a bigger
network H of the same type, which is a depth-4 binary tree
containing 15 copies off having 16 receivers. The resulting
front is depicted by the stars in Fig. 4(b) while the triasgle
represent the chromosomes belongingCto\ F; and the
circles are the desired Pareto optimal front. Note that the
chromosomes marked by the triangles, though dominated by
the chromosomes below, are actually kept in the first front[.4]
Those chromosomes may eventually converge to the desired
front if they were allowed more time.

We also evaluate the performance of our algorithm based
on the two topologies generated by the algorithm in [11] with
the following parameters: (50 nodes, 87 links, 10 sinks rat
5) and (75 nodes, 156 links, 15 sinks, rate 7), which are als{él
experimented in [2], [8]. For the first network with 50 nodes,
the obtained front is shown in Fig. 5, from which we find
that it requires network coding at some links, but codingsdoe[9
not save the link cost. The network with 75 nodes turns out
to have a non-domination front consisting of a single poini,0]
which also implies that there is no tradeoff opportunity.

VII. CONCLUSION AND FUTURE WORK =

We have proposed an algorithm, based on a multi-objecti 8
GA, that serves as a method to identify the tradeoff between
the coding and link costs in multicast network coding. Out3]
algorithm operates in a distributed manner integrated into
a decentralized network coding protocol. With the proposed
problem-specific selection mechanism, we have demondtrate
that our algorithm effectively finds the utility of network
coding in comparison with the amount of saved link cost,
which has been unable to measure so far with any other
method.

In the future, we may further apply the time-distributed
population management scheme proposed in [13] where the
population consists of a number of subpopulations updaged b
successive packet transmissions in different time slatsceS
our multi-objective GA share the overall structure with an o
dinary GA, this scheme may lead to a substantial improvement
on the algorithm’s convergence time also in our problem. It
may be also interesting to compare the performance of our
algorithm, e.g., solution quality, efficiency, etc., withat of
the two-stage method discussed in Section | and [2].
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