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attack detection scheme to improve its performance.
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Chapter 1

Motivation for a Novel Jamming

Attack Detection Scheme

In this chapter, we outline the basic information on all-optical networks (AONs) that is

relevant to the development of an attack detection scheme. Throughout this work, we

consider only attacks upon the AON infrastructure. We shall explain why the detection of

such attacks in an AON is an important problem. In addition, we explain how the problem of

attack detection in an AON is different from the similar problems in electro-optic networks,

and from the detection of network failures.

We shall introduce two major attack categories, jamming and eavesdropping, together

with existing network supervisory mechanisms which can be used as attack detection schemes.

This work concentrates on the detection of jamming attacks. In the final section, we ar-

gue that existing supervisory mechanisms are not sufficient to handle all types of jamming

attacks.

1.1 Introduction to AONs

1.1.1 Basic Concepts of AONs

In an AON, data transmission within the network is entirely in the optical domain. Aside

from the user-to-network interfaces (equivalently the access points), there are no optical-

to-electronic or electronic-to-optical conversions of transmitted signals at all nodes within

the network. However, there is usually a separate supervisory network, which may not be

12



all-optical, for management and control purposes.

One major advantage of AONs with respect to their electro-optic counterparts is their

much higher bandwidth. In an electro-optic network, the fiber medium is used in place

of copper (or other types of transmission medium) for data transmission between network

nodes. When data signals arrive at a network node, they are converted to electrical signals

which can then be processed for the purposes of routing, signal regeneration, error correc-

tion, and so on. While an electro-optic network such as the Fiber Distributed Data Interface

(FDDI) can transmit up to the order of 100 megabits per second [7], recent demands for

gigabit applications such as video conferencing and remote access to medical images have

indicated the need for an even higher network capacity.

The transmission rate of an electro-optic network is limited by the so-called “electronic

bottleneck”, which refers to the time consuming processes of optical-to-electronic conversion,

electrical signal processing, and electronic-to-optical conversion of data signals at network

nodes. In this regard, an AON is a natural solution to the need of higher network capac-

ity since transmitted signals remain optical throughout the network. At present, various

testbeds and laboratory experiments have achieved an aggregated throughput of over 1 ter-

abit per second in AONs [10, 8, 22]. Higher network throughputs are expected in the future

since much of the 25-terahertz fiber bandwidth remains unused.

Most existing research AONs can be divided into two groups based on the network

multiple-access scheme. Simultaneous transmissions on the same fiber can be accom-

plished by using either different optical wavelengths in wavelength division multiple-access

(WDMA) or different time slots in time division multiple-access (TDMA) or a combination

of both. Compared to WDMA, TDMA requires synchronization and is therefore more vul-

nerable to dispersion effects. In addition, the use of TDMA in an AON requires further

research and development [6]. This work will therefore concentrate on WDMA networks.

In a WDMA network, the fiber bandwidth is divided into optical “wavebands” each of

which can currently support the transmission rate up to 10 gigabits per second (capacity

of the standard Optical Carrier 192 (OC-192)) [20]. The process of assigning a waveband

which is routed through an AON to establish an end-to-end optical transmission path is

called “wavelength routing”.

Wavelength routing provides a “transparent” transmission path. Transmitted signals

may be ampliflied but are not processed or regenerated at network nodes. To the network

13



nodes, it makes no difference whether transmitted signals are analog or digital, or whether

the modulation scheme is amplitude shift keying (ASK) or phase shift keying (PSK). Con-

sequencely, an AON can simultaneously support different types of data traffic regardless of

their formats or modulation schemes. In addition, transparency provides backward com-

patibility since new types of data traffic can be supported by existing networks.

Its high throughput and its ability to support various types of network traffics suggest

that an AON can serve as a backbone for a broadband network designed to support diversity

of applications by simultaneously carrying data, voice, images and video.

For convenience in future discussion on AONs, we shall refer to a connection between

two adjacent network nodes as a “link”, and a connection between any two network nodes

as a “light path” between them. In general, a light path can consist of a single link or

multilple links.

1.1.2 Basic Components of AONs

Basic physical components of AONs are optical terminals (OTs), transmission lasers, optical

receivers, fiber cables, splitters and combiners, switches, multiplexers and demultiplexers,

and optical amplifiers. These components are used to construct AONs consisting of user

terminals at access points (APs), optical links and network nodes.

OTs are user devices attached to an AON through the AP interface. They are nor-

mally electro-optic devices that transmit data to an AON using transmission lasers and/or

receive data from an AON using optical receivers. Optical receivers are commonly made

of photodetectors which are square-law detectors. Consequently, direct detection is easily

implemented and is used in several AON testbeds instead of coherent detection. We shall

address the distinction between direct detection and coherent detection in the next section.

Fiber cables are used to transmit signals across the links between network nodes. In the

mostly used wavelength vicinity of 1.5 micrometer, signals travelling along the fiber undergo

attenuation of about 0.2 decibel per kilometer [14]. Accordingly, there is a need for optical

amplifiers to compensate for signal attenuation on fiber links. In addition, signals travelling

at different wavelengths on the same fiber can interact with one another. In particular, a

signal travelling at one wavelength may cause amplification or attenuation of a signal at

another wavelength on the same fiber [20].

A combiner combines optical signals from multiple fibers onto a single fiber. A splitter

14



does the opposite by splitting a signal from a single fiber to multiple fibers. A demulti-

plexer assigns each of multiple signals (at different wavelengths) on the same fiber to its

individual output fiber. A multiplexer combines individual signals (at different wavelengths)

from multiple fibers onto a single fiber. A switch is used to route optical signals from one

fiber to another. Examples of switches are add-drop multiplexers (ADMs) and wavelength

selective switches (WSSs) used in WDMA networks. In general, a switch can be mechan-

ical, opto-electronic, or optical. These components are commonly used at network nodes.

One undesirable characteristic is component crosstalk, which allows a portion of a signal

travelling through a switch at a network node to be present on another output fiber link

belonging to a different light path.

Optical amplifiers are used mainly to compensate for signal attenuation along fiber

links. They are also used at network nodes to compensate for losses at switching compo-

nents. In particular, pre-amplifiers are optical amplifiers used to amplify the input to the

network node. Conversely, post-amplifers are optical amplifers used at the output of the

network node. At present, the most commonly used optical amplifiers are erbium doped

fiber amplifiers (EDFAs) which operate well in the 1.5-micrometer fiber bandwidth.

In addition to naturally occurring noise in passive AON components, EDFAs generate

amplified spontaneous emission (ASE) noise which is a dominant noise source in EDFAs.

Another important characteristic is the dependency of the EDFA gain on the component

noise variance. Moreover, signals in different wavebands on the same fiber can cause “gain

competition” at an EDFA by sharing the limited pool of upper-state photons within the

same fiber [3].

1.1.3 Modulation and Detection Schemes in AONs

There exist several modulation schemes for the transmission of digital data. In the case of

data transmission through telephone lines, the limited bandwidth necessitates the use of

higher order symbols, as opposed to binary symbols, to increase the transmission rate. For

example, in quatenary phase shift keying (QPSK), a single transmission can represent one

of four possible signal values.

In AONs, it is a common practice to represent digital data as streams of binary digits

and transmit them using on-off keying (OOK), which is a special case of amplitude shift

keying (ASK). In OOK, the light source is turned off during the 0-bit transmission and
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turned on during the 1-bit transmission. Furthermore, the ON signal of OOK can have

either a non-return to zero (NRZ) pulse shape or a return to zero (RZ) pulse shape.

There are several reasons for the choice of OOK in AONs. First of all, modulating lasers

is difficult. Because of the simple structure of OOK, it is easier to modulate lasers based on

OOK than on other transmission schemes. Moreover, detection of OOK signals can easily

be done using photodetectors which are usually square-law detectors. Finally, owing to the

enormous bandwidth of the fiber medium, we do not have a restriction on bandwidth; and

representing digital data as binary streams is sufficient for practical purposes.

We shall adopt OOK as the transmission scheme throughout this work. Furthermore, we

assume a binary data source with equal probabilities of “0” and “1”, and the transmission

rate of 1 gigabit per second using 1 gigahertz bandwidth.

In AONs, detection of transmitted bits is generally done using square-law magnitude

detection of received signals. The decision rule for the receiver can be based on whether the

output of a square-law detector at the receiver exceeds a certain threshold. This method

is referred to as “direct detection”. The right hand side of figure 1-1 shows the decision

regions for a decision rule based on direct detection.

On level On level

Z1: decision region for ON level
Z0: decision region for OFF level

decision region

�e �e

Z1

Z1

decision region
boundary

	m 	m

Z0

Z0
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Figure 1-1: Receiver decision regions for coherent detection (left diagram) and for direct
detection (right diagram).

Based on the knowledge of both real and imaginary parts of the received signals, the

receiver can use a different decision rule whose corresponding decision regions are shown in

the left hand side of figure 1-1. This detection method is referred to as “coherent detection”.

Coherent detection yields a lower bit error rate (BER) than direct detection for the same
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value of signal-to-noise ratio (SNR). However, the implementation of coherent detection

requires additional hardware because photodetectors are square-law detectors.

Typical values of BERs under normal operation in AONs are lower than 10−12; and are

much lower than those of non-optical networks. It is important to keep this quantity in

mind so that we are aware of the operating regions (in terms of BERs) in the remaining

chapters.

1.2 Major Attack Categories

This work concentrates on intentional attacks upon the infrastructure of an AON. By an

“attack”, we mean an action performed on the infrastructure of an AON with an intention

to disrupt network services and/or obtain unauthorized information.

There exist several methods of attacks upon the infrastructure of an AON. However,

these attacks can be grouped into two categories for the purpose of attack detection. We

consider two categories: eavesdropping and jamming [16].

1.2.1 Eavesdropping

Eavesdropping refers to the attempts of an attacker trying to obtain unauthorized infor-

mation from an AON. For example, an attacker can obtain the desired information by

“tapping”, which refers to the method of bending the fiber to change an incidence angle

and allowing light to escape from a fiber core [5, 26, 27]. Alternatively, an eavesdropper

can obtain the desired information from a “crosstalk channel”, which refers to an adjacent

output link (leaving from the network node shared by a legitimate light path) that contains

portions of legitimate data signals as a result of component crosstalk at the network node.

1.2.2 Jamming

A jamming attack can directly alter data signals if jamming signals have the same fre-

quencies as data signals. We refer to this case as “in-band jamming”. Conversely, an

“out-of-band jamming” attack occurs when a jamming signal is out of the transmission

band but can still degrade the data signals. For example, an out-of-band jamming signal

at an EDFA can cause gain competition and attenuate data signals at other frequencies.
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This work concentrates on the detection of jamming attacks. Although jamming can

occur at fiber links as well as at network nodes, we shall consider only jamming at network

nodes since there exist several ways of constructing optical-fiber transmission systems with

good protection against line tapping [5, 27].

Note that we do not worry about jamming attacks which do not change the BER signif-

icantly. An example of such attacks is in-band jamming with additive low-variance white

Gaussian noise at a single network node.

In-Band Jamming Attacks

We concentrate on the case in which an attacker gains legitimate access to a network node

(or multiple network nodes) and inserts in-band jamming signals onto a legitimate light path

using component crosstalk at a network node. Figure 1-2 illustrates an in-band jamming

attack via crosstalk at a network node. Note that jamming can also occur at several network

nodes simultaneously.

light path accessed

legitimate

jamming signal
in-band

via crosstalk

by a jammer

light path switching plane
node with a

A
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C

signal
data

jammming
signal

Figure 1-2: Illustration of in-band jamming via component crosstalk at a network node.
Node B is the scene of an attack. Node A demonstrates the propagation of the effects of
such an attack.

In electronic or electro-optic networks, component crosstalk is significantly lower than

0.03% of the signal level, while the same quantity in an AON is between 0.03% to 1.0% [9].

Since the level of component crosstalk in an AON is higher than in an electro-optic network,

an attack using the same set of jamming signals can be more detrimental to the BER in

an AON than in its electro-optic counterpart. However, jamming via component crosstalk

at network nodes requires high jamming signal power (compared to the power level under
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normal operation) to affect data signals in a legitimate light path significantly.

Out-of-Band Jamming Attacks Causing Gain Competition at EDFAs

An out-of-band jamming attack can cause gain competition at EDFAs and attenuate data

signals. Figure 1-3 illustrates this type of out-of-band jamming attacks. Amplifier gain

fluctuation during an attack depends on the type of EDFAs used. Throughout this project,

we assume the use of gain-clamped EDFAs in which internal out-of-band oscillation is used

to clamp the gain [17].
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Figure 1-3: Illustration of out-of-band jamming causing gain competition at an EDFA at a
network node. Node B is the scene of an attack. Node A demonstrates the propagation of
the effects of such an attack.

Figure 1-4 shows gain fluctuation for an EDFA under an out-of-band jamming attack.

Figure 1-5 shows similar information for a gain-clamped EDFA.

As in the case of in-band jamming, an attacker can cause gain competition at multiple

network nodes simultaneously. We shall discuss the effects of jamming at multiple network

nodes in further detail later on.

1.3 Motivation for an Attack Detection Scheme

Before we consider the method of attack detection, it is important to understand why the

detection of attacks in an AON is an important problem.

One important characteristic of an AON is its “transparency”, which refers to the ab-

sence of detection and processing (besides amplification) of transmitted signal at network
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Figure 1-4: EDFA gains of signals at 4 legitimate wavelengths, each with input power 10−4

W. There are 16 legitimate wavelengths evenly spaced between 1540 nm and 1555 nm. An
attack is a uniform pulse which occurs at 1530 nm (out-of-band) and lasts for 2.5 ms.
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Figure 1-5: Gain-clamped EDFA gain of signals at 4 legitimate wavelengths, each with
input power 10−4 W. A uniform pulse attack occurs at 1,530 nm (out-of-band) with power
10−4 W and lasts for 2.5 ms.
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nodes. Transparency allows an AON to support different types of data traffics simultane-

ously regardless of their formats or modulation schemes. In general, the network manager

does not know whether a particular data bit stream is coded for error control, or what type

of coding scheme is used. Apart from an error control mechanism between the transmitter

and the receiver, there is no error detection or error control mechanism for the transmission

across individual fiber links. While an error detection mechanism between the transmitter

and the receiver may tell us about the presence of an attack, it cannot provide information

regarding the location of an attack.

An important consequence of transparency in an AON is “attack propagation”, which

refers to the propagation of the effects due to an attack at a network node to downstream

nodes. In an AON, attenuated or degraded data signals propagate through downstream

nodes without being processed. Therefore, the effects due to an attack at a single network

node will not be removed by any downstream node.

As a result, simultaneous jamming at multiple network nodes can provide accumulated

effects along a light path. For in-band jamming, coherent components of jamming signals at

multiple network nodes add up constructively along the light path. In general, intentional

coherent in-band jamming at multiple network nodes is hard to perform since an attacker

needs to have complete timing information.

For out-of-band jamming that causes gain competition at EDFAs, the effects due to

simultaneous jamming at multiple network nodes always add up constructively. In other

words, the SNR degradation increases as we move towards downstream nodes.

Attack propagation allows an attacker to insert relatively small in-band or out-of-band

jamming signals at multiple network nodes and degrade the overall BER along the light

path significantly.

Network transparency and high component crosstalk in AONs raise several security

issues which do not exist in electro-optic networks. To provide a secure network connection

in an AON, there is a need for the detection of attacks. The detection of attacks which

disrupt AON services will serve as an error detection mechanism in the data link layer.

On the other hand, the detection of eavesdropping will protect sensitive information. An

attack detection system will also provide information regarding the location of an attack.

The information is useful for further actions such as rerouting.

Owing to unique characteristics of AONs, the detection of attacks in an AON requires
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special consideration and a new solution.

1.4 Requirements of an Attack Detection Scheme

In this section, we describe desirable characteristics of an attack detection scheme. In gen-

eral, an attack detection scheme in an AON should satisfy all of the following requirements.

• Is applicable to all types of data traffic.

• Identifies attacked network nodes.

• Detects an attack in a short period of time.

• Does not require complicated network hardware upgrades.

We shall address each requirement separately.

1.4.1 Applicability to All Types of Data Traffic

Because of transparency in an AON, an attack detection scheme cannot depend on specific

characteristics of the data traffic, such as a coding scheme and a transmission rate, since

there is no detection of transmitted signals within a network (refer the discussion in section

1.3).

1.4.2 Identification of Attacked Network Nodes

In order to perform appropriate actions after detecting an attack, we may need to know

the location of an attack. For example, if we know the locations of network nodes which

are under attack, we can reroute the light path to avoid attacked nodes. [18] presents an

algorithm for attack localization in an AON provided that we have a detection scheme for

detecting whether a particular node is under attack.

1.4.3 Time Requirement of an Attack Detection Scheme

In a high data rate AON, we need to detect an attack quickly for several reasons. The

first reason is that the effects of a very short attack (e.g. an attack on a single data bit)

become less and less apparent over time as the observation period increases. If the required

observation period in our attack detection scheme is too long, a very short attack will not
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be detected. We shall demonstrate that it is harder to detect an attack in which relatively

few number of bits are attacked than to detect an attack in which a large number of bits

are attacked.

The second reason is that a large amount of data can be affected by an attack which

lasts for a relatively short time. Another reason is the large network “latency”, which refers

to the number of bits in flight or equivalently the number of bits under transmission within

the network at a given time. We provide detailed explanation in what follows.

Consider the consequences of a high data rate for the detection of attacks in an AON.

In the case of eavesdropping, we want to find out quickly whether or not an eavesdropper

is present since a longer detection time means a larger amount of data being compromised.

For a jamming attack corrupting the BER, we can perform retransmission of data after

the detection of an attack. Doing so would require memory buffers at the transmitter and

possibly at the receiver. After detecting an attack, we may want to retransmit all data bits

under transmission during the observation period for the detection of that particular attack

(since we do not know which portion of bits are corrupted). Owing to the large network

latency, the number of bits we want to store in memory can be very large. For example, if

we take one second to detect a jamming attack in a system with a transmission rate of 1

gigabit per second, we may need to retransmit 1 gigabit of data. Although the time used

in retransmitting bits may not be a problem, the amount of memory buffers used to store

data bits can be very large; and the associated cost can be very high.

For real time applications in which there is no retransmission of data, we may still want

to detect an attack quickly so that the network supervisor can reroute the data traffic onto

an alternate light path before sacrificing a large amount of data (provided that such a fast

rerouting scheme exists).

1.4.4 Additional Network Upgrades

It is desirable to build an attack detection system in an AON with little network modifica-

tion. As we shall describe in chapter 2, our proposed attack detection system is constructed

from attack detection devices proposed in [16]. The proposed device is a “wrapper”, which

refers to a wrap-around device to be installed at a network node.

The use of wrap-around devices at network nodes allows a construction of an attack

detection system with relatively little network modifications. In addition, we can choose to
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install these wrappers only in certain parts of an AON which are susceptible to attacks.

Finally, it is important to distinguish between the problem of attack detection and the

detection of network failures. The quality of service can be significantly degraded without

the presence of network failure. For example, an attacker can perform in-band jamming and

increase the BER by several orders of magnitude. A failure detection mechanism will not be

able to recognize such an intentional attack since an attack does not cause any malfunction

in the network. We shall see in the next section that existing supervisory mechanisms are

more apt to detect network failures than to detect intentional attacks.

1.5 Existing Supervisory Mechanisms

Existing supervisory mechanisms which could be used as attack detection schemes are power

detection, optical spectral analysis, pilot tone, optical time domain reflectrometry, and

bit error rate testing. We shall discuss each method separately. In particular, we shall

demonstrate why each method is not sufficient for detecting jamming attacks in an AON.

Some comments on the detection of eavesdropping are included for completeness of the

discussion. [16] provides the basic ideas outlined in this section.

1.5.1 Power Detection

In power detection, we measure the average signal optical power over a bandwidth of a

single waveband or across multiple wavebands, and compare the measured power to the

estimated level. If the difference between the measured power and the estimated level is

beyond a certain threshold, an attack yielding that amount of change in the power level

will be detected.

Power detection has been used to detect network failures such as amplifier failures in an

AON [12, 24]. It can be used to detect an eavesdropper who taps off a significant amount of

signal power from a legitimate channel [27], or a jammer who introduces in-band jamming

signals which significantly alter the average power of transmitted signals. It can also be

used to detect significant EDFA gain degradation due to out-of-band jamming attacks.

Power detection techniques rely on the computation of statistical averages which requires

an observation of a large number of samples. For the detection scheme to be able to
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distinguish between the presence and the absence of a jamming attack, an observation

of a sufficiently large number of corrupted bits is required. If an attacker performs in-

band sporadic jamming to degrade the BER to an unacceptable level without changing

the average signal power enough to cause an alarm, the detection scheme based on power

detection techniques will not detect such an attack.

As a specific example, an attacker can jam at only one bit in every period of 10 mi-

croseconds. At the transmission rate of 1 gigabit per second, jamming signals are present

only 0.01% of the time and the average power of data signals together with jamming signals

may not be much different from the average power of data signals alone since the power

of jamming signals is not significant “on average”, i.e. the power of jamming signals is

averaged out over a large number of observed bits. As a result, such an attack may not

be detected. Note that if such a sporadic attack is out-of-band, the EDFA gains for trans-

mitted signals, which vary as users come on and off, will not be significantly degraded on

average. Therefore, the attack will not be detected.

According to [16], an out-of-band jammer can cause gain competition at an EDFA

without causing degradation in total power. For example, consider a series of two EDFAs.

An out-of-band jammer can cause gain competition at the first EDFA. Consequently, the

data signals are attenuated and the output of the first EDFA has a lower SNR. Suppose that

the second EDFA has “automatic gain control” (AGC), i.e. the second EDFA maintains its

output power at a specified level. As a result, the output of the second EDFA will have the

same power level (despite lower SNR) as if there were no attack.

As another example, an attacker can perform an out-of-band jamming attack causing

gain competition at an EDFA together with an in-band jamming attack to compensate for

the power loss due to gain competition [16].

An eavesdropper may insert in-band jamming signals after tapping data signals from a

legitimate fiber and leave the power level unchanged. In this case, an attack will not be

detected by power detection techniques. Finally, if power detection is performed only on

the legitimate channel, eavesdropping from a crosstalk channel will not be detected.

1.5.2 Optical Spectral Analysis

Optical spectral analyzers (OSAs) measure average optical powers of signals at different

frequencies. One obvious benefit of the use of an OSA with respect to power detection is
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the ability to detect a change in the spectrum shape of transmitted signals, even if the change

in the spectrum shape does not alter the average power level over the channel bandwidth.

An OSA can be used to detect in-band jamming attacks which significantly alter the

spectrum shape of transmitted signals even if these attacks yield the same average power

as before.

Moreover, an OSA can be used to detect out-of-band jamming attacks provided that

jamming signal frequencies are still in the range of an OSA. Using an OSA, we are able to

detect some sporadic out-of-band jamming attacks which cause gain competition at EDFAs

but do not change the average power and cannot be detected by power detection techniques.

An OSA can also be used to detect an eavesdropper who taps off a significant amount

of signal power and causes the change in the spectrum shape. In this regard, an OSA does

not provide much more information than power detection techniques.

Although we can detect a wider variety of attacks using an OSA, the additional infor-

mation given by an OSA is still the values of statistical averages. As in the case of power

detection, the use of an OSA to detect jamming attacks requires an observation of a large

number of corrupted bits in order to distinguish between the presence and the absence of

an attack. Therefore, an OSA may not detect in-band sporadic jamming attacks for the

same reason as in the case of power detection.

Furthermore, an OSA may not detect sporadic out-of-band jamming attacks when the

jamming signal frequencies are outside the OSA spectrum range. Finally, if an OSA is used

to detect eavesdropping only on the legitimate channel, eavesdropping from a crosstalk

channel will not be detected.

1.5.3 Pilot Tones

Pilot tones are signals which are transmitted along the same paths as the data signals

but are distinguishable from the data signals. They are used to detect any transmission

disruption that may occur to the data signals.

In general, pilot tones will not detect a jamming attack unless the pilot tones themselves

are affected by such an attack. An attack which affects only the transmitted signals may

not be detected. For example, if pilot tones are outside the transmission band, an in-band

jamming attack will not be detected.

For subcarrier multiplexed (SCM) signals, which are the signals obtained from combining
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data signals and pilot tones in the same frequency band, an in-band jamming attack may

affect the pilot tones and may therefore be detected. However, pilot tones are generally less

sensitive to corruption than data signals.

If pilot tones are amplified by the same amplifiers as transmitted signals, an out-of-band

jamming attack causing gain competition at EDFAs will attenuate pilot tones and may be

detected. However, with AGC in subsequent EDFAs, the power levels of pilot tones may

automatically be restored. In this case, an attack will not be detected.

On the other hand, if pilot tones and the transmitted signals are separately amplified,

an out-of-band jamming attack which attenuates data signals through gain competition will

not be detected by the use of pilot tones.

Note that pilot tones are subject to jamming themselves. An attacker may attempt

to modify pilot tones directly after degrading data signals. By doing so, the attacker may

restore the power levels of pilot tones to their normal levels and the corresponding attack

will not be detected. For example, an attacker can perform out-of-band jamming causing

gain competition which attenuates the power levels of pilot tones as well as data signals. At

the same time, the attacker introduces in-band jamming signals at the frequencies of pilot

tones to compensate for power losses. This combination of attacks will not be detected.

Futhermore, since pilot tones are detected only where we expect to receive the trans-

mitted signals, they do not provide any information about an eavesdropper who taps the

desired signals from a crosstalk channel instead of a legitimate channel.

1.5.4 Optical Time Domain Reflectrometry

Optical time domain reflectrometers (OTDRs) analyze echoes of the probe signals at the

transmitter end instead of at the receiver end. One unique characteristic of the use of

OTDRs which differentiates it from the use of pilot tones is the ability to perform attack

detection solely at the transmission side.

OTDRs are mainly used to detect faults, bends and losses in fiber links. By modulating

OTDR probe signals, the performance of OTDRs in fault detection can be enhanced [25].

If jamming signals share the same frequencies as OTDR probe signals, the corresponding

attacks may be detected. On the other hand, we cannot detect an in-band jamming attack

if OTDR probe signals are out of the transmission band.

The use of OTDRs to detect failures across multiple links requires bi-directional EDFAs
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[13]; otherwise, we cannot detect the reflected OTDR probe signals. In general, we may

not have bi-directional EDFAs; and OTDRs are used to detect malfunction on individual

sections of fiber links. As in the case of pilot tones, if OTDR probe signals share the same

EDFAs as transmitted signals, out-of-band jamming attacks causing gain competition at

EDFAs may be detected. However, like pilot tones, OTDR probe signals are generally

less sensitive to corruption than data signals. On the other hand, if OTDR probe signals

and transmitted signals are separately amplified, out-of-band jamming attacks causing gain

competition at EDFAs will not be detected.

OTDR probe signals are subject to jamming themselves. An attacker can perform out-

of-band jamming causing gain competition at an EDFA, together with in-band jamming at

the frequencies of OTDR probe signals to compensate for power losses. This combination

of attacks will not be detected.

Finally, as in the case of pilot tones, if we detect OTDR probe signals only where we

expect to receive transmitted signals, eavesdropping from a crosstalk channel will not be

detected.

1.5.5 Bit Error Rate Testing

A bit error rate tester (BERT) can be used to monitor the quality of the transmission path

of interest in terms of the number of bit errors per time period. Based on the fact that

both in-band and out-of-band jamming attacks can degrade transmitted signals and thus

make it more likely for the receiver to make decision errors, an unusually high BER is an

indicator of the possible presence of an attack on the network. In this regard, a BERT can

also be used to detect jamming attacks based on degradation of the BER.

A BERT can also be used to detect eavesdropping provided that the eavesdropper

taps off a significant amount of power from transmitted signals and the associated BER

deteriorates significantly.

As in power detection and optical spectral analysis, the operation of a BERT is based

on computing a statistical average which can consume too much time (see the discussion on

why we want to detect an attack quickly in section 1.4.3). Specifically, the time required

for a BERT to obtain a good estimate on the BER of a transmission path is in the order

of several seconds for a transmission at 1 gigabit per second and the BER in the range of

≈ 10−10 to 10−8 (provided that an attack lasts for several seconds), and in the order of
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hundreds of seconds for the BER in the range of ≈ 10−12 to 10−10 (provided that an attack

lasts for several hundreds of seconds).

Another drawback of the use of BERTs is the need to transmit test patterns, which

take up transmission resources. Moreover, the use of a BERT requires information on the

modulation scheme. Thus this technique is not appropriate for a transparent network.

Finally, BERTs are very expensive.

We shall refer to BERTs again in chapter 2 when we compare the time required for our

proposed attack detection scheme to detect some jamming attacks to the time required for

a BERT to perform the same task.

1.6 Summary and Outlines of Remaining Chapters

In this chapter, we argued why existing supervisory mechanisms cannot be used to detect all

types of jamming attacks in an AON. The insufficiency of existing supervisory mechanisms

in detecting jamming attacks serves as the motivation to the construction and the analysis

of a novel jamming attack detection scheme which is the subject of the remaining chapters.

In chapter 2, we introduce the attack detection device at a network node as proposed

in [16]. Based on this device, we construct a jamming attack detection system. In ana-

lyzing its performance, we assume some rather pessimistic jamming attack scenarios. In

those scenarios, we consider a light path consisting of 1 and 10 network nodes and OOK

transmission at a rate of 1 gigabit per second using 1 gigahertz bandwidth. In addition,

coherent components of jamming signals at all network nodes are assumed to be equal and

constant throughout an observation period.

We consider separately the cases of in-band jamming and out-of-band jamming. For in-

band jamming, we assume that the transmitted signals are always degraded in such a way

that the receiver is more likely to make a decision error, i.e. the jamming signals increase

the magnitude of the transmitted signal when the OFF signal of OOK is sent and vice versa

for the ON signal.

We assume that an out-of-band jamming attack causes gain competition at gain-clamped

EDFAs. In particular, we assume an equal percentage of gain attenuation of data signals

at all network nodes. With gain attenuation at EDFAs, transmitted signals associated with

the OFF level of OOK are not affected while those associated with the ON level are. An
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important factor is the dependence of the noise variance on the EDFA gain. Therefore, we

base our analysis on the simulation data obtained from [1].

The decision rules for the attack detection device at each network node and at the re-

ceiver are based on direct detection, which is implemented in several existing AON testbeds.

Our goal in chapter 2 is to obtain preliminary results on the performance of the proposed

attack detection scheme. Therefore, we adopt direct detection in the analysis. When we

investigate the performance of our approach for detecting jamming attacks in general, we

shall remove the direct detection constraint and consider coherent detection since it yields a

lower BER than direct detection for a given SNR, and since coherent detection can be done

using direct detection photodetectors. [19] discusses how we can measure, using square-law

detection, the input to a network node and its delayed version as well as the output of a

network node and its delayed version in order to find both the magnitude difference and

the phase difference between the input and the output of a network node.

In particular, our proposed attack detection scheme employs two levels of alarms. The

first-level alarms are generated by attack detection devices at network nodes. The second-

level (higher-level) alarm is generated on top of the first-level alarm in each observation

period. Decision of the second-level alarm generation is based on the number of alarms

generated by attack detection devices in each observation period.

An important parameter is the observation time required for our proposed attack de-

tection scheme to detect an attack with high reliability, i.e. the associated probabilities of

decision errors are sufficiently low. We measure the performance of the attack detection

scheme in terms of two quantities: the false positive and the false negative probabilities

of a second-level alarm in the corresponding observation period. Finally, we compare the

observation periods in our attack detection scheme with those of BERTs.

In chapter 3, we assume coherent detection at attack detection devices at network nodes

as well as at the receiver. The main goal of this chapter is to find the worst case in-band

jamming attack scenario among all scenarios associated with the same average degraded

BER. In particular, the worst case in-band jamming attack scenario yields the lowest ex-

pected number of first-level alarms in a given observation period. Consequently, it is the

attack scenario with the lowest probability of being detected. We want to consider the

worst case scenario since we want to be able to provide a guarantee on BER regardless of

the policy or the sophistication of an attack.
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We choose to describe an attack scenario by specifying coherent components of jamming

signals at all network nodes and at each bit time. We formulate the problem of searching

for the worst case attack scenario as an optimization problem whose variables are coherent

components of jamming signals at all network nodes at each bit time and whose objective

is to minimize the expected number of first-level alarms in an observation period.

After deriving the expressions for the average BER and the expected device alarm (first-

level alarm) rate functions, we solve the minimization problem for a jamming attack at one

network node and at two transmitted bits. We then extend the result to the case of jamming

at one network node and at more than two bits.

In parallel, we solve the minimization problem for an attack at one transmitted bit and

at two network nodes. We then extend the result to the case of jamming at one transmitted

bit and at more than two network nodes.

Finally, we combine the results to establish the worst case in-band jamming attack

scenario for jamming at multiple network nodes and at multiple transmitted bits.

In chapter 4, we find out how our proposed attack detection scheme performs under the

worst case in-band jamming attack scenarios that we found in chapter 3. As in chapter 2,

we measure the performance of the attack detection scheme in terms of the false positive

and the false negative probabilities of a second-level alarm in the corresponding observation

period. Finally, we suggest the use of hard limiters at the input to network nodes in order

to improve the performance of our proposed attack detection scheme. Chapter 5 provides

a summary of this work together with directions for future research.
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Chapter 2

Novel Jamming Attack Detection

Scheme

In this chapter, we construct a jamming attack detection scheme based on the detection

device proposed in [19]. The chapter begins with basic information on the attack detection

device and related analytical groundwork. Throughout the chapter, we assume the decision

rules based on direct detection at the receiver as well as at attack detection devices at all

network nodes.

We then introduce a novel attack detection scheme which is a decision system based

on the number of alarms generated by attack detection devices at network nodes in an

observation period.

To analyze the performance of our attack detection system, we assume some pessimistic

in-band jamming attack scenarios. Rather than assuming that jamming signals at different

network nodes are additive white Gaussian random variables, we assume that they are

coherent and add up constructively along the light path. Moreover, we assume that jamming

signals are equally spreaded out at all attacked nodes so that no overt attack is present at

any network node.

The problem of determining in-band jamming attack scenarios which are the hardest

to detect is relegated to chapter 3. The results obtained in this chapter will indicate that

the proposed detection scheme can at least handle some in-band jamming attack scenarios.

The performance analysis in the worst case scenarios (which are the hardest to detect) will

be postponed to chapter 4.
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In the final section, we investigate the detection of out-of-band jamming attacks causing

gain competition at EDFAs. The analysis is based on the data obtained from [1] and on

some pessimistic out-of-band jamming attack scenarios. The subject of the worst case out-

of-band jamming attack scenarios (which are the hardest to detect) is extremely device

specific and is outside the scope of this research.

2.1 Attack Detection Device at a Network Node

Our jamming attack detection system is constructed from attack detection devices which

wrap around certain network nodes. In general, a network node can consist of switching

devices such as ADMs and WSSs, or optical amplifiers such as EDFAs, or a combination

of different devices. Each attack detection device contains two taps, one at the input and

the other at the output of a network node. Figure 2-1 shows the schematic diagram of the

device proposed in [19].

Denote the signal at the first tap by s(t), which after passing through a device delay

TD, becomes s(t − TD). Denote the sum of the signal and noise at the second tap by

s′(t−TD)+n(t−TD), or γs′(t−TD)+n(t−TD) for a node with an amplifier. Note that we

describe the signal component at the second tap by s′(t− TD) instead of s(t− TD) to take

into account a possible phase shift and polarization due to normal operation of the network

node.

Our device takes these two signals and compensates for the phase shift and polarization

due to normal operation of the network node, i.e. the device makes the signals from the two

taps coherent with each other. The device then performs a signal subtraction and a square-

law magnitude detection of the result. In general, the change in phase and polarization

of s(t) does not vary rapidly; and we can safely assume, in the absence of any attack, the

output of the square law detector is |n(t − TD)|2, or | 1γn(t − TD)|2 for a node with an

amplifier. For notational simplicity, we shall drop the time notation in what follows.

2.1.1 In-Band Jamming Attack

If there is an in-band jamming signal denoted by J , the output of the square law detector

will be |n + J |2 (or | 1γ (n + J)|2) , which is likely to be much greater than |n|2 (or | 1γn|2)
for an attack with a sufficiently large in-band jamming signal. Based on the output of the
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for phase shift and polarization,

and performs subtraction

Figure 2-1: Attack detection device around a node.

square law detector, we set a decision threshold for an alarm generation. As we shall see

later on, the value of such a threshold is a design parameter for our attack detection system.

2.1.2 Out-of-Band Jamming Attack

In analyzing gain competition, our analysis assumes that each EDFA at a network node

makes up precisely for signal attenuation in the previous link of the light path. Consider

an out-of-band jamming attack causing gain competition at an EDFA in a network node.

An out-of-band jamming attack which robs the EDFA gain for the legitimate signal by a%

will cause the output of the square law detector to be
∣∣∣ a100s+ n

γ

∣∣∣2.
Since the quantities involved in the analysis of the device behaviours are in terms of
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the probability distribution of the square law detector output, it is necessary to find this

distribution before we proceed.

2.2 Probability Distribution of the Output of the Square Law

Detector

In what follows, uppercase characters denote random variables while lowercase characters

denote deterministic values realized by the random variables.

In general, the output of a square law detector at a given time is of the form Y =

|S + N |2, where S and N denote the signal and noise respectively. At the receiver, S

refers to the received data signal. At an attack detection device, S may refer to an in-band

jamming signal applied at the network node, or the attenuation of the data signal due to

gain competition at an EDFA.

Conditioned on S = s, we want to find the cumulative probability distribution (c.d.f.)

of Y = |s + N |2, i.e. Pr {Y ≤ A} for a real A > 0. [16] suggests the method outlined in

this section.

Note that |s+N |2 = |sR +NR|2 + |sI +NI |2, where subscripts R and I denote the real

and imaginary parts respectively. We assume NR and NI to be two independent Gaussian

random variables with the same variance denoted by σ2
N . We can then consider Y as the

sum of two random variables YR = |sR +NR|2 and YI = |sI +NI |2.
Let us denote the characteristic function of YR by ΦYR

. We may write that

ΦYR
(ω) =

1
σN

√
2π

∫ ∞

−∞
ejω(n+sR)2e

− n2

2σ2
N dn. (2.1)

By performing a change of variable y = (n+ sR)2, we can write equation 2.1 as

ΦYR
(ω) =

1
2σN

√
2π

∫ ∞

0
ejωy


e− (

√
y−sR)2

2σ2
N + e

− (
√

y+sR)2

2σ2
N


 dy√

y
. (2.2)

From equation 2.2, the probability distribution function (p.d.f.) of YR is

pYR
(y) =




1
2σN

√
2π


e− (

√
y−sR)2

2σ2
N + e

− (
√

y+sR)2

2σ2
N


 1√

y , if y ≥ 0

0 otherwise

. (2.3)
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Similarly, the p.d.f. of YI is

pYI
(y) =




1
2σN

√
2π


e− (

√
y−sI )2

2σ2
N + e

− (
√

y+sI )2

2σ2
N


 1√

y , if y ≥ 0

0 otherwise

. (2.4)

So we can express the c.d.f. Pr{Y ≤ A} as

Pr{Y ≤ A} =
1

2πσ2
N

∫ A
0

∫ A−yR
0


e−(

√
yR−sR)2

2σ2
N + e

−(
√

yR+sR)2

2σ2
N


 1

2
√
yR

e−(
√

yI−sI )2

2σ2
N + e

−(
√

yI+sI )2

2σ2
N


 1

2
√
yI
dyIdyR. (2.5)

Making the change of variables zR =
√
yR and zI =

√
yI in equation 2.5, we have

Pr{Y ≤ A} =
1

2πσ2
N

∫ √
A

0

∫ √
A−z2R

0


e−(zR−sR)2

2σ2
N + e

−(zR+sR)2

2σ2
N





e−(zI−sI )2

2σ2
N + e

−(zI+sI )2

2σ2
N


 dzIdzR. (2.6)

Note that we may simplify the expression on the right hand side of equation 2.6 by con-

sidering the integral as the sum of four terms. Using symmetry arguments, or by performing

a change of variable, we can see that

1
2πσ2

N

∫ √
A

0

∫ √
A−z2R

0
e

−(zR−sR)2

2σ2
N e

−(zI+sI )2

2σ2
N dzIdzR =

1
2πσ2

N

∫ √
A

0

∫ 0

−
√
A−z2R

e

−(zR−sR)2

2σ2
N e

−(zI−sI )2

2σ2
N dzIdzR. (2.7)

We can write all terms on the right hand side of equation 2.6 such that the exponents are

functions of (zR−sR) and (zI −sI) using the method presented in equation 2.7 if necessary.

As a result, our expression for Pr{Y ≤ A} becomes

Pr{Y ≤ A} =
∫ √

A

−√
A

∫ √
A−z2

R

−
√
A−z2R

1
2πσ2

N

e

(
− (zR−sR)2

2σ2
N

− (zI−sI )2

2σ2
N

)
dzIdzR. (2.8)

Transforming the region of integration from a circular region to a rectangular region
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√
A centered at the origin.

	m

�e

Figure 2-2: Geometric view of Pr{Y ≤ A}.

helps simplify the method of numerical integration. Using polar coordinates, we can express

Pr{Y ≤ A} in equation 2.8 as

Pr{Y ≤ A} =
∫ 2π

0

∫ √
A

0

1
2πσ2

N

re

(
− (r cos θ−sR)2

2σ2
N

− (r sin θ−sI )2

2σ2
N

)
drdθ. (2.9)

Denote this c.d.f. as a function of σ2
N , A, sR and sI by Fd(σ2

N , A, sR, sI) as shown below

Fd(σ2
N , A, sR, sI) =

∫ 2π

0

∫ √
A

0

1
2πσ2

N

re

(
− (r cos θ−sR)2

2σ2
N

− (r sin θ−sI )2

2σ2
N

)
drdθ. (2.10)

Figure 2-2 shows a geometric interpretation of Pr≤ A. An interesting fact is the de-

pendency of Fd(σ2
N , A, sR, sI) on s only through its norm ||s||. Lemma 2.1 verifies this fact.

Using the result of lemma 2.1, we can reexpress Fd(σ2
N , A, sR, sI) as

Fd(σ2
N , A, ||s||) =

∫ 2π

0

∫ √
A

0

1
2πσ2

N

re

(
− (r cos θ−||s||)2

2σ2
N

− (r sin θ)2

2σ2
N

)
drdθ. (2.11)
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For future reference, we shall denote the c.d.f. Pr{Y ≤ A} as a function of σ2, A, and

||s|| by Fd(σ2, A, ||s||). We finish this section by presenting lemma 2.1.

Lemma 2.1 Let Y = |s + N |2 where s is a deterministic complex signal and N is a ran-

dom Gaussian complex signal whose real and imaginary parts are independent zero-mean

Gaussian random variables with variance σ2
N . For A > 0, Fd(σ2

N , A, sR, sI) as defined in

equation 2.10 depends on s only through its norm ||s||.

Proof Consider the noise component pointing away from the origin along the θ-axis as

shown in figure 2-3. We can express this noise component as the sum of two independent

Gaussian random variables

NC = NR cos θ +NI sin θ,

where θ is equal to arctan(sI/sR). By statistical independence, the variance of NC is the

sum of the two variances and is equal to

Var(NC) = Var(NR) cos2 θ +Var(NI) sin2 θ

= σ2
N (cos

2 θ + sin2 θ) = σ2
N .

In the similar fashion, consider the other noise component (denoted by NT ) orthogonal

to NC as shown in figure 2-3. We can express NT together with its variance as.

NT = −NR sin θ +NI cos θ

Var(NT ) = Var(NR) sin2 θ +Var(NI) cos2 θ

= σ2
N (sin

2 θ + cos2 θ) = σ2
N .

We now verify that NC and NT are independent Gaussian random variables. Let E[X]

denote the expected value of a random variable X. Consider their covariance given below,

E[NCNT ] = E [(NR cos θ +NI sin θ) (−NR sin θ +NI cos θ)]

= E
[
−N2

R cos θ sin θ +NRNI cos2 θ −NRNI sin2 θ +N2
I sin θ cos θ

]
= −E[N2

R] cos θ sin θ + E[NRNI ] cos2 θ − E[NRNI ] sin2 θ + E[N2
I ] sin θ cos θ

= −E[N2
R] cos θ sin θ + E[N2

I ] cos θ sin θ (2.12)
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Figure 2-3: Illustration of the fact that Fd(σ2
N , A, sR, sI) only depends on s through its

norm for the proof of lemma 2.1.

= −σ2
N cos θ sin θ + σ2

N cos θ sin θ

= 0,

where equality 2.12 follows from the fact that NR and NI are independent and thus un-

correlated. Note that NC and NT are jointly Gaussian since their linear combination is a

linear combination of NR and NI which is a Gaussian random variable. Since NC and NT

are jointly Gaussian and uncorrelated, it follows that they are independent.

By rotating the axes counterclockwise by an angle θ, we can treat the calculation of

Fd(σ2
N , A, sR, sI) as if s were located at (||s||, 0) and there were two independent noise

components each with variance σ2
N along the horizontal and the vertical axes. Thus

Fd(σ2
N , A, sR, sI) depends on s only through its norm ||s|| and we can reexpress

Fd(σ2
N , A, sR, sI) in equation 2.10 as Fd(σ2

N , A, ||s||) in equation 2.11. ✷
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2.3 Scenario for the Analysis of Jamming Attack Detection

We would like to find out how the detection device behaves and construct a scheme for

detecting jamming attacks. In this section, we set up a scenario to base our analysis on.

2.3.1 Network Topology

Assume the transmission of data across M successive network nodes. We shall consider

the cases when M is equal to 1 and 10 respectively. For the analysis in this chapter, we

assume that all M network nodes are similarly affected by a jamming attack, and that the

corresponding effects are constant throughout an observation period.

2.3.2 Noise and SNR

At each network node at any given bit time, we have two independent additive white

Gaussian noise components denoted by NR and NI . Assume the noise variance σ2
NR

and

σ2
NI

to be equal (denoted by 1
M σ2

N so that the total noise variance across the light path at

any given bit time is 2σ2
N ). To obtain later numerical results, we assume σ2

N to be 0.5.

Assume an end-to-end SNR of 16 dB (approximated from 10 log10 40). In addition,

assume that the SNR degradation at network nodes is much more significant than the SNR

degradation along the fiber. Furthermore, assume that all network nodes cause the same

level of SNR degradation. Based on these assumptions, when M = 10, we have an SNR of

16 dB across the light path and an SNR of 26 dB across each network node.

2.3.3 Transmission and Detection Scheme

Assume that we transmit data bits whose values are equally likely to be 0 or 1 using OOK.

Assume the transmission rate of 1 Gb/s and the bandwidth of 1 GHz. In addition, we

assume direct detection at the receiver.

Denote the square magnitude of the ON level by P , the following equation relates P to

a specific value of SNR.

SNR =
1
2

(
P

2σ2
N

)
+

1
2

(
0

2σ2
N

)
. (2.13)

For 16 dB SNR, the ON level (square magnitude) is 160σ2
N since 40 = 1

2

(
160σ2

N

2σ2
N

)
+ 1

2 (0).

This ON level can be achieved by different values of sR and sI . For example, (sR, sI) can be
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(
√
80σN ,

√
80σN ) or (

√
160σN , 0). For a given decision threshold, it is known that different

values of (sR, sI), given the constraint that s2
R + s2

I (equivalently ||s||2) is constant, lead

to the same value of probability of decision error (equivalently the BER). Nevertheless, we

provide a proof in proposition 2.1. For the analysis in this chapter, we set (sR, sI) to be

(
√
160σN ,0).

Proposition 2.1 Assume that the ON and the OFF signals of OOK are equally likely, and

the receiver’s decision rule is based on direct detection. Given a decision threshold, all the

ON level signals having the same norm result in the same BER.

Proof Consider the general expression for the BER given below

BER =
1
2
Pe|OFF +

1
2
Pe|ON, (2.14)

where Pe|OFF denotes the probability of error given the OFF signal is sent and vice versa.

Let A denote the decision threshold, we can express Pe|OFF and Pe|ON as

Pe|OFF = 1− Fd(σ2
N , A, 0), (2.15)

Pe|ON = Fd(σ2
N , A, ||s||). (2.16)

It is clear from equation 2.15 that Pe|OFF does not depend on (sR, sI). Equation 2.16 tells

us that Pe|ON depends on (sR, sI) only through its norm ||s|| (consequence of lemma 2.1).

Using equations 2.14, 2.15 and 2.16, we conclude that the BER only depends on s through

its norm. Thus all the ON level signals having the same norm result in the same BER. ✷

2.3.4 Calculation of the BER

In the absence of an attack, we can compute the end-to-end BER. For analytical purposes,

we shall occasionally express relevant quantities in terms of the function Fd defined in equa-

tion 2.11 before carrying out numerical computation. Let A denote the optimal threshold

for the decision rule at the receiver, it follows that

BERno attack =
1
2
(1− Fd(σ2

N , A, 0)) +
1
2
Fd(σ2

N , A,
√
160σN ) (2.17)
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By trial and error, it turns out that the optimal decision threshold A is approximately

22 (or 44σ2
N ). We then have

BERno attack =
1
2
(1− Fd(0.5, 22, 0)) +

1
2
Fd(0.5, 22,

√
80)

≈ 4.6 × 10−10.

From here on, we shall refer to this value as BERbaseline.

2.3.5 Guaranteed BER

We would like to construct the detection scheme that generates an alarm whenever the end-

to-end BER (denoted by BERend−to−end) is greater than 10−8 (in comparison toBERbaseline

of 4.6 × 10−10). We shall compare the performance of our detection scheme to that of a

BERT in terms of the required observation period.

2.4 Attack Detection Scheme: In-Band Jamming

The goal of this section and the next is to construct a detection scheme which generates an

alarm whenever BERend−to−end is greater than 10−8. In this section, we shall construct a

detection scheme to handle in-band jamming attacks.

2.4.1 Degraded BER

We first investigate the effects of in-band jamming attacks. First we find the BERend−to−end

given the degradation of a% of the ON level (square magnitude) at each network node, or

equivalently a possible total degradation of Ma% across M nodes. Note that we take a

rather pessimistic view. In general, it is very hard for an attacker to jam multiple network

nodes coherently so that the effects of a jamming attack add up constructively across M

network nodes.

In addition, we consider the worst case degradation, i.e. signals are always degraded

in such a way that errors are more likely. In other words, the jamming signal decreases

the output magnitude of the square law detector when the ON level signal is sent and vice

versa. In general, it is very hard for an attacker to cause the worst case degradation since

an attacker must assign jamming signals according to transmitted data bits. The following
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Figure 2-4: Upper bound on BER versus degradation at each of theM (equal to 10) network
nodes in percentage of the ON level (160σ2

N ). For M = 1, multiply the degradation level
(horizontal axis) by 10. Note that the bottom plot is the zoomed version of the top one.

expression provides the upper bound on BERend−to−end with a% degradation allowed at

each of the M network nodes

BERend−to−end =
1
2
(1− Fd(σ2

N , A,
√
(.01Ma)160σN ))

+
1
2
Fd(σ2

N , A,
√
(1− .01Ma)160σN ), (2.18)

Note that we use the notation BERend−to−end to emphasize that the value is an upperbound

on BERend−to−end. Figure 2-4 shows the curve of BERend−to−end versus the degradation

at each of the M network nodes in percentage of the ON level (160σ2
N ).

2.4.2 Probability of Alarm Generation by Attack Detection Devices

An attack detection device detects an attack when the output of a square-law detector

exceeds a certain threshold. The corresponding decision regions are the same as the ones

in the right hand side of figure 1-1. We shall refer to an alarm generated by an attack

detection device at a network node as a “device alarm”.

For a given threshold, there is a false positive probability (FP), the probability of de-

43



tecting an attack when there is none. Moreover, there is a false negative probability (FN),

the probability of not detecting an attack when there is one. Note that the value of FP

depends solely on the threshold value while the value of FN depends on both the threshold

value and the magnitude of a jamming signal.

It is necessary at this point to distinguish between FP and FN at a single network node

and FP and FN across multiple network nodes when M > 1. We will refer to the former

case with FPnode and FNnode, and to the latter case with FPend−to−end and FNend−to−end

respectively.

In particular, suppose the threshold is set at t% of the ON level (160σ2
N ) and the

magnitude of the jamming tone is a% of the ON level. The corresponding FPnode and

FNnode are

FPnode = 1− Fd

(
1
M

σ2
N , (.01t)160σ

2
N , 0

)
, (2.19)

FNnode = Fd

(
1
M

σ2
N , (.01t)160σ

2
N ,
√
(.01a)160σN

)
. (2.20)

Note that the noise variance is adjusted to 1
M σ2

N since we are looking at each individual

node with the SNR of 16+10 log10 M dB instead of the end-to-end SNR of 16 dB (see the

discussion in section 2.3.2).

In the case of multiple network nodes (M > 1), we shall consider that a device alarm

at any bit time has occured if at least one attack detection device at any network node

generates a device alarm. This assumption leads to the computation of FNend−to−end and

FPend−to−end given next.

We can think of FNend−to−end as the probability that none of the M network nodes

generates a device alarm. Given a jamming signal, an event that an alarm is not generated

depends on AWGN introduced at a network node. Since our model assumes that noise com-

ponents introduced at different network nodes are independent, we have that the generation

of device alarms at different network nodes are independent. Therefore, we assert that

FNend−to−end = (FNnode)
M . (2.21)

FPend−to−end is the probability that at least one of the M network nodes generates a

device alarm. From the independence of device alarm generation at different network nodes,
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we assert that

FPend−to−end = 1− (1− FPnode)
M . (2.22)

Figures 2-5 and 2-6 show example curves of FPend−to−end and FNend−to−end respectively.

2.4.3 Construction of an Attack Detection Scheme

We are now ready to construct a novel jamming attack detection scheme. Our detection

scheme is based on the generation of alarms by attack detection devices at network nodes.

Keep in mind that the presence of a device alarm does not mean that a transmitted

bit is corrupted. A device alarm simply notifies the user that the bit in transmission has

a higher probability of decision error at the receiver. If an attack does not significantly

corrupt transmitted bits and does not affect our communication more severely than by

occurring natural noise, we do not worry about detecting such an attack.

Therefore, we do not want to conclude there is an attack unless the number of device

alarms in an observation period (equivalently the device alarm rate which is the number

of device alarms in an observation period divided by the number of bits in an observation

period) exceeds a certain threshold.

Based on the given arguments, we propose two levels of alarms which will be referred

to as a “device alarm” (first-level) and an “attack alarm” (second-level). We shall consider

that a device alarm at any bit time has occured if at least one detection device at any

network node generates a device alarm. An attack alarm will turn on when the number

of device alarms in a given observation period (in bits) exceeds a certain threshold. Let

FPattack and FNattack denote the FP and FN of the attack alarm respectively.

In what follows, we assume a constant jamming attack throughout an observation period.

Later on, we shall determine the observation period required for the detection scheme to

have sufficiently low FPend−to−end and FNend−to−end.

Expected Device Alarm Rate Versus BERend−to−end Curves

To find appropriate threshold values for the device alarm and the attack alarm, consider the

curves of the expected device alarm rate (the expected number of device alarms in an obser-

vation period divided by the number of bits in an observation period) versus BERend−to−end.

The expected device alarm rate is equal to FPend−to−end when no attack is present, and is
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Figure 2-5: FPend−to−end versus detection device threshold (allowed degradation) at each
network node.
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Figure 2-6: FNend−to−end versus detection device threshold (allowed degradation) at each
network node given that the jamming signal magnitude is 0.06% of the ON level for M=10
(0.6% for M=1). With these jamming signal magnitudes, BERend−to−end can be as high
as 10−8.
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equal to 1 − FNend−to−end when there is an attack. Figures 2-7 and 2-8 show the curves

of the expected device alarm rate versus BERend−to−end for different values of detection

device threshold.

For each curve in figures 2-7 and 2-8, the starting point on the left has the expected

device alarm rate equal to FPend−to−end while the corresponding BER is BERbaseline (equal

to 4.6 × 10−10). This is the situation with no attack. The points along the curve in the

positive direction correspond to in-band jamming attacks with higher and higher jamming

signal magnitudes. We would like to have a significant difference between the expected

device alarm rate with no attack and the rate with an attack causing BERend−to−end to

exceed 10−8. In addition, we would like to be able to detect an attack in a small amount of

time.

Finding the Threshold Values

We now have enough information to find an appropriate threshold value for the device alarm

as a percentage of the ON level (160σ2
N ) and an appropriate threshold value for the attack

alarm in terms of the number of device alarms in an observation period.

Note that our transmission rate is 1 Gb/s. Using the information in figures 2-7 and 2-8,

we can calculate the estimated numbers of device alarms in an observation period. Tables 2.1

and 2.2 show the expected number of device alarms for different detection device thresholds

and for different lengths of an observation period.

Since the occurrences of device alarms are discrete events, we cannot distinguish between

two events both of which correspond to less than one alarm. Therefore, any combination of

an attack detection device threshold and an observation period yielding an expected number

of device alarms less than 1 in the presence of an attack is not useful.

From tables 2.1 and 2.2, we can see that a higher threshold yields a lower expected

number of device alarms in an observation period but a higher ratio of the expected number

of device alarms associated with an attack to the one associated with no attack.

Since we would like to have a high expected number of device alarms when an attack is

present so that we can detect it quickly (using a short observation period), a high detection

device threshold is not favourable in this viewpoint. At the same time, we would like to

have a significant difference in the expected number of alarms with and without an attack.

In this viewpoint, a high detection device threshold is favourable.
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Figure 2-7: Expected device alarm rate versus BERend−to−end for different detection device
thresholds (M=10, in-band jamming).
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0.25% 0.5% 1.0% 1.5% 2.0%
10 µs 7,700/9,500 1,700/4,600 34/260 0.7/10 0.01/0.3
1 µs 770/950 170/460 3.4/26 0.07/1 0.001/0.03
0.1 µs 77/95 17/46 0.34/2.6 0.007/0.1 0.0001/0.003

Table 2.1: Expected number of device alarms in an observation period. The top row
contains the detection device threshold values in percentage of the ON level (160σ2

N ). The
first column contains the length of an observation period. The first number of each entry
in the table is the expected number of device alarms when there is no attack, while the
second number is the expected number of device alarms when there is an attack causing
BERend−to−end to be approximately 10−8. In this case, M = 10.

1.0% 2.5% 5.0% 7.5% 10.0%
10 µs 4,500/6,000 1,400/2,600 270/600 25/130 6.5/26
1 µs 450/600 140/260 27/60 2.5/13 0.65/2.6
0.1 µs 45/60 14/26 2.7/6 0.25/1.3 0.065/0.26

Table 2.2: Expected number of device alarms in an observation period (M = 1). All the
entries have the same meanings as in table 2.1.

In general, if the detection device threshold is set too high, we need a long observation

period to wait for a sufficient amount of device alarms to occur before we can recognize an

attack. On the other hand, if the threshold is set too low, we may not be able to distinguish

between events associated with the presence and the absence of an attack. In what follows,

we present a few examples to demonstrate how one can assign threshold values for both

levels of alarms. Our goal is to have both FPattack and FNattack approximately no greater

than 10−10.

Example 2.1

Assume M = 10 and the detection device threshold of 0.25%. If an observation period is

1 µs, we have from table 2.1 that the expected number of device alarms in an observation

period is 950 and 770 with and without an attack respectively. At the transmission rate

of 1 Gb/s, we transmit 1,000 bits in 1 µs. Therefore, the number of device alarms in an

observation period can be at most 1,000.

Denote the attack alarm threshold by β. Let X denote the number of device alarms in

an observation period. It follows that X is a binomial random variable whose probability of
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success, or equivalently the probability of device alarm generation, is equal to FPend−to−end

when there is no attack, and is equal to 1− FNend−to−end when an attack is present. The

values of FPattack and FNattack is given by

FPattack = Pr{X ≥ β | no attack}

=
1,000∑
i=β

(
1, 000
i

)
FP iend−to−end(1− FPend−to−end)1,000−i (2.23)

FNattack = Pr{X < β | attack}

=
β−1∑
i=0

(
1, 000
i

)
(1− FNend−to−end)iFN

1,000−i
end−to−end. (2.24)

We shall set β to be such that FPattack ≈ 10−10 and find the corresponding value of

FNattack. Note that if β > 1, 000×(1−FNend−to−end), or equivalently the expected number

of device alarms in the presence of an attack is lower than β, we cannot construct a detection

scheme based on the given detection device threshold and observation period.

In this case, we have that FPend−to−end ≈ 0.77, and FNend−to−end ≈ 0.05. We find, by

trial and error, the value of β to be ≈ 851. The corresponding FNattack is < 10−16.

We conclude that with the observation period of 1 µs, the detection device threshold of

0.25%, and the attack alarm threshold of 851, our detection scheme can detect a constant

jamming attack (yielding the BER above 10−8) that lasts for longer than 1 µs.

Example 2.2

Assume M = 1 and the detection device threshold of 1.0%. For the observation period of 1

µs, we have β ≈ 550. The corresponding FNattack is 7.41 × 10−4, which is too high for our

purpose. If we change the observation period to 10 µs, we can choose β to be 4,960. The

corresponding FPattack is < 10−10 and the corresponding FNattack is < 10−16.

We conclude that with the observation period of 10 µs, the detection device threshold of

1.0%, and the attack alarm threshold of 4,960, our detection scheme can detect a constant

jamming attack (yielding the BER above 10−8) that lasts for longer than 10 µs.

In both examples, the required observation period is much shorter than the time required

if we are to use a BERT to detect the same jamming attacks. In particular, we detect simple

in-band jamming attack scenarios in less than 10 µs in our examples. A similar task of
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distinguishing between the BERs of 4.6× 10−10 (the value of BERbaseline) and 10−8 would

require several seconds if we use a BERT. For example, using an observation period of 10

s, a BERT can expect 4.6 bit errors when there is no attack and 100 bit erros when there

is an attack yielding the BER of 10−8. A shorter observation period will not work since

the expected number of bit errors in the presence of an attack do not differ significantly

from the expected number of bit errors in the absence of an attack. Therefore, Our attack

detection scheme is 6 orders of magnitude faster than a BERT.

As a final note, to achieve a better estimate when FNattack is extremely small (as denoted

by < 10−16 in our examples), we can use large deviation theory [2]. The calculation of

FNattack in these cases is the subject of future research.

In conclusion, we have demonstrated with examples how one can construct a jamming

attack detection system and indentify the corresponding observation period.

2.5 Attack Detection Scheme: Out-of-Band Jamming Caus-

ing Gain Competition at EDFAs

In this section, we investigate the effects of out-of-band jamming attacks causing gain

competition at EDFAs. We then demonstrate with examples that our proposed detection

scheme in section 2.4 can also be applied to detect out-of-band jamming attacks in this

section.

2.5.1 EDFA Characteristics

We assume that the gain value γ of an EDFA is real and constant; and we can correctly

perform gain estimation at the device. In the case of in-band jamming, we do not specify

the source of noise. However, in this section, we are concerned with ASE noise which is

dominant in EDFAs. An important property is the dependence of the noise variance on the

EDFA gain.

We obtain the data of noise variances together with EDFA gains from [1]. This set of

data corresponds to the transmission at 1540 nm where the gain fluctuation is the largest

during an attack. Table 2.3 shows the values of noise variances associated with EDFA gains.

We shall base our analysis on this set of data.

For future reference, let σ2
N denote the noise variance (corresponding to the gain γ)

51



when there is no attack, and σ2
Ñ
denote the noise variance when the EDFA gain is degraded

due to gain competition.

EDFA Gain Degradation Noise Variance EDFA Gain Degradation Noise Variance
86.160 0% 1.7590 × 10−7 85.585 0.6674% 1.7489 × 10−7

86.052 0.1253% 1.7571 × 10−7 85.424 0.8542% 1.7461 × 10−7

85.908 0.2925% 1.7546 × 10−7 85.135 1.1896% 1.7410 × 10−7

85.786 0.4341% 1.7524 × 10−7 84.580 1.8338% 1.7313 × 10−7

85.679 0.5583% 1.7506 × 10−7 84.234 2.2354% 1.7252 × 10−7

Table 2.3: Noise variances (σ2
N and σ2

Ñ
) associated with EDFA square magnitude gains (γ2)

for the transmission at 1540 nm and a bit rate of 1 Gb/s using 1 GHz bandwidth.

2.5.2 Degraded BER

Given that an attack attenuates the EDFA gain at each of the M network nodes by a%, we

have the following expression for BERend−to−end,

BERend−to−end =
1
2
(1− Fd(σ2

Ñ
, A, 0))

+
1
2
Fd(σ2

Ñ
, A,

√
(1− 0.01a)M160σN ). (2.25)

As a reminder, A is the optimal decision threshold at the receiver, which was found is

section 2.3.4 to be approximately 44σ2
N .

2.5.3 False Positive and False Negative Probabilities

Suppose the detection device threshold is set at t% of the ON level (160σ2
N ) and the corre-

sponding EDFA gain is γ. Given the gain degradation of a% at each EDFA, the expressions

for FPnode and FNnode are

FPnode = 1− Fd

(
1

Mγ2
σ2
Ñ
, (.01t)

1
γ2

160σ2
N , 0

)
, (2.26)

FNnode =
1
2
Fd

(
1

Mγ2
σ2
Ñ
, (.01t)

1
γ2

160σ2
N , 0

)
(2.27)

+
1
2
Fd

(
1

Mγ2
σ2
Ñ
, (.01t)

1
γ2

160σ2
N ,

√
(.01a)

1
γ2

160σN

)
, (2.28)

where the ON level is scaled by 1
γ2 to reflect the gain loss prior to the network node.
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0.25% 0.5% 1.0% 1.5% 2.0%
1 µs 770/1000 170/997 3.4/937 0.07/623 0.001/250
0.1 µs 77/100 17/99.7 0.34/93.7 0.007/62.3 0.0001/25
0.01 µs 7.7/10 1.7/9.97 0.034/9.37 0.0007/6.23 0.00001/2.5

Table 2.4: Expected number of device alarms in an observation period (M = 10, out-of-band
jamming). All the entries have the same meanings as in table 2.1.

0.25% 0.5% 1.0% 1.5% 2.0%
1 µs 900/996 520/983 89/954 13/900 1.7/794
0.1 µs 90/99.6 52/98.3 8.9/95.4 1.3/90 0.17/79.4
0.01 µs 9/9.96 5.2/9.83 0.89/9.54 0.13/9 0.017/7.94

Table 2.5: Expected number of device alarms in an observation period (M = 5, out-of-band
jamming). All the entries have the same meanings as in table 2.1.

The values of FPend−to−end and FNend−to−end can be found from equations 2.22 and 2.21.

2.5.4 Construction of an Attack Detection Scheme

Figures 2-9 and 2-10 show the curves of the expected device alarm rate versusBERend−to−end

for different values of detection device thresholds. Tables 2.4 and 2.5 present the correspond-

ing expected numbers of device alarms in an observation period with and without an attack.

Note that we consider the case when M = 5 instead of M = 1 since the maximal gain

degradation in table 2.3 does not yield a degraded level of BER above 10−8 in the case of

M = 1. We can construct the detection scheme based on the procedures given in example

2.1 of section 2.4. Our goal is to have both FPattack and FNattack approximately no greater

than 10−10. We end this section with examples.

Example 2.3

Assume that M = 10, the detection device threshold is 0.5%, and the observation period

is 0.1 µs. In this case, we find β to be 44. The corresponding FPattack is < 10−10, and

the corresponding FNattack is < 10−16. Therefore, we can detect a constant out-of-band

jamming attack (yielding the BER above 10−8) which lasts longer than 0.1 µs.

53



−10 −9.5 −9 −8.5 −8 −7.5 −7 −6.5
−7

−6

−5

−4

−3

−2

−1

0

log_10(BER)

lo
g_

10
(E

xp
ec

te
d 

de
vic

e 
al

ar
m

 ra
te

)

M=10

0.25%

0.5%

1.0%

1.5%

2.0% (Detection device threshold)

Figure 2-9: Expected device alarm rate versus BERend−to−end for different detection device
thresholds (M=10, out-of-band jamming).
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Figure 2-10: Expected device alarm rate versus BERend−to−end for different detection device
thresholds (M=5, out-of-band jamming).
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Example 2.4

Assume that M = 5, the detection device threshold is 1.0%, and the observation period

is 0.1 µs. In this case, we find β to be 31. The corresponding FPattack is < 10−10, and

the corresponding FNattack is < 10−16. Therefore, we can detect a constant out-of-band

jamming attack (yielding the BER above 10−8) which lasts longer than 0.1 µs.

We argue in section 2.4 that the time required for a BERT to distinguish between the

absence and the presence of an attack yielding the degraded BER of 10−8 is in the order

of several seconds. Both examples show that the required observation time for our attack

detection scheme is 7 orders of magnitude smaller than the time required by a BERT.

2.6 Summary

In this chapter, we have demonstrated how one can construct a detection scheme to detect

some in-band and out-of-band jamming attacks associated with the BER above 10−8. The

preliminary results obtained in sections 2.4 and 2.5 indicate a satisfactory performance of

our attack detection scheme. Having demonstrated that our attack detection scheme can

perform well at least in some pessimistic attack scenarios, we are encouraged to investigate

the performance limit of this approach for detecting jamming attacks in a general case when

we eliminate the direct detection constraint. This investigation is carried out in the next

chapter.
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Chapter 3

Worst Case In-Band Jamming

Attack Scenarios

In this chapter, we search for in-band jamming attack scenarios that yield the lowest prob-

ability of getting caught by our proposed attack detection scheme constructed in chapter

2. The results obtained in this chapter will be useful for the performance analysis of our

attack detection scheme in chapter 4.

We have pointed out in section 1.1.3 that, with coherent detection, we can improve the

BER of the communication path of interest. Since our purpose is to investigate the perfor-

mance of our approach for detecting jamming attacks in general rather than to construct a

detection scheme for a particular implementation, it is appropriate to perform our analysis

without the constraint that direct detection is used.

We shall consider only in-band jamming attacks. The subject of the worst case out-of-

band jamming attack scenarios is extremely device specific and is outside the scope of this

research.

3.1 Setup for the Analysis

3.1.1 OOK Signalling and the BER

Assume in all analyses throughout this chapter that we transmit data using OOK. In addi-

tion, assume that the receiver as well as the attack detection devices at all network nodes

use coherent detection.
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Figure 3-1: The left diagram shows the decision regions for the receiver, while the right
diagram shows the decision regions for the attack detection device at each network node.

Let sR and sI denote the real and imaginary parts of a signal s. Let sOFF and sON

denote the OFF and the ON signals for OOK signalling. We shall assume that the OFF

and the ON signals arequally likely. By expressing s in the form (sR, sI), we can write

sOFF as (0,0) and sON as (sON
R , sON

I ). Assume the AWGN at each network node at any bit

time has variance σ2 for both real and imaginary parts. Given that there are M network

nodes in the light path of interest, it follows that the end-to-end BER can be expressed as

Q
( ||sON||

2
√
Mσ2

)
, where Q is the complementary cumulative distribution function of a zero-mean,

unit-variance Gaussian random variable, and ||s|| is the norm of the signal s. Note that the

overall noise is the accumulation of noise components at all M network nodes since there

is no processing of signals at network nodes.

Because the BER depends only on the norm of the ON signal, given that the power

of the ON signal is P , we can choose sON to be (
√
P , 0) for convenience in the analysis

that follows. With this choice of sON , our decision region is shown in the left diagram of

figure 3-1. Note that these decision regions are the same as the ones in the left diagram of

figure 1-1. In the absence of an attack, we can express the baseline value of the end-to-end

BER as Q
( √

P
2
√
Mσ2

)
.

Let J (i) be the jamming signal at node i. Using the fact that attacks propagate along
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the light path, we can express the end-to-end BER for a particular bit as follow

BERend−to−end =
1
2
Q




√
P
2 −∑Mi=1 J

(i)
C√

Mσ2


+

1
2
Q




√
P
2 +

∑M
i=1 J

(i)
C√

Mσ2


 , (3.1)

where J (i)
C denotes the component of J (i) which is coherent to the transmitted signal. Co-

herent components of jamming signals are assumed to add up constructively along the light

path.

Note that the expression in equation 3.1 is different from the expression given in equa-

tion 2.18 since we use coherent detection instead of direct detection. Figure 3-2 shows the

BER curves for different values of the SNR as functions of accumulated coherent compo-

nents of jamming signals (equal to
∑M
i=1 J

(i)
C ) in percentage of

√
P . To find the value of P

for a particular SNR, we use the relation

SNR =
1
2

(
P

2Mσ2

)
+

1
2
0, (3.2)

where a factor of 2 in 2Mσ2 takes into account the imaginary component as well as the real

component of the noise.
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3.1.2 Device Alarm Generation and the Device Alarm Rate at a Network

Node

Consider the output d of an attack detection device at a particular network node. Assume

that coherent detection is used. We would like to generate an alarm at the network node

when the jamming signal is likely to degrade the BER significantly, or equivalently when

the magnitude of dC (the component of d which is coherent to the transmitted signal) is

large. It is appropriate to set the decision regions for alarm generation in the following

fashion: generate a device alarm when |dC | > α where α is a real positive number generally

smaller than
√
P/2 since we are trying to detect the BER degradation rather than the error

itself. This decision region is shown in the right diagram of figure 3-1.

For a given detection device threshold α and a jamming signal at the network node J (i),

we have the expected device alarm rate or equivalently the probability of alarm generation

at the network node equal to

Alarm rate = Q

(
α− J

(i)
C

σ

)
+Q

(
α+ J

(i)
C

σ

)
. (3.3)

Figure 3-3 shows the expected device alarm rate curve together with the BER curve for

the SNR of 20 dB and α of 0.15
√
P . Plot 3-4 shows the expected device alarm rate at a

single network node versus the BER curves for different values of α.

3.1.3 Formulation of the Optimization Problem

We now formulate the problem of searching for the “worst case” in-band jamming attack

scenario as an optimization problem. We start by defining what we mean by the worst case

in-band jamming attack scenario.

Let T denote the length of an observation period in bits, and B̃ denote the average

degraded level of BER over T bits. Among all in-band jamming attacks associated with

B̃, the attack scenario yielding the smallest number of device alarms in a period of T bits

has the smallest probability of getting caught. It is therefore appropriate to consider the

“worst case” attack scenario as the one which yields the smallest expected number of device

alarms in a period of T bits, or equivalently the smallest expected device alarm rate (the

expected number of device alarms in an observation period divided by the number of bits

in an observation period).
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We shall describe an in-band jamming attack scenario in terms of the coherent compo-

nents of jamming signals at all network nodes at all bit times. In this regard, searching for

the worst case attack scenario is equivalent to finding the values of the corresponding jam-

ming signals (coherent components) which yield the smallest expected device alarm rate.

Therefore, we can treat the jamming signals (coherent components) as variables and find

their values by solving the following optimization problem.

minimize expected device alarm rate

subject to average BER in T bits = B̃.

For future reference, let B(J) and A(J) denote the BER and the expected device alarm

rate functions whose expressions in equations 3.1 and 3.3 are presented again below.

B(J) =
1
2
Q




√
P
2 − J√
Mσ2


+

1
2
Q




√
P
2 + J√
Mσ2


 (3.4)

A(J) = Q

(
α− J

σ

)
+Q

(
α+ J

σ

)
. (3.5)

Note that the argument of the BER function in equation 3.4 is the accumulated coherent

components of jamming signals along the light path. The argument of the expected device

alarm rate function in equation 3.5 is the coherent component of a jamming signal at a

network node.

3.2 Worst Case Scenario for In-band Jamming at Multiple

Bits at a Single Network Node

Assume there is only one network node in the light path of interest (M=1). The goal of

this section is to find the worst case scenario for in-band jamming at T (T > 1) bits. We

shall start with the simplest case with T = 2 and extend the result to a general case with

T > 2.
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3.2.1 Worst Case Scenario for In-band Jamming at Two Bits at a Single

Network Node

Denote the coherent component of the jamming signal at the first bit by J1 and at the

second bit by J2. Finding the worst case jamming attack scenario is similar to solving the

following minimization problem for J1 and J2.

minimize
1
2
(A(J1) +A(J2))

subject to B̃ =
1
2
(B(J1) +B(J2)) (3.6)

Using the Lagrange multiplier method, we form the Lagrangean L(J1, J2, λ) defined by

L(J1, J2, λ) =
1
2
(A(J1) +A(J2))− λ

(
1
2
(B(J1) +B(J2))− B̃

)
.

By differentiating the Lagrangean with respect to each variable and solving the system

of simultaneous equations, we get the locations of extrema. In this case the system of

equations is

∂

∂Ji
L = 0 =

1
2
A′(Ji)− λ

1
2
B′(Ji), i = 1, 2 (3.7)

∂

∂λ
L = 0 =

1
2
(B(J1) +B(J2))− B̃. (3.8)

We would like to find the values of J1 and J2 at the extrema. To find possible solutions

for equation 3.7, consider the curve of A′(Ji) superposed on the curve of λB′(Ji). Continuing

with our example (SNR=20 dB,α=0.15
√
P ), figure 3-5 shows example curves of A′(Ji) and

λB′(Ji) for different values of λ. Note that, for the existence of nonzero solutions, λ must

be positive.

The points of intersection of A′(Ji) and λB′(Ji) specify the solutions (J1, J2) to equa-

tion 3.7. Because the functions A(J) and B(J) are even, we shall consider only nonnegative

values of Ji.

One can observe from figure 3-5 that the curves of A′(Ji) and λB′(Ji) (with λ > 0) can

intersect at no more than two nonnegative points: zero and a strictly positive value. Since

A′(0) = B′(0) = 0 (equations 3.4 and 3.5), it is easy to see that zero is indeed a solution

to equation 3.7. The fact that at most one positive solution exists is verified in lemma 3.3
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with some restrictions given in assumption 3.1.

Assumption 3.1 Let σ denote the variance of both real and imaginary parts of the AWGN

at any network node at any bit time, α denote the attack detection device threshold, and η

=
√
P/2. Assume that σ < α < η −√

3σ.

Notice that assumption 3.1 generally holds when the SNR is sufficiently high since the

value of σ will be small in comparison to the value of η.

Lemma 3.1 Given that λ > 0, η > α, consider the function f(x) of the form

f(x) =
1√
2πσ2

e−
(x−α)2

2σ2 − λ
1√
2πσ2

e−
(x−η)2

2σ2 . (3.9)

f(x) has the following characteristics:

i) There is a unique solution to f(x) = 0.
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ii) f(x) has a unique local maximum and a unique local minimum.

iii) Let xmax and xmin denote the locations of the maximum and the minimum respec-

tively. We have xmax < α < η < xmin.

iv) As x increases from −∞ to xmax, f(x) strictly increases from the limit value of 0 to

f(xmax) and has a single saddle point where f(x) changes from convexity (3) to concavity

(4).

v) As x increases from xmax to xmin, f(x) strictly decreases.

vi) As x increases from xmin to ∞, f(x) strictly increases from f(xmin) to the limit value

of 0 and has a single saddle point at which f(x) changes from convexity (3) to concavity

(4).

Proof The proof is provided in appendix A. ✷

Lemma 3.2 Under assumption 3.1, f(x) as defined in equation 3.9 has a strictly decreasing

second derivative in (xs, α], where xs denotes the unique saddle point in (−∞, xmax).

Proof The proof is provided in appendix A. ✷

Lemma 3.3 Given λ > 0, and assumption 3.1, there is at most one positive solution to

the equation A′(J) = λB′(J) in (0, η − σ).

Proof The proof is provided in appendix A. ✷

Given that only zero and one other positive value are solutions to equation 3.7, there

are two forms of solutions to equation 3.8, namely J1 = J2, and J1 (or J2) = 0 with J2

(or J1) > 0. Let J̃ be such that B(J̃) = B̃ and Js be such that 1
2B(0) + 1

2B(Js) = B̃.

It follows that the extrema are (J̃ , J̃), (0, Js), and (Js, 0). Therefore, any extremum must

correspond to either an attack with equal coherent jamming signal components at the two

bits (referred to as constant jamming) or an attack with jamming at only one bit (referred

to as sporadic jamming).

We would like to find out when, if ever, constant jamming, (J1, J2)=(J̃ , J̃), yields a

lower expected device alarm rate than sporadic jamming, (J1, J2)=(0, Js) or (Js, 0), and

vice versa.
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According to [15], given the locations of the extrema, we can investigate their properties

by performing the second derivative test for constrained extrema. In particular, we evaluate

the bordered Hessian |H|(J1,J2) of the Lagrangean which in this case is equal to

|H|(J1,J2) =

∣∣∣∣∣∣∣∣∣∣

0 −B′(J1) −B′(J2)

−B′(J1) L′′(J1) 0

−B′(J2) 0 L′′(J2)

∣∣∣∣∣∣∣∣∣∣
= −L′′(J1)(B′(J2))2 − L′′(J2)(B′(J1))2

= −1
2
[
A′′(J1)− λB′′(J1)

]
(B′(J2))2

−1
2
[
A′′(J2)− λB′′(J2)

]
(B′(J1))2. (3.10)

As a reminder, (J1, J2) is a local minimum when |H|(J1,J2) < 0, a local maximum when

|H|(J1,J2) > 0, and no conclusion can be made when |H|(J1,J2) = 0. For constant jamming,

the bordered Hessian in equation 3.10 can be written as

|H|(J̃ ,J̃) = −
[
A′′(J̃)− A′(J̃)

B′(J̃)
B′′(J̃)

]
(B′(J̃))2, (3.11)

where λ is found from the equation A′(J̃) = λB′(J̃). Figure 3-6 shows the curve of |H|(J̃ ,J̃)
as a function of J̃ . Notice that, for all values of J̃ (equivalently for all values of B̃), |H|(J̃ ,J̃)
is positive. Lemma 3.5 verifies this fact under assumption 3.1.

Lemma 3.4 Under assumption 3.1, A
′(J)
B′(J) <

A′′(0)
B′′(0) for all J > 0.

Proof We use x as a dummy variable. For convenience, the expressions forA′(x), A′′(x), B′(x)

and B′′(x) are given below

A′(x) =
1√
2πσ

[
e−

(x−α)2

2σ2 − e−
(x+α)2

2σ2

]
(3.12)

A′′(x) =
1√
2πσ3

[
−(x− α)e−

(x−α)2

2σ2 + (x+ α)e−
(x+α)2

2σ2

]
(3.13)

B′(x) =
1√
2πσ

[
e−

(x−η)2

2σ2 − e−
(x+η)2

2σ2

]
(3.14)

B′′(x) =
1√
2πσ3

[
−(x− η)e−

(x−η)2

2σ2 + (x+ η)e−
(x+η)2

2σ2

]
(3.15)

65



0 10 20 30 40 50 60 70 80
0

0.01

0.02

|H
|

16 dB

0 10 20 30 40 50 60 70 80
0

2

4
x 10

−8

|H
|

20 dB

0 10 20 30 40 50 60 70 80
0

2

4

6
x 10

−23

|H
|

J

24 dB
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We now prove the lemma in the following fashion,

A′(x)
B′(x)

=
e−

(x−α)2

2σ2 − e−
(x+α)2

2σ2

e−
(x−η)2

2σ2 − e−
(x+η)2

2σ2

=
e−

α2

2σ2

[
e

xα
σ2 − e−

xα
σ2

]
e−

η2

2σ2

[
e

xη

σ2 − e−
xη

σ2

]

=
αe−

α2

2σ2

[
σ2

α e
xα
σ2 − σ2

α e
−xα

σ2

]
ηe−

η2

2σ2

[
σ2

η e
xη

σ2 − σ2

η e
− xη

σ2

]

<
αe−

α2

2σ2

ηe−
η2

2σ2

=
A′′(0)
B′′(0)

,

where the inequality follows from the fact that the function g(y) = 1
ye
xy− 1

ye
−xy is increasing

in (0,∞) for all x > 0, hence

[
σ2

α
e

xα
σ2 −σ2

α
e
−xα

σ2

]
[

σ2

η
e

xη

σ2 −σ2

η
e
− xη

σ2

] < 1 ✷
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Lemma 3.5 Under assumption 3.1, |H|(J̃ ,J̃) as given in equation 3.11 is positive for all

J̃ < η − σ (equivalently B̃ < B(η − σ)).

Proof We use x as a dummy variable. To show that |H|(J̃ ,J̃) > 0, it is sufficient to show

that G(x) = A′(x)
B′(x)B

′′(x) − A′′(x) < 0 in (0, η − σ). Given that the two curves intersect at

x∗, we can think of A
′(x∗)
B′(x∗)B

′′(x∗) as the slope of the λB′(x) curve and A′′(x∗) as the slope

of the A′(x) curve at the intersection point x∗.

Given an intersection at x∗ ∈ (0, η − σ), we have λ = A′(x∗)
B′(x∗) . It follows from lemma 3.4

that λ < A′′(0)
B′′(0) , or λB′′(0) < A′′(0). Since λB′(0) = A′(0) = 0, λB′′(0) < A′′(0) yields

λB′(0+) < A′(0+).

The fact that x∗ is the only intersection point in (0, η − σ) (lemma 3.3) and λB′(0+) <

A′(0+) imply that, at the intersection point x∗, the slope of λB′(x), which is equal to
A′(x∗)
B′(x∗)B

′′(x∗), is larger than the slope of A′(x), which is equal to A′′(x∗). Equivalently,

G(x∗) < 0 for all x∗ ∈ (0, η − σ). ✷

Lemma 3.5 tells us that constant jamming yields a local maximal expected device alarm

rate.

For sporadic jamming, the bordered Hessian can be written as

|H|(Js,0) = −1
2

[
A′′(0)− A′(Js)

B′(Js)
B′′(0)

]
(B′(Js))2

−1
2

[
A′′(Js)− A′(Js)

B′(Js)
B′′(Js)

]
(B′(0))2

= −1
2

[
A′′(0)− A′(Js)

B′(Js)
B′′(0)

]
(B′(Js))2, (3.16)

where the last equality follows from the fact that B′(0) = 0 (equation 3.14).

Figure 3-7 shows the curve of |H|(Js,0) as a function of Js. Notice that for all values

of Js (equivalently for all values of B̃), |H|(Js,0) is negative. Lemma 3.6 verifies this fact

under assumption 3.1.

Lemma 3.6 Under assumption 3.1, |H|(Js,0) as given in equation 3.16 is negative for all

Js < η − σ (equivalently B̃ < 1
2B(0) + 1

2B(η − σ)).

Proof It is sufficient to show that A
′′(0)
B′′(0)B

′(J) > A′(J) for all x. However, this statement
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is exactly the content of lemma 3.4. ✷

Lemma 3.6 tells us that sporadic jamming yields a local minimal expected device alarm

rate.

We now argue that the constraint set defined in equation 3.8 has no end points, i.e.

the constraint set is a continuous region. Notice that the function 1
2B(J1) + 1

2B(J2) is a

continuous function of (J1, J2). Consider the first quadrant of (J1, J2), the constraint set is

a continuous path from (0, Js) to (J̃ , J̃) and finally to (Js, 0). By symmetry of the function

B(J), in the second quadrant, the constraint set is a continuous path from (0, Js) to (−J̃ , J̃)
and finally to (−Js, 0). The constraint set behaves similarly in the third and the fourth

quadrants. Therefore, the constraint set is a continuous path around the origin with no end

points.

Since there is no other jamming attack scenario that corresponds to an extremum in

the constraint set and the constraint set has no end points (no boundary case to check for

a global minimum and a global maximum), we claim that the expected device alarm rates

associated with all other jamming scenarios are bounded by the local maximum and the

local minimum that we found. In other words, (Js, 0) and (0, Js) are indeed global minima.
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Note that the maximal value of B̃ such that both J1 and J2 are still in [0, η − α) is
1
2B(η − α)+ 1

2B(0). To see this, consider when B̃ is greater than 1
2B(η − α) + 1

2B(0). In

this case, a jamming attack at only one bit yielding the BER of B̃ must have a jamming

signal Js greater than η − α; and we no longer have both J1 and J2 in [0, η − σ).

For convenience, we shall use the value 1
2B(η−α) as the upper bound on B̃ since B(0)

is generally very small. In conclusion, we have established the following proposition.

Proposition 3.1 Under assumption 3.1, given the average degraded BER of B̃ < 1
2B(η −

σ), an attack scenario in which an attacker jams at only one out of two bits has the smallest

expected device alarm rate and is therefore the worst case attack scenario.

As a final note, empirical data suggests that proposition 3.1 holds without assump-

tion 3.1. In addition, it also holds regardless of the value of degraded BER (B̃).

3.2.2 Worst Case Scenario for Jamming at T Bits at a Single Network

Node

In this section, we extend the result from the worst case scenario for jamming at two bits

to the worst case scenario for jamming at T (T > 2) bits. Denote the coherent component

(to the transmitted signal) of the jamming signal at the ith bit by Ji. We find the worst

case jamming attack scenario by solving the following minimization problem,

minimize
1
T

T∑
i=1

A(Ji)

subject to B̃ =
1
T

T∑
i=1

B(Ji). (3.17)

The Lagrangean, denoted by L(J1, ..., JT , λ), in this case is 1
T

∑T
i=1 A(Ji)

− λ
(

1
T

∑T
i=1 B(Ji)− B̃

)
. Performing partial differentiation with respect to Ji gives us the

similar condition for an extremum as in equation 3.7 for the case of jamming at two bits,

∂

∂Ji
L = 0 =

1
T
A′(Ji)− λ

1
T
B′(Ji), i = 1, ..., T. (3.18)
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We have from lemma 3.3 that under assumption 3.1 there exists at most one positive

solution to A′(Ji) = λB′(Ji) in (0, η−σ). We shall assume that B̃ < 1
MB(η−σ)+M−1

M B(0) to

guarantee that Ji ∈ [0, η−σ) for all i regardless of the jamming attack scenario. To see why

this assumption is necessary, consider an attack scenario when B̃ > 1
MB(η−σ)+ M−1

M B(0).

In the case of jamming at only one bit, the jamming signal must be greater than η−σ; and

we no longer have that Ji ∈ [0, η− σ) for all i. For convenience, we use 1
MB(η− σ) instead

of 1
MB(η − σ) + M−1

M B(0) as the restriction on B̃ since the value of B(0) is generally very

small.

At a given extremum, lemma 3.3 tells us that each Ji can take only two possible values,

namely zero and a strictly positive value denoted by Jst where t is the number of bits that

are jammed. For the remaining discussion, we shall refer to jamming at t out of T bits with

jamming signal (coherent component) Jst as scenario t. All possible scenarios are 1,2,...,T .

Let At denote the average device alarm rate corresponding to scenario t, we now show

that proposition 3.1 implies that AT > AT−1 > ... > A1. This conclusion is stated as

proposition 3.2.

Lemma 3.7 Let γ < 1
2 . In the problem of jamming at two bits given below

minimize γA(J1) + (1− γ)A(J2)

subject to B̃ = γB(J1) + (1− γ)B(J2),

given assumption 3.1 and B̃ < γB(η−σ), jamming at only one out of the two bits yields the

smallest expected device alarm rate and thus corresponds to the worst case attack scenario.

Proof Note that the condition B̃ < γB(η−σ) ensures that both J1 and J2 are in [0, η−σ).

By differentiating the Lagrangean with respect to Ji, we have the same conditions for an

extremum as in the problem given in expression 3.6, namely A′(Ji) = λB′(Ji). Lemma 3.3

tells us that constant jamming and jamming only at one bit are the only two scenarios that

correspond to the extrema. It remains to investigate the bordered Hessian |H|(J1,J2).
For constant jamming, the expression and the value of |H|(J1,J2) is exactly the same as

equation 3.11 in the problem given in expression 3.6 and thus constant jamming yields a
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local maximal rate of the device alarm.

For sporadic jamming, the value of |H|(J1,J2) is −
[
A′′(0)− A′(Js)

B′(Js)B
′′(0)

]
(B′(Js))2 mul-

tiplied by either γ or (1 − γ) depending on whether J1 or J2 is equal to jamming signal

Js. In either case, |H|(J1,J2) is negative as in the problem given in expression 3.6. Thus

sporadic jamming yields a local minimal rate of the device alarm.

Similarly to the arguments used to construct proposition 3.1, since the constraint set

is bounded and the expected device alarm rate is bounded within the constraint set, we

conclude that jamming at one bit yields the global minimal rate of the device alarm and

thus corresponds to the worst case scenario. ✷

Lemma 3.8 Let Jst be the jamming signal (coherent component) associated with scenario

t in which jamming occurs at t out of T bits and the degraded BER is equal to B̃. Let At be

the expected device alarm rate corresponding to scenario t. Given assumption 3.1 and B̃ <

1
TB(η − σ), for jamming at one network node and at T bits, we have that AT > AT−1 >

... > A1.

Proof The condition B̃ < 1
TB(η − σ) guarantees that Ji ∈ [0, η − σ) for all i. Using

induction, we first show that AT > AT−1 and then show that AT−j > AT−j−1. This will

imply that AT > AT−1 > ... > A1.

Let us compare scenarios T and T − 1 yielding the device alarm rate AT and AT−1

respectively. Notice that comparing these two scenarios is essentially the same as comparing

the two extrema in the problem of lemma 3.7 with γ equal to T−1
T . The extrema of interest

correspond to (J1, J2) equal to (JsT , J
s
T ) for scenario T and equal to (JsT−1, 0) for scenario

T − 1. Lemma 3.7 tells us that AT > AT−1.

Now compare scenarios T − j to scenario T − j−1. Consider the problem of minimizing

the average device alarm rate over the T − j bits that are jammed in scenario T − j. Note

that the device alarm rate contribution from the bits not considered is the same in both

cases, namely T−jT A(0). This problem is again similar to comparing the two extrema in the

problem of lemma 3.7 with γ now equal to T−j−1
T−j and the BER constraint equal to B̃ −

T−j
T B(0). The extrema of interest are (JsT−j , J

s
T−j) and (JsT−j−1, 0). Lemma 3.7 tells us

that AT−j > AT−j−1. ✷
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Proposition 3.2 Under assumption 3.1, given B̃ < 1
TB(η−σ), an attack scenario in which

an attacker jams at only one out of T bits has the smallest expected device alarm rate and

is therefore the worst case attack scenario.

Proof The proposition is the direct consequence of lemma 3.8 for t = 1. ✷

We conclude that given assumption 3.1 and B̃ < 1
TB(η − σ), jamming at only one

out of T bits corresponds to the worst case attack scenario. Finally, our empirical data

suggests that proposition 3.2 holds regardless of assumption 3.1 and the restriction on B̃.

Nevertheless, assumption 3.1 will generally be satisfied in practical scenarios; and the value

of the BER above 1
2B(η−σ) is generally higher than our guaranteed BER by several orders

of magnitude. We shall illustrate these issues with specific examples in chapter 4.

3.3 Worst Case Scenario for Jamming at Multiple Bits at

Multiple Network Nodes

In the previous section, we considered scenarios in which a jammer can attack at multiple

bits but at a single network node. In this section, we consider scenarios in which a jammer

can attack at multiple bits and at multiple network nodes. The final goal is to find the

worst case scenario associated with the smallest expected number of device alarms in an

observation period.

Let J (k)
i denote the jamming signal magnitude (coherent component) at the ith bit at

node k. Since degradation due to the attack propagates along the light path, the overall

BER of the ith bit for an attack with (J (1)
i ,J (2)

i ,...,J (M)
i ) is B(

∑M
k=1 J

(k)
i ), where M is the

number of network nodes in the light path. The average BER in an observation period is

given by

BER =
1
T

T∑
i=1

B

(
M∑
k=1

J
(k)
i

)
. (3.19)

The expected device alarm rate for a given bit depends on how we want to measure

the number of alarm generations in an observation period. One reasonable scheme is to

consider, for any particular bit, that an alarm is generated if at least one of the network

nodes in the light path generates a device alarm. Note that we use this scheme in the

analysis in chapter 2. In this case, the expected device alarm rate in an observation period

72



is given by

Alarm rate (scheme 1) =
1
T

T∑
i=1

[
1−

M∏
k=1

(
1−A(J (k)

i )
)]

. (3.20)

Another reasonable scheme is to sum up the number of alarm generations at each network

node over an observation period, then sum up the number of alarm generations across all

network nodes. The corresponding expected device alarm rate is given by

Alarm rate (scheme 2) =
1
T

T∑
i=1

M∑
k=1

A(J (k)
i ). (3.21)

Searching for the worst case jamming attack scenario is therefore equivalent to solving

the following minimization problem

minimize
1
T

T∑
i=1

[
1−

M∏
k=1

(
1−A(J (k)

i )
)]

for scheme 1

or minimize
1
T

T∑
i=1

M∑
k=1

A(J (k)
i ) for scheme 2

subject to B̃ =
1
T

T∑
i=1

B

(
M∑
k=1

J
(k)
i

)
. (3.22)

We shall concentrate our analysis on scheme 1 and provide comments on scheme 2 in

appendix B. We start by finding the worst case jamming attack scenario among jamming

attacks at a single bit but at multiple network nodes.

Finally, the threshold value α depends on the value ofM . In general, the larger M is, the

smaller α will be since we made a pessimistic assumption that small coherent components

of jamming signals can add up constructively across the light path and affect the BER

significantly. We shall assume that the value of α in the case of M network nodes is a 1/M

times the value of α in the case of one network node. Following our example, for the SNR

= 20 dB, we have α = 0.15
√
P for M = 1 and α = 0.075

√
P for M = 2, and so on.

3.3.1 Worst Case Scenario for an Attack at a Single Bit at Two Network

Nodes

In this section, we solve the minimization problem 3.22 when T = 1 and M = 2 for scheme

1. The solution to the similar problem for scheme 2 is given, for a specific example, in

appendix B.
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Consider the transmission of a single bit over the communication path containing two

network nodes (T = 1,M = 2). Let J (k) denote the jamming signal (coherent component)

at node k. We shall solve the following minimization problem

minimize 1−
[
1−A(J (1))

] [
1−A(J (2))

]
for scheme 1

subject to Ĵ = J (1) + J (2), (3.23)

where Ĵ > 0 and B(Ĵ) = B̂. Note that the constraint given in the problem is equivalent to

the constraint B̂=B(J (1) + J (2)) since B(J) is a one-to-one function.

Note that we use the constant B̂ to distinguish between the degraded BER at a particular

bit due to accumulated jamming signals at M network nodes (B̂ in this section) and the

average degraded BER over an observation period of T bits (B̃ in section 3.2).

For convenience, let C(J) denote the complementary expected device alarm rate function

1 − A(J). In terms of C(J (i)), the objective function of the minimization problem can be

rephrased as minimizing the product −C(J (1))C(J (2)). The Lagrangean and its derivatives

with respect to J (1) and J (2) in this case are

L(J (1), J (2), λ) = −C(J (1))C(J (2))− λ(J (1) + J (2) − Ĵ) (3.24)
∂

∂J (1)
L = 0 ⇒ C ′(J (1))C(J (2)) = −λ (3.25)

∂

∂J (2)
L = 0 ⇒ C(J (1))C ′(J (2)) = −λ (3.26)

∂

∂λ
L = 0 ⇒ J (1) + J (2) = Ĵ . (3.27)

Equations 3.25 and 3.26 yield the following relation

C ′(J (1))
C(J (1))

=
C ′(J (2))
C(J (2))

= constant. (3.28)

Figure 3-8 shows the curve of C ′(J)/C(J). Notice that the function is one-to-one.

Lemma 3.10 verifies this fact under a restriction on J .

Lemma 3.9 Consider the function A(J) as given in equation 3.5.

i) There is a unique positive solution (denoted by J∗) to A′′(J) = 0. Moreover, J∗ > α.

ii) A′(J) > 0 in [0,∞).
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Figure 3-8: (Scheme 1) C ′(J)/C(J) curves for different values of the SNR. Note that the
function is one-to-one.

Proof We use x as a dummy variable. Consider −A′′(x) as the slope of −A′(x). The

expression of −A′(x) is given below

−A′(x) =
1√
2πσ

[
e−

(x+α)2

2σ2 − e−
(x−α)2

2σ2

]
. (3.29)

Note that −A′(x) has the same form as the function given in equation 3.9 of lemma 3.1.

In particular, −α in equation 3.29 takes the place of α in equation 3.9, while α in equa-

tion 3.29 takes the place of η in equation 3.9. Therefore, various properties from lemma 3.1

hold for the function −A′(x).

From lemma 3.1, we know that −A′(x) has only one local maximum located before −α
(< −α) and one local minimum after α (> α). We also know that −A′(x) strictly increases

(from the limit value of 0) in the interval from −∞ to the local maximum, strictly decreases

in the interval from the local maximum to the local minimum, and strictly increases (to the

limit value of 0) in the interval from the local minimum to ∞.

i) It follows that in the interval from 0 to the local minimum, −A′(x) strictly decreses

and therefore −A′′(x) < 0. At the local minimum, we have −A′′(x) = 0. In the interval

from the local minimum to ∞, −A′(x) strictly increases and thus −A′′(x) > 0. Therefore,

we have −A′′(x) = 0 only at the local minimum of −A′(x). In addition, the location of this
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local minimum is in the positive direction of α (> α).

ii) Note that A′(0) = 0 (from equation 3.12). We know that −A′(x) decreases and is

thus negative in [0, J∗). In addition, −A′(x) increases to the limit value of 0 in (J∗,∞).

Therefore, −A′(x) is negative throughout the interval (0,∞), or equivalently A(x) > 0 in

[0,∞). ✷

Lemma 3.10 The function C ′(J)/C(J) strictly decreases in [0, J∗), where J∗ is the unique

positive solution to A′′(J) = 0.

Proof We shall show that C ′(J)/C(J) strictly decreases or equivalently its derivative is

negative in [0, J∗). Consider the derivative of C ′(J)/C(J) given below

d

dJ

(
C ′(J)
C(J)

)
=

C(J)C ′′(J)− (C ′(J))2

(C(J))2

=
−(1−A(J))A′′(J)− (A′(J))2

(C(J))2
. (3.30)

The function on the right hand side of equation 3.30 is continuous since it is the derivative

of a continuous function C ′(J)/C(J). Note that 1−A(J) > 0 for all J since A(J) as given

in 3.5 is the probability value and is thus bounded by 1. In addition, lemma 3.9 tells us

that A′′(J) > 0 in [0, J∗). Applying these facts to the right hand side of equation 3.30, one

can see that the derivative of C ′(J)/C(J) is negative in [0, J∗). ✷

It follows that for any value of Ĵ < 2J∗, an extremum of the objective function

−C(J (1))C(J (2)) must have equal components, namely (Ĵ/2, Ĵ/2), since there is a unique

solution for each J (i) to equations 3.25 and 3.26 which are conditions for an extremum. It

remains to investigate the nature of this extremum.

We now argue that (Ĵ/2, Ĵ/2) is indeed the global minimum of the constraint set J (1)+

J (2) = Ĵ . It is sufficient to show that −C(J (1))C(J (2)) at another point in the constraint

set is larger than −(C(Ĵ/2))2. Consider the point (3Ĵ/2,−Ĵ/2), we have that

−C(3Ĵ/2)C(−Ĵ/2) = −C(3Ĵ/2)C(Ĵ/2)
> −(C(Ĵ/2))2,
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where the equality follows the fact that A(J) is symmetric; and so is C(J) = 1−A(J). The

inequality follows from the fact that C(3Ĵ/2) < C(Ĵ/2) since C(J) is a strictly decreasing

function (its first derivative −A′(J) is negative in [0,∞) as shown in lemma 3.9).

Note that at either end of the constraint set (when (J (1), J (2)) = (−∞,∞) or (∞,−∞)),

the objective function approaches the maximal possible value, i.e. −C(J (1))C(J (2)) ap-

proaches zero. Therefore, we do not approach a global minimum in the limit as we approach

either of these end points.

We conclude that the only extremum (Ĵ/2, Ĵ/2) is indeed the global minimum. Notice

that the condition Ĵ < 2J∗ is equivalent to the condition B̂ < B(2J∗). In general, the value

of J∗ (> α) is approximately close to α. For convenience in later analysis, we choose to

restrict B̂ to be below B(2α). Thus we have established the following proposition.

Proposition 3.3 For scheme 1, given that B̂ < B(2α), an attack scenario in which the

coherent components of jamming signals at the two network nodes are equal has the smallest

expected device alarm rate and is therefore the worst case attack scenario.

Finally, empirical data suggests that lemma 3.10 holds in the range [0,∞). Therefore,

we can expect that proposition 3.3 holds regardless of the restriction on B̂.

3.3.2 Worst Case Scenario for an Attack at a Single Bit at M Network

Nodes

In this section, we extend our result from a scenario in which jamming can occur at two

network nodes to the one in which jamming can occur at M (M > 2) network nodes. We

still consider jamming attacks which degrade the BER of a single transmitted bit. Moreover,

we still adopt scheme 1 as the attack detection scheme. The corresponding minimization

problem is of the form

minimize 1−
M∏
k=1

[
1−A(J (k))

]
for scheme 1

subject to Ĵ =
M∑
k=1

J (k). (3.31)
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The solution to the similar problem for scheme 2 is given, for a specific example, in

appendix B.

As before, let C(J) denote the complementary expected device alarm rate 1 − A(J).

We can rephrase the objective of problem 3.31 as to minimize the product −∏Mk=1 C(J
(k)).

The Lagrangean L(J (1), ...J (M), λ) is equal to −∏Mk=1 C(J
(k)) − λ(

∑M
k=1 J

(k) − Ĵ). Differ-

entiating the Lagrangean with respect to each J (k) yields

−λ = C ′(J (1))
∏
k �=1

C(J (k)) = C ′(J (2))
∏
k �=2

C(J (k)) = ... = C ′(J (M))
∏
k �=M

C(J (k)). (3.32)

Multiplying through by
[∏M
k=1 C(J

(k))
]−1

, we get the following relation,

C ′(J (1))
C(J (1))

=
C ′(J (2))
C(J (2))

= ... =
C ′(J (M))
C(J (M))

,

which is the same condition required for an extremum in the two-node case (equation 3.28).

Lemma 3.10 tells us that C ′(J)/C(J) is a strictly decreasing one-to-one function in [0, J∗).

Given that Ĵ < MJ∗, or equivalently the jamming signal (coherent component) associated

with equal jamming at all M network nodes does not exceed J∗, there exists a unique

extremum at (Ĵ/M, ..., Ĵ/M).

In the same fashion as in the case of two network nodes (M = 2), we can establish that

(Ĵ/M, ..., Ĵ/M) is indeed the global minimum (see the arguments given in section 3.3.1).

For convenience in later analysis, we choose to restrict B̂ to be below B(Mα) instead of

B(MJ∗). Thus we have established the following proposition.

Proposition 3.4 For scheme 1, given B̂ < B(Mα), an attack scenario in which the coher-

ent components of jamming signals at M network nodes are equal has the smallest expected

device alarm rate and is therefore the worst case attack scenario.

Empirical data suggests that proposition 3.4 holds regardless of the restriction on B̂. In

appendix B, we show, for a specific example, that the similar conclusion can be made for

scheme 2 although the restriction on B̂ is tighter in the case of scheme 2.
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3.3.3 Worst Case Scenario for an attack at T Bits at M Network Nodes

This section pursues the final objective of the chapter. We find the worst case attack

scenario when an attacker can jam at multiple bits and at multiple network nodes. To

do so, we solve the previously constructed minimization problem (problem 3.22) which is

presented again below,

minimize − 1
T

T∑
i=1

M∏
k=1

C(J (k)
i ) for scheme 1

or minimize
1
T

T∑
i=1

M∑
k=1

A(J (k)
i ) for scheme 2

subject to B̃ =
1
T

T∑
i=1

B

(
M∑
k=1

J
(k)
i

)
(3.33)

As before, C(J) is the complementary alarm rate function which is equal to 1 − A(J).

In any optimal solution for scheme 1, we must have, for each i, the minimum value of

−∏Mk=1 C(J
(k)
i ) subject the constraint on

∑M
k=1 J

(k)
i . Otherwise, we can reassign the values

of J (k)
i such that their sum remains the same but −∏Mk=1 C(J

(k)
i ) is smaller. The same

arguments can be applied for scheme 2.

Let Ji denote
∑M
k=1 J

(k)
i . In addition, let AM (J) denote the minimal expected device

alarm rate for a single bit for an attack at M network nodes with jamming signals whose

coherent components sum up to J . Similarly, let CM (J) denote the corresponding maximal

complementary expected device alarm rate for a single bit. Using these functions, we can

rewrite our minimization problem as

minimize − 1
T

T∑
i=1

CM (Ji) for scheme 1

or minimize
1
T

T∑
i=1

AM (Ji) for scheme 2

subject to B̃ =
1
T

T∑
i=1

B(Ji). (3.34)

Using the functions AM (J) and CM (J), we can treat the problem as if we were to find

the worst case attack scenario for jamming at multiple bits but at a single network node.

The similar problem is solved in section 3.2. The only difference is the expected device

alarm rate functions AM (J) and −CM (J) in this section instead of A(J) in section 3.2.
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Consider the function CM (J). For J < MJ∗, proposition 3.4 tells us that CM (J)

= (C(J/M))M since the worst case scenario corresponds to the event in which coherent

components of jamming signals at M network nodes are equal. Therefore, we can express

C ′
M (J) and C ′′

M (J) when M > 1 as

d

dJ
CM (J) = (C(J/M))M−1C ′(J/M) (3.35)

d2

dJ2
CM (J) =

M − 1
M

(C(J/M))M−2(C ′(J/M))2 +
1
M

(C(J/M))M−1C ′′(J/M).(3.36)

Note that since C(J) = 1−A(J), we have C ′(J) = −A′(J) and C ′′(J) = −A′′(J).

In what follows, we concentrate on finding the solution to problem 3.33 for scheme 1.

The solution to the similar problem for scheme 2 is given, for a specific example, in appendix

B.

We shall start solving problem 3.33 in the case when T = 2 and then extend the result

to a general case when T > 2. For T = 2, the Lagrangean and its derivatives are

L(J1, J2, λ) = −1
2
[CM (J1) + CM (J2)]− λ

(
1
2
[B(J1) +B(J2)]− B̃

)
(3.37)

∂

∂Ji
L = 0 = C ′

M(Ji)− λB′(Ji), i = 1, 2 (3.38)

∂

∂λ
= 0 =

1
2
B(J1) +

1
2
B(J1)− B̃ (3.39)

Figure 3-9 shows the curves of −C ′
M (Ji) for a few values of M superposed on the curve

of B′(Ji). Since C ′
M (0) = 0 (equation 3.35) and B′(0) = 0 (equation 3.14), 0 is always a

solution to C ′
M (Ji) = λB′(Ji). It follows that there exist extrema of the forms (J̃ , J̃) and

(0, Js) (or (Js, 0)). In any case, an extremum must satisfy conditions 3.38 and 3.39.

The bordered Hessian of the extremum (J̃ , J̃) can be expressed as

|H|(J̃ ,J̃) =
[
C ′′
M (J̃)− C ′

M (J̃)
B′(J̃)

B′′(J̃)

]
(B′(J̃))2. (3.40)

The bordered Hessian of the extrema (Js, 0) and (0, Js) can be expressed as

|H|(Js,0) =
1
2

[
C ′′
M (0)− C ′

M (Js)
B′(Js)

B′′(0)
]
(B′(Js))2. (3.41)
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Figure 3-9: (Scheme 1) The curve of B′(J) superposed on the curves of −C ′
M(J) for a few

values of M . In the range (0, η−√
Mσ), there exists at most one positive intersection point

(η −√
Mσ is 0.45

√
P in this case). The SNR is 20 dB, and α is 0.15

√
P (for M = 1).

In what follows, we shall proceed with a specific example. The conclusion in a general

case is the subject of future research.

Example 3.1

We shall continue with our example case: SNR = 20 dB, α = 0.15
√
P (M = 1). Figure 3-9

shows the curves of −C ′
M(Ji) for a few values of M superposed on the curve of B′(Ji).

We have argued that zero is a solution to equation 3.38; and there exist extrema of the

forms (J̃ , J̃) and (0, Js) (or (Js, 0)).

Consider the range (0, η − σ), for this example, there exists at most one intersection

in (0, η − √
Mσ) (we can consider a larger interval but (0, η − √

Mσ) is large enough

for our purpose and is consistent with the result in section 3.2). Thus, given that B̃ <

1
2B(η−√

Mσ) + 1
2B(0), any extremum must correspond to either constant jamming (J̃ , J̃)

or sporadic jamming (0, Js) (or (Js, 0)).

Figure 3-10 shows the curves of |H|(J̃ ,J̃) in equation 3.40 for different values of M .

Figure 3-11 shows the curves of |H|(Js,0) in equation 3.41 for different values of M . In all

cases, |H|(J̃ ,J̃) > 0 and |H|(Js,0) < 0 in (0, η −√
Mσ). Thus constant jamming corresponds
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Figure 3-10: (Scheme 1) |H|(J̃ ,J̃) as a function of J̃ . In all cases, |H|(J̃ ,J̃) > 0 in (0, η−√
Mσ).

The SNR is 20 dB, and α is 0.15
√
P (for M = 1).
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Figure 3-11: (Scheme 1) |H|(Js,0) as a function of Js. In all cases, |H|(Js,0) < 0 in (0, η −√
Mσ). The SNR is 20 dB, and α is 0.15

√
P (for M = 1).
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to the local maximum while sporadic jamming corresponds to the local minimum.

We have argued in section 3.2.1 that the constraint set defined by equation 3.39 (which

is the same as equation 3.8 in section 3.2.1) has no end points (no boundary). Since there

is no other extremum in this constraint set, it follows that sporadic jamming with (Js, 0)

or (0, Js) yields the smallest expected device alarm rate and thus corresponds to the worst

case attack scenario.

We can extend the result to the case when T > 2 using precisely the same arguments

given in the proof of proposition 3.2 (see section 3.2.2). Therefore, given that CM (Ji) =

(C(Ji/M))M , as long as B̃ < 1
TB(η − √

Mσ) + T−1
T B(0), the worst case attack scenario

corresponds to the event in which a jammer attacks at a single bit, and coherent components

of jamming signals at M network nodes at that bit are equal. For convenience, we choose

to restrict B̃ to be below 1
TB(η −√

Mσ) since the value of B(0) is generally very small.

Finally, to guarantee that our complementary device alarm rate function is indeed given

by CM (Ji) = (C(Ji/M))M , we must have Ji < Mα (proposition 3.4). We thus arrive at

the following conclusion.

In our example, given B̃ < 1
TB(ξ), where ξ = min(Mα, η−√

Mσ), the worst case attack

scenario corresponds to the event in which a jammer attacks at a single bit, and coherent

components of jamming signals at M network nodes at that bit are equal.

Although we have found the worst case attack scenario only for a specific example, the

procedures involved in example 3.1 are so general that we expect the conclusion to hold in

other practical scenarios to be considered in chapter 4.

Finally, in appendix B, we show that the similar conclusion can be obtained, for a

specific example, in the case of scheme 2. However, the restriction on the value of B̃ is

tighter in the case of scheme 2 than in the case of scheme 1.

3.4 Summary

In this chapter, we searched for the worst case in-band jamming attack scenario for a given

value of degraded BER (B̃). In particular, the worst case attack scenario has the smallest

expected numbers of device alarms in a given observation period. We summarize the results

in what follows.
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Restrictions on the Degraded BER

In each scenario in the analysis, we have found the worst case attack scenario given that

the degraded BER B̃ does not exceed a certain value. The restrictions on B̃ depend on the

following parameters.

• M : the number of network nodes in the light path.

• σ2: the variance of a real part and an imaginary part of the AWGN at any bit time

at each network node.

• η =
√
P/2: where P is the ON level signal power of OOK.

• α: threshold of the decision rule for attack detection devices at network nodes.

Assumption on the Attack Detection Device Threshold

We have made assumption 3.1 on the attack detection device threshold α. In particular,

we assume σ < α < η − σ.

Note that assumption 3.1 is generally satisfied when the SNR is sufficiently high since

the value of η and σ will differ significantly.

Worst Case In-band Jamming Attack Scenarios

When a jammer can attack at 1 network node and at T bits, we have shown in a general

case under assumption 3.1 that, given B̃ < 1
T B(η−σ), the worst case scenario corresponds

to the event in which jamming occurs at one out of T bits.

When a jammer can attack at M network nodes and at 1 bit, we have shown (for scheme

1) in a general case under assumption 3.1 that, given B̃ < B(Mα), the worst case scenario

corresponds to the event in which coherent components of jamming signals at M network

nodes are equal.

When a jammer can attack at M network nodes and at T bits, we have shown for

example 3.1 under assumption 3.1 that, given B̃ < 1
TB(ξ) where ξ = min(Mα, η −√

Mσ),

the worst case attack scenario corresponds to the event in which jamming occurs at a single

bit, and coherent components of jamming signals at M network nodes at that bit are equal.

We expect the conclusion in example 3.1 to hold for other practical scenarios to be

considered in chapter 4.
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Chapter 4

Example Attack Detection Systems

Against In-Band Jamming Attacks

Having found the worst-case in-band jamming attack scenarios in chapter 3, we can inves-

tigate the performance of our attack detection scheme under these scenarios.

We start the chapter with a discussion on the calcution of FPattack and FNattack, the

false positive and the false negative probabilities of an attack alarm. We then present a

few examples of attack detection systems together with a suggestion of how to modify our

attack detection scheme to improve its performance.

4.1 Calculation of FPattack and FNattack

In chapter 2, we assume that coherent components of jamming signals at M network nodes

are equal and are constant throughout an observation period of T bits. In addition, we

assume that an alarm is generated at any bit time if at least one of the network nodes in

the light path generates a device alarm (scheme 1). These assumptions enable us to think

of an alarm generation in a given bit time as a Bernoulli random variable, and the number

of device alarms in a given observation period as a binomial random variable.

Under the worst case in-band jamming attack scenarios found in chapter 3, coherent

components of jamming signals atM network nodes are equal but are not constant through-

out an observation period. In this case, we can no longer think of the number of device

alarms as a binomial random variable. In what follows, we shall provide exact expressions

for FPattack and FNattack.
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4.1.1 FPattack and FNattack: Scheme 1

As a reminder, in scheme 1, we consider that a device alarm is generated at a given bit time

if at least one of the network nodes in the light path generates a device alarm. Therefore,

the total number of device alarms in an observation period (denoted by X) is at most T . In

addition, X is the sum of T Bernoulli random variables whose probability of device alarm

generation p is given by

p =




FPend−to−end = 1− (1−A(0))M , no attack

1− FNend−to−end = 1− (1−A(J))M , attack with J at each node
, (4.1)

where A(J) is defined in equation 3.5. For convenience, let po denote the probability of a

device alarm generation given no attack, and pJ denote the probability of a device alarm

generation given a coherent component of the jamming signal at each of the M network

nodes equal to J .

Under no attack, we can express FPattack as

FPattack = Pr {X ≥ β | no attack}

=
T∑
i=β

(
T

i

)
pio(1− po)T−i, (4.2)

where β is the threshold value for an attack alarm. We shall assume throughout the chapter

that β is an integer greater than or equal to 1.

Under the worst case attack scenario, coherent components of jamming signals are equal

at M network nodes but jamming occurs at one out of T bits. Let the jamming signal

(coherent component) at each network node be J . It follows that X is the sum of two types

of Bernoulli random variables: one Bernoulli random variables with probability of device

alarm generation pJ , and (T − 1) Bernoulli random variables with probability of device

alarm generation po.

Let XJ denote the value of the Bernoulli random variable associated with pJ , and Xo

denote the sum of (T − 1) Bernoulli random variables associated with po. It is easy to see

that X = XJ +Xo. We can calculate FNattack in the following fashion

FN1 bit
attack = Pr {X ≤ β − 1 | attack}
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=
1∑
i=0

Pr {XJ = i}Pr {Xo ≤ β − 1− i}

=
1∑
i=0

(
1
i

)
piJ(1− pJ)1−iPr {Xo ≤ β − 1− i}

=
1∑
i=0

(
1
i

)
piJ(1− pJ)1−i

β−1∑
j=0

(
T − 1
j

)
pjo(1− po)T−1−j . (4.3)

Similarly, given that coherent components of jamming signals are equal at M network

nodes and are equal in a period of t bits (t < T ). we have that

FN t bits
attack =

t∑
i=0

(
t

i

)
piJ(1− pJ)t−i

β−1∑
j=0

(
T − t

j

)
pjo(1− po)T−t−j . (4.4)

4.1.2 FPattack and FNattack: Scheme 2

As a reminder, in scheme 2, we count the number of device alarms in an observation

period by summing the number of device alarm generations at each network node over an

observation period of T bits, and then summing the number of device alarm generations

across all M network nodes.

In this case, the total number of device alarms in an observation period of T bits (denoted

by X) is at most TM . In addition, X is the sum of TM Bernoulli random variables whose

probability of device alarm generation p is given by

p =




FPnode = A(0), no attack

1− FNnode = A(J), attack with J at each node
. (4.5)

For convenience, let po denote the probability of an alarm generation given no attack,

and pJ denote the probability of an alarm generation given a coherent component of the

jamming signal at each of the M network nodes equal to J .

Using the same procedures as in the case of scheme 1, we can calculate the values of

FPattack and FNattack in the following fashion

FPattack =
TM∑
i=β

(
TM

i

)
pio(1− po)TM−i (4.6)

FN1 bit
attack =

M∑
i=0

(
M

i

)
piJ(1− pJ)M−i

β−1∑
j=0

(
M(T − 1)

j

)
pjo(1− po)M(T−1)−j (4.7)
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FN t bits
attack =

tM∑
i=0

(
tM

i

)
piJ(1− pJ)tM−i

β−1∑
j=0

(
M(T − t)

j

)
pjo(1− po)M(T−t)−j . (4.8)

4.2 Requirements on the Attack Detection Scheme Perfor-

mance

The performance of our proposed attack detection scheme depends on the following param-

eters.

• SNR: The signal-to-noise ratio of the communication path of interest.

• M : The number of network nodes in the communication path.

• T : The number of bits observed, or an observation period of the attack detection

scheme.

• B̃: The maximal tolerable BER.

• α: The threshold value for device alarm generation at an attack detection device at

each network node (first-level alarm).

• β: The threshold value for attack alarm generation (second-level alarm).

• FP attack: Upper limit on the probability of concluding that there is an attack yielding

the BER above B̃ when there is none.

• FNattack: Upper limit on the probability of concluding that there is no attack yielding

the BER above B̃ when there is one.

The design parameters are dependent on one another. Therefore, we shall specify some

parameters and find the corresponding values of the others. In particular, we shall assume

that the values of SNR and M are given. Moreover, we are given the requirements on the

attack detection scheme performance in terms of B̃, FP attack, and FNattack. We then find

the appropriate values for α, β, and T such that the constructed attack detection system

satisfies all the requirements, or conclude that it is not possible to construct such an attack

detection scheme.
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4.3 Examples of Attack Detection Schemes

We present in this section examples of attack detection schemes against in-band jamming

attacks. We concentrate on scheme 1 of the attack detection scheme. Comments on scheme

2 of the attack detection scheme can be found in appendix B.

Example 4.1

Assume the following parameters: SNR = 24 dB, M=1, B̃ = 10−10, FP attack = 10−8, and

FNattack = 10−8.

For SNR = 24 dB, assumption 3.1 is satisfied given that α is between 0.0315
√
P and

0.4685
√
P (where P is the ON level signal power of OOK). Proposition 3.2 tells us that in

the worst case attack scenario jamming occurs at only one out of T bits in an observation

period.

By trial and error, an appropriate value of T is 104. The corresponding threshold values

are α = 0.22
√
P , and β = 1.

We calculate FPattack in the following fashion

FPattack = 1− Pr{no alarm}
= 1− (1− po)10,000

≈ 3.09 × 10−8,

where po is given in equation 4.1.

On the other hand, we can calculate FNattack as follows

FNattack = Pr{no alarm}
= (1− po)9,999 × (1− pJ)

≈ 3.55 × 10−8,

where po and pJ are given in equation 4.1.

Therefore, by setting the parameters α = 0.22
√
P , β = 1, and T = 104, we can construct

an in-band jamming attack detection system that generates an attack alarm whenever the

average BER in an observation period exceeds 10−10.
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Example 4.2

Assume the following parameters: SNR = 24 dB, M=10, B̃ = 10−8, FP attack = 10−8, and

FNattack = 10−8. Notice that except for M , all the other parameters have the same values

as in example 4.1.

It turns out that we cannot construct an attack detection scheme that can handle the

worst case attack scenario in this case. Consider the following results under the worst case

attack scenarios. Note that FPattack and FNattack are calculated in the similar manner as

in example 4.1.

For T = 1, 000 (α = 0.07
√
P , β = 1), we have FPattack ≈ 2.27×10−8 . The corresponding

FNattack is ≈ 0.995.

For T = 104 (α = 0.075
√
P , β = 1), we have FPattack ≈ 2.53×10−9. The corresponding

FNattack is ≈ 0.995.

For T = 105 (α = 0.075
√
P , β = 1), we have FPattack ≈ 2.58×10−8. The corresponding

FNattack is ≈ 0.9974.

This example shows that varying the value of T hardly affects the performance of the at-

tack detection system under the worst case scenarios. We conclude that an attack detection

system satisfying the given restrictions cannot be constructed.

In the next example, we demonstrate that an attack detection scheme can be constructed

in the case of M = 10 if we are willing to use a higher SNR and relax the performance

requirement on B̃.

Example 4.3

Assume the following parameters: SNR = 28 dB, M=10, B̃ = 10−4, FP attack = 10−8, and

FNattack = 10−8. Notice that except for the SNR and B̃, all the other parameters have the

same values as in example 4.2.

In this case, an appropriate value of T is 1,000. The corresponding threshold values are

α = 0.043
√
P , and β = 1.

Using the same method as in example 4.1. We have FPattack ≈ 8.42 × 10−8 and

FNattack ≈ 5.18× 10−8.

Therefore, by setting the parameters α = 0.043
√
P , β = 1, and T = 1, 000, we can
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construct an in-band jamming attack detection scheme that generates an attack alarm

whenever the BER exceeds 10−4.

As a final note, in this particular example, B̃ is so high that the restriction B̃ < 1
TB(ξ)

as given in example 3.1 is not satisfied. Nevertheless, we have verified in this case that

C ′(J)/C(J) is one-to-one beyond α and that the restriction on B̃ (such that lemma 3.10 and

proposition 3.4 hold) can be relaxed. Accordingly, the worst case scenario still corresponds

to the event in which coherent components of jamming signals are equal at 10 network

nodes but jamming occurs at only one bit.

Note that we have to increase both the SNR and B̃ so that our attack detection scheme

can handle worst case attack scenarios. However, these modifications are a high price to pay.

In the next section, we propose an alternative method of modifying our attack detection

scheme to handle worst case in-band jamming attack scenarios using hard limiters at the

input to network nodes.

4.4 Modification to the Attack Detection Scheme Using Hard

Limiters at the Input to Network Nodes

As a reminder, this work concentrates on in-band jamming attacks which are performed in

the following fashion. An attacker gains access to an adjacent input link to a network node

shared by a legitimate light path. Using crosstalk at network node components, an attacker

can insert in-band jamming signals to a legitimate light path. To insert jamming signals

with large magnitudes, an attacker must use signals with very high power as inputs to the

network node.

Under the worst case attack scenarios, an attacker performs sporadic jamming by insert-

ing jamming signals at only a fraction of transmitted bits. To degrade the BER by sporadic

jamming, the jammer needs to insert jamming signals of large magnitudes, or equivalently

input signals with very high instantaneous power to the network node.

A “hard limiter” is a device that limits the power of signals passing through it. In the

presence of hard limiters, an attacker cannot degrade the BER by inserting input signals

with high instantaneous power to affect a small fraction of bits since the excess power will

be cut off.
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Note that jamming signals have relatively high power compared to the signal power

under normal operation; therefore, the presence of hard limiters will not affect normal

operation of our communication system.

Provided that the jammer attacks at a sufficiently large number of bits, the worst case

attack scenario corresponds to the event in which coherent components of jamming signals

at M network nodes are equal but jamming occurs at only t(t > 1) out of T bits. We shall

refer to this worst case attack scenario as scenario t in what follows.

When the value of t is sufficiently high, our attack detection scheme will be able to

distinguish between the presence and the absence of an attack. Finally, finding the cut-

off power level of a hard limiter is equivalent to finding a value of t∗ such that scenario

t > t∗ will be detected by our attack detection scheme. We shall demonstrate this with an

example.

Example 4.4

We shall continue with the scenario in example 4.2, namely SNR = 24 dB, M=10, B̃ =

10−8, FP attack = 10−8, and FNattack = 10−8.

Appropriate values are T = 1, 000, α = 0.04
√
P , β = 9, and t∗ = 15. Under scenario t∗,

we can calculate FPattack using equation 4.2 and FNattack using equation 4.4. In this case,

FPattack ≈ 1.76 × 10−8, and FNattack ≈ 4.56 × 10−9.

Let Jst denote the coherent component of jamming signals at each network node at any

bit time in scenario t. We claim that all attack scenarios associated with lower expected

device alarm rates must have at a jamming signal (accumulated coherent components across

10 nodes) greater than Jst∗ at least at one bit time.

To justify the claim, imagine trying to decrease the expected device alarm rate by

modifying scenario t∗. To decrease the expected device alarm rate, we need an attack

scenario in which jamming is more sporadic in nature (a consequence of the results from

chapter 3). In order to achieve the same BER by jamming more sporadically, we need both

weaker and stronger jamming signals.

We conclude that the attack detection system constructed in this example (with T =

1, 000, α = 0.04
√
P , and β = 9) can detect all jamming attacks given that the jamming

signal (accumulated coherent components across 10 nodes) at each bit time does not exceed
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Jst∗ , which is ≈ 0.354
√
P .

Based on Jst∗ and the knowledge of component crosstalk levels, we can accordingly assign

a cut-off power level for hard limiters at network nodes. For example, if the crosstalk level

is at -20 dB, in this case, we can set the cut-off power level at the input to each of the 10

network nodes to be ≈ 3.54
√
P .

Finally, to make sure that we have the same conclusion for the worst case attack scenarios

as in example 3.1, we need to have B̃ less than 1
TB(ξ) (see example 3.1). In this case

ξ = Mα = 0.40
√
P and 1

TB(ξ) ≈ 3.8× 10−7. So the restriction on B̃ is satisfied.

4.5 Summary

In this chapter, we present a few examples of attack detection systems. In addition, we have

also given an example in which our proposed attack detection scheme fails to detect the

worst case jamming attack scenario. With a modification to the attack detection scheme

using hard limiters at the input to network nodes, we are able to construct an attack

detection scheme that can handle the worst case jamming attack scenarios, and thus all

jamming attack scenarios.
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Chapter 5

Summary and Directions for

Future Research

5.1 Summary of Results

In this section, we provide an overview of what we accomplished in this work. The detailed

explanations are provided in the summaries at the end of all chapters.

We proposed a novel attack detection scheme which is able to detect a wider variety of

jamming attacks than any of the existing methods described in chapter 1. We have shown

in chapter 2 that under some rather pessimistic jamming attack scenarios, our proposed

attack detection scheme performs satisfactorily both in the case of in-band jamming and in

the case of out-of-band jamming causing gain competition at EDFAs.

To further investigate the performance of our approach for detecting in-band jamming

attacks, we searched among all jamming attack scenarios yielding the same degraded level of

BER for the worst case attack scenario, which corresponds to the lowest expected number of

device alarms in an observation period, and consequently the smallest probability of being

detected. The worst case in-band jamming attack scenarios are the subject of chapter 3. We

found the worst case attack scenarios under some restrictions which are generally satisfied

in practical scenarios some of which are considered in chapter 4.

In chapter 4, we analyzed the performance of our attack detection scheme under the

worst case in-band jamming attack scenarios found in chapter 3. In particular, we presented

an example such that the proposed attack detection scheme constructed up to that point
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could not detect the worst case attack scenarios. We then proposed a modification to

the attack detection scheme using hard limiters at the input to network nodes. Finally,

we showed that the modified detection scheme can detect the worst case jamming attack

scenarios, and thus all jamming attack scenarios.

5.2 Applicability of the Attack Detection Scheme

Notice that our attack detection scheme does not distinguish between the sources of inter-

fering signals which corrupt transmitted signals. In particular, the attack detection device

at the network node generates an alarm whenever the output of the detection device is

greater than a certain threshold. The cause of an alarm may in fact be the signal inserted

to the network node by the jammer, or simply the noise which happens to be at a signif-

icantly high level. Therefore, to be more precise, it may be more appropriate to view an

“attack alarm” as an alarm notifying an excessive level of degraded BER. However, to keep

the motivation clear, and to avoid some ambiguities which may arise in some parts of this

work, we decided to keep the notion of an “attack alarm”.

As a result, our proposed attack detection scheme can be applied to satisfy a more

general purpose of maintaining a certain level of BER, which is a general performance

metric, in a communication path.

5.3 Directions for Future Research

While we performed an analysis on the effects of in-band jamming attacks and searched for

the worst case in-band jamming attack scenarios, a parallel analysis is yet to be done in

the case of out-of-band jamming attacks causing gain competitions at EDFAs at network

nodes.

We obtained empirical data which suggests the validity of various theoretical results

in chapter 3 without restrictions and assumptions that we adopted for the purpose of the

proofs. It will be useful to have alternative proofs of theoretical results in chapter 3 which

do not rely on the assumptions that we made.
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Appendix A

Proofs of Various Lemmas

Lemma 3.1 Given that λ > 0, η > α, consider the function f(x) of the form

f(x) =
1√
2πσ2

e−
(x−α)2

2σ2 − λ
1√
2πσ2

e−
(x−η)2

2σ2 .

f(x) has the following characteristics:

i) There is a unique solution to f(x) = 0.

ii) f(x) has a unique local maximum and a unique local minimum.

iii) Let xmax and xmin denote the locations of the maximum and the minimum

respectively. We have xmax < α < η < xmin.

iv) As x increases from −∞ to xmax, f(x) strictly increases from the limit value of 0

to f(xmax) and has a single saddle point where f(x) changes from convexity (3) to

concavity (4).

v) As x increases from xmax to xmin, f(x) strictly decreases.

vi) As x increases from xmin to ∞, f(x) strictly increases from f(xmin) to the limit

value of 0 and has a single saddle point at which f(x) changes from convexity (3) to

concavity (4).

Proof Figure A-1 shows some example curves of f(x).

i) To show that f(x) = 0 has a unique solution, we can simplify the equation f(x) = 0

to the following form

−(x− α)2 = −(x− η)2 + 2σ2 lnλ,

which we can solve to obtain a unique answer xo = η2−α2−2σ2 lnλ
2(η−α) .
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xo

xmax

x

f(x)

xmax

xo
x

f(x)

xmax

xo
x

f(x)

Case i)

Case ii)

Case iii)

Figure A-1: Illustrations of f(x) in three different cases for the proof of lemma 3.3.
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ii) Consider the first derivative of f(x) given below

f ′(x) = − x− α√
2πσ3

e−
(x−α)2

2σ2 + λ
x− η√
2πσ3

e−
(x−η)2

2σ2 . (A.1)

When x is in [α, η], f ′(x) is strictly negative and thus f(x) strictly decreases in [α, η]. In

the limit as x → −∞, the first term dominates and we have limx→−∞ f ′(x) > 0. As x →
∞, the second term dominates and we have limx→∞ f ′(x) > 0.

Based on the fact that limx→−∞ f(x)=0 and limx→−∞ f ′(x) > 0, we know f(x) increases

from the limit value of 0 as x increases from −∞. Since f(x) is continuous and has a zero

crossing (solution) at xo, f(x) must have at least one local maximum. Since f(x) decreases

in the range [α, η], there exists a local maximum xmax and xmax < α. Similar arguments

can be made to show that there exist a local minimum xmin and xmin > η.

Consider the expression of f ′(x) in equation A.1. Denote the term x−α√
2πσ3 e

− (x−α)2

2σ2 by

f1(x) and the term λ x−η√
2πσ3 e

− (x−η)2

2σ2 by f2(x). Consider the ratio between f1(x) and f2(x)

given below

f1(x)
f2(x)

=
(x− α)
λ(x− η)

× e−
(x−α)2

2σ2

e−
(x−η)2

2σ2

. (A.2)

We can think of f1(x)f2(x)
as the product of two quantities whose derivatives are given by

d

dx

(
x− α

λ(x− η)

)
= − η − α

λ(x− η)2
< 0, x �= η

d

dx


e−

(x−α)2

2σ2

e−
(x−η)2

2σ2


 = −η − α

σ2
e−

2x(η−α)+α2−η2

2σ2 < 0.

Since f1(x)f2(x)
is a product of two strictly decreasing quantities, it must be a strictly decreas-

ing function. Although f1(x)
f2(x) has discontinuity at η, it still holds that f1(x)

f2(x) is a decreasing

function in both intervals (−∞, η) and (η,∞).

Since f1(x)f2(x)
strictly decreases in (−∞, η), xmax is the only value of x in (−∞, η) at which

f1(x)
f2(x)

is equal to 1, or equivalently f ′(x) is equal to 0. From the fact that f(x) strictly

decreases in [α, η], we know that there cannot be an extremum in [α, η]. Therefore, xmax is

the only extremum (which happens to be a local maximum) in (−∞, α) (⊂ (−∞, η)).

By the same arguments, xmin is the only value of x in (η,∞) at which f ′(x) = 0. Thus

xmin is the only extremum (which happens to be a local minimum) in (η,∞).
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We conclude that f(x) has only one local maximum and one local minimum.

iii) The proof follows directly from the arguments given in the proof of ii)

iv), vi) Since there is no extremum in (−∞, xmax) and limx→−∞ f ′(x) > 0 and f(x) is

continuous in (−∞, xmax) , f(x) strictly increases in (−∞, xmax). Similarly, since there is

no extremum in (xmin,∞) and limx→∞ f ′(x) > 0 and f(x) is continuous in (xmin,∞), f(x)

strictly increases in (xmin,∞).

Consider the second derivative of f(x) as shown below

f ′′(x) =
1√
2πσ5

[
(x− α)2 − σ2

]
e−

(x−α)2

2σ2 − λ
1√
2πσ5

[
(x− η)2 − σ2

]
e−

(x−η)2

2σ2 . (A.3)

Note that in the limit, limx→−∞ f ′′(x) > 0 and limx→∞ f ′′(x) < 0. Let g1(x) and g2(x)

denote the first and the second terms of f ′′(x) in equation A.3 as follows

g1(x) =
1√
2πσ5

[
(x− α)2 − σ2

]
e−

(x−α)2

2σ2

g2(x) = λ
1√
2πσ5

[
(x− η)2 − σ2

]
e−

(x−η)2

2σ2 .

We shall use the similar argument as in the proof of ii). Consider the ratio g1(x)g2(x)
as the

product of two quantities

g1(x)
g2(x)

=
1
λ

(x− α)2 − σ2

(x− η)2 − σ2
× e−

(x−α)2

2σ2

e−
(x−η)2

2σ2

.

We find the derivatives of both quantities to be

d

dx

(
1
λ

(x− α)2 − σ2

(x− η)2 − σ2

)
=

−2(η − α)
[
(x− η)(x− α) + σ2

]
λ [(x− η)2 − σ2]2

< 0, x < α or x > η, x �= η ± σ

d

dx


e−

(x−α)2

2σ2

e−
(x−η)2

2σ2


 = −η − α

σ2
e−

2x(η−α)+α2−η2

2σ2 < 0,

where we use the fact that x < α or x > η to arrive at the first inequality.

Since g1(x)
g2(x) is the product of two strictly decreasing quantities, it must also be a strictly

decreasing function of x in (−∞, α) and in (η,∞), except possibly at discontinuties which
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occur at η ± σ.

We now argue that f ′′(xmax) < 0 and f ′′(xmin) > 0, since a twice differentiable function

must be concave 4 at a local maximum and convex 3 at a local minimum. Since limx→−∞

f ′′(x) > 0, or equivalently f ′′(x) is convex 3 in the limit, there must be at least one saddle

point where f(x) changes from convexity (3) to concavity (4) in (−∞, xmax). Similarly,

since limx→∞ f ′′(x) < 0, or equivalently f ′′(x) in concave 4 in the limit, there must be

at least one saddle point where f(x) changes from convexity (3) to concavity (4) in

(xmin,∞).

If xmax < η − σ, we have in the range (−∞, xmax) (⊂ (−∞, η − σ)) a unique saddle

point xs at which g1(xs)
g2(xs) = 0 since there must be at least one saddle point in (−∞, xmax).

We shall show that even if xmax ≥ η − σ, we still have a unique saddle point in

(−∞, xmax). Since g1(x
s)

g2(xs) strictly decreases in (−∞, η − σ), (η − σ, η + σ), and (η + σ,∞),

we can have at most one saddle point in each of the three intervals.

At the point of discontinuity η − σ, we have from equation A.3 that

f ′′(η − σ) =
1√
2πσ5

[
(η − α− σ)2 − σ2

]
e−

(η−α−σ)2

2σ2 ,

which is equal to 0 only if η − α = 2σ. However, for xmax ≥ η − σ, we must have η − σ ≤
xmax < α or η − α < σ. So it cannot happen that η − α = 2σ and η − σ is not a saddle

point when xmax ≥ η − σ.

As a result, for xmax > η−σ, we can have either one or two saddle points in (−∞, xmax).

In the case of one saddle point, we must have one saddle point in either (−∞, η − σ) or

(η − σ, xmax) (⊂ (η − σ, η + σ)). In the case of two saddle points, one of the saddle points

is in (−∞, η − σ) and the other is in (η − σ, xmax) (⊂ (η − σ, η + σ)). We do not have to

consider saddle points in [η + σ,∞) since we know that xmax < α < η + σ.

However, since limx→−∞ f ′′(x) > 0 and f ′′(xmax) < 0, we cannot have an even number

of saddle points in (−∞, xmax). Thus we have a unique saddle point in (−∞, xmax) for

xmax ≥ η − σ.

We now repeat the same arguments to show that there is a unique saddle point in

(xmin,∞). If xmin > η+σ, we have in (xmin,∞) (⊂ (η+σ,∞)) a unique saddle point since

we have argued that there must be at least one saddle point in (xmin,∞).
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At the point of discontinuity η + σ, we have from equation A.3 that

f ′′(η + σ) =
1√
2πσ5

[
(η − α+ σ)2 − σ2

]
e−

(η−α+σ)2

2σ2 ,

which is never equal to 0 since η > α. It follows that η + σ is not a saddle point when

xmin ≤ η + σ.

Therefore, for xmin < η + σ, we can have either one or two saddle points in (xmin,∞).

In the case of one saddle point, we must have one saddle point in either (xmin, η + σ)

(⊂ (η−σ, η+σ)) or (η+σ,∞). In the case of two saddle points, one of the saddle points is

in (xmin, η+σ) (⊂ (η−σ, η+σ)) and the other is in (η+σ,∞). We do not have to consider

saddle points in (−∞, η − σ] since we know that η − σ < η < xmin.

However, since limx→∞ f ′′(x) < 0 and f ′′(xmin) > 0, we cannot have an even number

of saddle points in (xmin,∞). Thus we have a unique saddle point in (xmin,∞) for xmin ≤
η + σ.

v) Since there is a unique local maximum and a unique local minimum and there is no

other extreme point, it follows that the function f(x) must strictly decrease as we move

from xmax to xmin. ✷

Lemma 3.2 Under assumption 3.1, f(x) as defined in equation 3.9 has a strictly

decreasing second derivative in (xs, α], where xs denotes the unique saddle point in

(−∞, xmax).

Proof Under assumption 3.1, f ′′(x) decreases in (α−√
3σ, α] since in (α−√

3σ, α], both

terms g1(x) and −g2(x) in equation A.3 have negative derivatives, and at x = α, g1(x) has

a zero derivative while −g2(x) has a negative derivative.

We are left to show that f ′′(x) decreases in the region (xs, α−√
3σ]. Consider the third

derivative of f(x) given below

f ′′′(x) =
1√
2πσ7

(α − x)
[
(x− α)2 − 3σ2

]
e−

(x−α)2

2σ2

−λ 1√
2πσ7

(η − x)
[
(x− η)2 − 3σ2

]
e−

(x−η)2

2σ2 . (A.4)

Let h1(x) and h2(x) denote the first and the second terms of f ′′′(x) in equation A.4 as
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follows

h1(x) =
1√
2πσ7

(α− x)
[
(x− α)2 − 3σ2

]
e−

(x−α)2

2σ2

h2(x) = λ
1√
2πσ7

(η − x)
[
(x− η)2 − 3σ2

]
e−

(x−η)2

2σ2 .

We can express h1(x)
h2(x) as the product of two quantities

h1(x)
h2(x)

=
1
λ

(x− α)
[
(x− α)2 − 3σ2

]
(x− η) [(x− η)2 − 3σ2]

× e−
(x−α)2

2σ2

e−
(x−η)2

2σ2

.

The derivative of the second term in equation A.4 is

d

dx


e−

(x−α)2

2σ2

e−
(x−η)2

2σ2


 = −η − α

σ2
e−

2x(η−α)+α2−η2

2σ2 < 0,

while the derivative of the first term in equation A.4 is

d

dx

(
1
λ

(x− α)
[
(x− α)2 − 3σ2

]
(x− η) [(x− η)2 − 3σ2]

)

=
(x− η)

[
(x− η)2 − 3σ2

] [
3(x− α)2 − 3σ2

]
λ(x− η)2 [(x− η)2 − 3σ2]2

−(x− α)
[
(x− α)2 − 3σ2

] [
3(x− η)2 − 3σ2

]
λ(x− η)2 [(x− η)2 − 3σ2]2

(A.5)

< 0 (to be justified), x ≤ α−
√
3σ. (A.6)

To justify inequality A.6, let h3(x) denote the numerator of the right hand side of

equation A.5. We choose to ignore the denominator since it is always positive because

λ > 0 and we only want to know about the sign of the derivative, which is the same as the

sign of h3(x) whose expression is given by

h3(x) = (x− η)
[
(x− η)2 − 3σ2

] [
3(x− α)2 − 3σ2

]
−(x− α)

[
(x− α)2 − 3σ2

] [
3(x− η)2 − 3σ2

]
. (A.7)

For x ∈ (xs, α−√
3σ), we have x < α−√

3σ and it is easy to verify that all the quantities

in square brackets are positive. Using the fact that x− η < x− α, we can bound h3(x) in
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equation A.5 by

h3(x) < (x− α)
[
(x− η)2 − 3σ2

] [
3(x− α)2 − 3σ2

]
−(x− α)

[
(x− α)2 − 3σ2

] [
3(x− η)2 − 3σ2

]
= (x− α)× 6σ2

[
(x− η)2 − (x− α)2

]
< 0,

where the last inequality follows from the fact that x ∈ (xs, α−√
3σ), hence x < α.

For x = α−√
3σ, we have from equation A.7 that

h3(x) = (x− η)
[
(x− η)2 − 3σ2

] [
3(x− α)2 − 3σ2

]
< 0,

since the quantities in the square brackets are positive and x < η by assumption 3.1.

Thus h1(x)
h2(x) is a product of two strictly decreasing quantities and it is therefore a strictly

decreasing function of x in (xs, α−√
3σ]

We have just shown that there can be at most one point x̂ ∈ (xs, α−√
3σ) (⊂ (−∞, α−

√
3σ)) such that f ′′′(x̂) = 0. We shall show that f ′′′(xs) < 0, or equivalently h1(xs)

h2(xs) < 1.

Since h1(x)h2(x)
is decreasing in (xs, α − √

3σ], this result will imply that h1(x)h2(x)
< 1 for all x ∈

(xs, α −√
3σ]. We can then conclude that there does not exist such an x̂ in (xs, α −√

3σ]

and f ′′(x) is decreasing in (xs, α−√
3σ].

To show that f ′′′(xs) < 0, we can rewrite and bound the expression for f ′′′(x) as follows

f ′′′(x) = − 1√
2πσ7

(x− α)
[
(x− α)2 − 3σ2

]
e−

(x−α)2

2σ2

+λ
1√
2πσ7

(x− η)
[
(x− η)2 − 3σ2

]
e−

(x−η)2

2σ2

= −x− α

σ2

[
(x− α)2 − σ2

√
2πσ5

]
e−

(x−α)2

2σ2 + λ
x− η

σ2

[
(x− η)2 − σ2

√
2πσ5

]
e−

(x−η)2

2σ2

+
2
σ2

x− α√
2πσ3

e−
(x−α)2

2σ2 − λ
2
σ2

x− η√
2πσ3

e−
(x−η)2

2σ2

< −x− η

σ2
f ′′(x)− 2

σ2
f ′(x),

where we have used the fact that x− α > x− η to construct the inequality. By definition,
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f ′′(xs) = 0 and since xs < xmax we have from lemma 3.1 that f ′(xs) > 0. It then follows

from the above expression that f ′′′(xs) < 0. ✷

Lemma 3.3 Given λ > 0, and assumption 3.1, there is at most one positive solution to

the equation A′(J) = λB′(J) in (0, η − σ).

Proof In what follows, we use x as a dummy variable for the argument of all relevant

functions (x takes the role of J). We can express A′(x) - λB′(x) as

A′(x)− λB′(x) =
1√
2πσ2

[
e−

(x−α)2

2σ2 − λe−
(x−η)2

2σ2

]
− 1√

2πσ2

[
e−

(x+α)2

2σ2 − λe−
(x+η)2

2σ2

]

= f(x)− f(−x),

where f(x) is defined as in lemma 3.1. Let xo, xmax, xmin denote its unique solution (zero

crossing), the only local maximum, and the only local minimum respectively. Lemma 3.1

has helped us understand the behaviour of f(x).

Let x∗ denote the smallest positive value such that f(x∗) −f(−x∗) = 0. Note that x∗

may or may not exist. Finding x∗ is equivalent to finding a point of intersection between

f(x) and f(−x). For convenience, let f−(x) denote f(−x). We shall provide the proof for

three separate cases which cover all the possibilities (see the illustration in figure A-1).

i) xo ≤ 0: We shall show that no intersection exists in (0, xmin). From part iii) of

lemma 3.1, we know that xmin > η. It then follows that there cannot be an intersection in

(0, η − σ) (⊂ (0, xmin)).

To show that no intersection exists in (0, xmin), consider two distinct cases: −xo > xmin

and −xo ≤ xmin. When −xo > xmin, we have that f(0) = f−(0) and f(x) is decreasing

while f−(x) is increasing in (0, xmin). Therefore, there cannot be an intersection in (0, xmin).

When −xo ≥ xmin, we have that f(0) = f−(0) and f(x) is decreasing while f−(x) is in-

creasing in (0, xo). Therefore, there cannot be an intersection in (0, xo). In [xo, xmin), f−(x)

is non-negative while f(x) is strictly negative. Therefore, there cannot be an intersection

in [xo, xmin). In conclusion, there cannot be an intersection in (0, xmin).

ii) xo > 0, xmax ≤ 0: We first argue there is no intersection in (0,−xmax] since f(0) =

f−(0) and f(x) remains below f(0) while f−(x) is increasing in (0,−xmax].
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Consider three separate intervals: (0, α], (α,α + σ], and (α+ σ, η − σ). We shall argue

that there can be no intersection in any of them.

• Consider the interval (0, α]. If −xmax ≥ α, there is no intersection in (0, α] since there

is no intersection in (0,−xmax]. So we consider the case when −xmax < α. In this

case, the intersection, if exists, must lie in (−xmax, α].

Let xs denote the unique saddle point in (−∞, xmax). In addition, let δ > 0 and

xmax + δ ≤ α. We have the following inequality.

|f ′(xmax + δ)| = −
∫ xmax+δ

xmax
f ′′(x)dx

> −
∫ xmax

xmax−δ
f ′′(x)dx (A.8)

= |f ′(xmax − δ)|,

where the inequality is justified in the case xmax − δ > xs from the fact that f ′′(x) is

decreasing in (xs, α] (lemma 3.2); and in the case xmax − δ < xs from the fact that

f ′′(x) is nonnegative in (xmax − δ, xs] and is decreasing in (xs, α].

Let ε ∈ (−xmax, α] and δ = xmax + ε (the difference of xmax and −ε). Consider the

following sequence of inequalities.

f(ε)− f(−ε) =
∫ ε
xmax

f ′(x)dx+
∫ xmax

−ε
f ′(x)dx

=
∫ xmax

xmax−δ
f ′(x)dx+

∫ xmax+δ

xmax
f ′(x)dx+

∫ ε
xmax+δ

f ′(x)dx

=
∫ xmax

xmax−δ
|f ′(x)|dx−

∫ xmax+δ

xmax
|f ′(x)|dx+

∫ ε
xmax+δ

f ′(x)dx

< 0 +
∫ ε
xmax+δ

f ′(x)dx

< 0, (A.9)

where the first inequality is the direct result from A.8 and the second inequality follows

from the fact that f ′(x) < 0 in (xmax, α] (⊃ (xmax + δ, ε)).

Inequality A.9 asserts that there can be no intersection in (−xmax, α]. Furthermore,

inequalities A.9 and A.8 tell us that, given −xmax < α, f(α) < f−(α) and f ′(α) <

f ′−(α) (equivalently f(x) decreases faster than f−(x) at x = α).
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For convenience, we define the components of f(x) as fα(x) and fη(x) whose expressions

are given below,

f(x) = fα(x) + fη(x) (A.10)

fα(x) =
1√
2πσ2

e−
(x−α)2

2σ2 (A.11)

fη(x) = −λ 1√
2πσ2

e−
(x−η)2

2σ2 . (A.12)

Figure A-2 shows example curves of fα(x) and fη(x).

• Consider the interval (α,α+σ]. If −xmax ≥ α+σ, there is no intersection in (0, α+σ]

since there is no intersection in (0,−xmax]. So we consider the case when −xmax <

α+ σ.

Under assumption 3.1, f(x) is strictly concave 4 in (α,α + σ] since fα(x) and fη(x)

are both decreasing and concave 4 (see figure A-2). Therefore, f(x) is decreasing and

concave 4 at every point in (α,α+ σ]. On the other hand, the contribution of fα(x)

to f−(x) is decreasing but convex 3, while the contribution of fη(x) is increasing.

An additional condition that f ′(α) < f ′−(α) will lead to the conclusion that f(x) is

decreasing faster than f−(x) at every point in (α,α+ σ].

For −xmax < α, we have shown that f(α) < f−(α) and f ′(α) < f ′−(α). For −xmax > α

(f(x) is decreasing and f−(x) is increasing at x = α), we have that f(α) < f−(α)

and f ′(α) < 0 < f ′−(α). In both cases, we have that f(α) < f−(α) and f(x) de-

creases faster than f−(x) at every point in (α,α + σ]. Therefore, there cannot be an

intersection in (α,α + σ].

Consequently, given that −xmax < α + σ, we have that f(α + σ) < f−(α + σ) and

f ′(α+ σ) < f ′−(α+ σ).

• Consider the interval (α + σ, η − σ]. If −xmax ≥ η − σ, there is no intersection in

(0, η − σ] since there is no intersection in (0,−xmax]. So we consider the case when

−xmax < η − σ.

In (α + σ, η − σ), the contributions of fα(x) to f(x) and f−(x) are both decreasing

and convex 3. However, at any particular point x ∈ (α+ σ, η − σ), the contribution

of fα(x) to f(x) corresponds to a point on the normal curve (with the bell shape)
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α(x)
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α−√
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α
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√
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η(x)

f ′′
η (x)

Figure A-2: fα(x) and fη(x) as defined in equations A.11 and A.12.
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whose distance from the center of the curve (equivalently the mean) is smaller than

the distance from the mean of the point on the normal curve corresponding to the

contribution of fα(x) to f−(x). Therefore, the contribution of fα(x) to f(x) decreases

faster than its contribution to f−(x). On the other hand, the contribution of fη(x) to

f(x) is decreasing and concave 4, while its contribution to f−(x) is increasing. An

additional condition that f ′(α+ σ) < f ′−(α+ σ) will lead to the conclusion that f(x)

is decreasing faster than f−(x) at every point in (α+ σ, η − σ].

For −xmax < α+σ, we have shown that f(α+σ) < f−(α+σ) and f ′(α+σ) < f ′−(α+σ).

For −xmax > α + σ (f(x) is decreasing and f−(x) is increasing at x = α + σ), we

have that f(α + σ) < f−(α + σ) and f ′(α + σ) < 0 < f ′−(α + σ). In both cases, we

have that f(α+ σ) < f−(α+ σ) and f(x) decreases faster than f−(x) at every point

in (α+ σ, η − σ]. Therefore, there cannot be an intersection in (α+ σ, η − σ].

iii) xo > 0, xmax > 0: We first argue there is no intersection in (0, xmax] since f(0) =

f−(0) and f(x) is increasing while f−(x) is decreasing in (0, xmax]. Consider two separate

intervals: (xmax, α) and [α, η − σ).

• We now show that there can be at most one intersection in (xmax, α). Given that x∗

is an intersection point and the fact that f(xmax) > f−(xmax), we must have that

f ′(x∗) < f ′
−(x

∗), (A.13)

since the intersection must occur before xo and both f(x) and f−(x) are decreasing

in (xmax, xo). For f(x) and f−(x) to intersect, f(x) has to decrease faster than f−(x)

at the intersection point.

Consider a point x ∈ (x∗, α) and let ε = x − x∗. We shall show that f ′(x) < f ′−(x)

using the following sequence of inequalities.

f ′(x)− f ′
−(x) = f ′(x∗) +

∫ x∗+ε
x∗

f ′′(x)dx

−f ′
−(x

∗)−
∫ x∗+ε

x∗
f ′′
−(x)dx

= f ′(x∗) +
∫ x∗+ε
x∗

f ′′(x)dx
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−f ′
−(x

∗)−
∫ −x∗

−x∗−ε
f ′′(x)dx

< 0 +
∫ x∗+ε

x∗
f ′′(x)dx−

∫ −x∗

−x∗−ε
f ′′(x)dx (A.14)

< 0, (A.15)

where the inequality A.14 follows from inequality A.13. We now prove inequality A.15.

Let xs denote the unique saddle point in (−∞, xmax) (lemma 3.1, part iv)). If xs <

−x∗− ε, then inequality A.15 holds as a consequence of lemma 3.2. If −x∗− ε ≤ xs <

−x∗, we have that
∫ xs

−x∗−ε
f ′′(x)dx > 0 (A.16)

0 >
∫ −x∗

xs
f ′′(x)dx >

∫ −xs

x∗
f ′′(x)dx (A.17)

∫ x∗+ε
−xs

f ′′(x)dx < 0, (A.18)

where inequality A.16 follows from the fact that f(x) is convex 3 in (−∞, xs). In-

equality A.17 follows as a consequence of lemma 3.2. Inequality A.18 follows since f(x)

is concave 4 in (xs, α) (⊃ (−xs, α)). Combining inequalities A.16, A.17 and A.18,

inequality A.15 holds.

If −x∗ < xs, we have that f(x) is convex 3 in (−x∗−ε,−x∗). Note that x∗ > xs since

x∗ > xmax (there is no intersection in (0, xmax]) and xmax > xs (f(x) must be concave

4 at a local maximum so xs must lie before xmax). It follows that (x∗, x∗+ε) ⊂ (xs, α)

and thus f(x) is concave 4 in (x∗, x∗ + ε). As a result,

∫ −x∗

−x∗−ε
f ′′(x)dx > 0 (A.19)

∫ x∗+ε
x∗

f ′′(x)dx < 0. (A.20)

Combining inequalities A.19 and A.20, inequality A.15 holds.

Therefore, after the intersection point x∗, f(x) decreases faster than f−(x) at all points

in (x∗, α). It follows that there can be at most one intersection point in (xmax, α).

In addition, if there exists an intersection point in (xmax, α), we can assert that

f(α) < f−(α) and f ′(α) < f ′−(α).
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• Consider the interval [α, η − σ). We shall show that, given an intersection in (0, α),

there can be no additional intersection in [α, η−σ). In addition, given no intersection

in (0, α), there is at most one intersection in [α, η − σ).

We first show that −xs < α, i.e. f−(x) is convex 3 in [α,∞). Since xs is the only

saddle point in (−∞, xmax) where f(x) changes from being convex 3 to being concave

4 (lemma 3.1), it is sufficient to show that f ′′(−α) > 0.

Since we are in case iii) where xmax > 0, we must have that f ′(0) > 0. From

equation A.1, we can find a bound on λ as shown below.

λ <
α

η
e−

α2

2σ2 + η2

2σ2 (A.21)

Consider the following expression for f ′′(−α) obtained from equation A.3,

f ′′(−α) =
1√
2πσ5

[
(4α2 − σ2)e−

4α2

2σ2 − λ(α2 + η2 + 2αη − σ2)e−
α2+η2+2αη

2σ2

]

>
1√
2πσ5

[
(4α2 − σ2)e−

4α2

2σ2 − α

η
e−

α2

2σ2 + η2

2σ2 (α2 + η2 + 2αη − σ2)e−
α2+η2+2αη

2σ2

]

=
e−

2α2

2σ2

√
2πσ5

[
(4α2 − σ2)e−

2α2

2σ2 −
(
α

η
(α2 − σ2) + αη + 2α2

)
e−

2αη

2σ2

]

=
e−

2α2

2σ2

√
2πσ5

(
2α2

[
e−

2α2

2σ2 − e−
2αη

2σ2

]
+
[
α2e−

2α2

2σ2 − αηe−
2αη

2σ2

]

+(α2 − σ2)
[
e−

2α2

2σ2 − α

η
e−

2αη

2σ2

])
(A.22)

> 0, (A.23)

where the first inequality is the direct result of inequality A.21. The second inequality

results from the fact that all quantities in square brackets in equation A.22 are positive

and from assumption 3.1. It is easy to see that the quantities in the first and the

third square brackets are positive. The quantity in the second square bracket is

positive since the function xe−
x

σ2 is decreasing in (σ2,∞), equivalently its derivative(
1− x

σ2

)
e−

x
σ2 is negative in (σ2,∞).

In conclusion, we have shown that

f ′′
−(x) > 0, x ∈ [α,∞). (A.24)
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Let xs2 < xs3 < xs4 < ... < xsK denote all the saddle points, if exist, in [α, η − σ).

Note that xsK denotes the last saddle point before η − σ. We shall consider each of

the following intervals: [α, xs2), [xs2, xs3), [xs3, xs4), ..., [xsK , η − σ). We shall show

that in each of these intervals, the following two properties hold.

1. If an intersection occurs before the interval, there can be no additional intersec-

tion in the interval.

2. If no intersection occurs before the interval, there can be at most one intersection

in the interval.

In what follows, we prove the two properties for each interval. Note that both f(x)

and f−(x) are decreasing in all the intervals we consider.

– Consider the interval [α, xs2). We now show that, given an intersection before

α (in (xmax, α)), there is no additional intersection in [α, xs2). As a reminder,

we have shown that, given an intersection before α, f(α) < f−(α) and f ′(α) <

f ′−(α).

Let x ∈ [α, xs2) and ε = x− α. Consider the following sequence of inequalities.

f ′(x)− f ′
−(x) = f ′(α) +

∫ α+ε

α
f ′′(x)dx

−f ′
−(α) −

∫ α+ε

α
f ′′
−(x)dx

<

∫ α+ε

α
f ′′(x)dx−

∫ α+ε

α
f ′′
−(x)dx

< 0,

where the first inequality holds since f ′(α) < f ′−(α) and the second inequality

holds since f ′′(α) < 0 (a consequence of lemma 3.2) and thus f(x) is concave 4

in [α, xs2), while f−(x) is convex 3 in [α, xs2) (inequality A.24). Since f(α) <

f−(α) and f(x) decreases faster than f−(x) at every point in [α, xs2), there

is no additional intersection in [α, xs2). In addition, since f(α) < f−(α) and

f ′(α) < f ′−(α), we have that f(xs2) < f−(xs2) and f ′(xs2) < f ′−(xs2).

Note that if there is no saddle point in [α, η − σ) (equivalently xs2 does not

exist), the fact that f ′(α) < f ′−(α) and f(x) is concave 4 while f−(x) is convex
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3 tells us that f(x) decreases faster than f−(x) at every point in [α, η − σ) and

no additional intersection is possible in [α, η − σ).

Given that there is no intersection before α (in (xmax, α)), we now show that

there is at most one intersection in [α, xs2). As a reminder, we have in this case

that f(α) > f−(α) since f(0) = f−(0), f ′(0) > 0 > f ′−(0), and no intersection

has occured before α.

Let x∗ denote the smallest point of intersection, if exists, in [α, xs2). Since

f(α) > f−(α) and both f(x) and f−(x) are decreasing, we must have that

f ′(x∗) < f ′−(x∗).

We argue that f(x) decreases faster than f−(x) at every point in (x∗, xs2)

since f ′(x∗) < f ′−(x∗) and f(x) is concave 4 while f−(x) is convex 3 (in-

equality A.24). Therefore, there can be no additional intersection in (x∗, xs2).

Moreover, given that x∗ exists in [α, xs2), we have that f(xs2) < f−(xs2) and

f ′(xs2) < f ′−(xs2).

Finally, if there is no saddle point in [α, η − σ) (equivalently xs2 does not exist),

we can let x∗ denote the smallest intersection point in [α, η − σ). The fact that

f ′(x∗) < f ′−(x∗) and f(x) is concave 4 while f−(x) is convex3 (inequality A.24)

tells us that f(x) decreases faster than f−(x) at every point in (x∗, η − σ) and

no additional intersection is possible in (x∗, η − σ).

– Consider the interval [xs2, xs3). We now show that, given an intersection before

xs2, there is no additional intersection in [xs2, xs3). As a reminder, we have shown

that, given an intersection before xs2, f(xs2) < f−(xs2) and f ′(xs2) < f ′−(xs2).

In [xs2, xs3), f(x) is decreasing and convex3 (by the definition of xs2). Similarly,

f−(x) is decreasing and convex3 (inequality A.24). However, we claim that f(x)

decreases faster than f−(x) at every point in [xs2, xs3). This claim together with

the fact that f(xs2) < f−(xs2) imply that there is no additional intersection in

[xs2, xs3), f(xs3) < f−(xs3), and f ′(xs3) < f ′−(xs3).

We now argue why the claim that f(x) decreases faster than f−(x) is true. In

[xs2, xs3), the contribution of fα(x) to f(x) is decreasing faster than its con-

tribution to f−(x) since the interval [xs2, xs3) is closer to α than the interval
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(−xs3,−xs2] and fα(x) is convex 3 in both intervals. At the same time, in

[xs2, xs3), the contribution of fη(x) to f(x) is decreasing while its contribution

to f−(x) is increasing. An additional fact that f ′(xs2) < f ′−(xs2) leads to the

conclusion that f(x) decreases faster than f−(x) at every point in [xs2, xs3) and

our claim is justified.

If xs3 does not exist, we can conclude that, given an intersection before xs2, there

can be no additional intersection in [xs2, η − σ).

Given that there is no intersection before xs2, we now show that there is at

most one intersection in [xs2, xs3). As a reminder, we have in this case that

f(xs2) > f−(xs2) since f(0) = f−(0), f ′(0) > 0 > f ′−(0), and no intersection has

occured before xs2

Let x∗ denote the smallest point of intersection, if exists, in [xs2, xs3). Since

f(xs2) > f−(xs2) and both f(x) and f−(x) are decreasing, we must have that

f ′(x∗) < f ′−(x∗).

We argue that f(x) decreases faster than f−(x) at every point in (x∗, xs3) since

f ′(x∗) < f ′−(x∗) and we have argued that the overall contribution of fα(x) and

fη(x) to f(x) is decreasing faster than the overall contribution of fα(x) and

fη(x) to f−(x) in [xs2, xs3) (⊃ (x∗, xs3)). Therefore, there can be no additional

intersection in (x∗, xs3). Moreover, given that x∗ exists in [xs2, xs3), we have that

f(xs3) < f−(xs3) and f ′(xs3) < f ′−(xs3).

Finally, if xs3 does not exist, we can let x∗ denote the smallest intersection

point in [xs2, η − σ). In this case, we still have that f ′(x∗) < f ′−(x∗) and f(x)

decreases faster than f−(x) at every point in [x∗, η−σ). Therefore, there can be

no additional intersection in (x∗, η − σ).

– Consider the interval [xs3, xs4). Similar to the case of interval [α, xs2), f(x) is

decreasing and concave 4 while f−(x) is decreasing and convex 3.

It follows that the proof that there can be no additional intersection in [xs3, xs4)

given an intersection before xs3, and that there can be at most one intersection in

[xs3, xs4) given no intersection before xs3, is similar to the proof for the interval

[α, xs2) and is thus omitted.

113



– Consider the interval [xs4, xs5). Similar to the case of interval [xs4, xs5), both

f(x) and f−(x) are decreasing and convex 3. However, the overall contribution

of fα(x) and fη(x) to f(x) is decreasing faster than the overall contribution of

fα(x) and fη(x) to f−(x).

It follows that the proof that there can be no additional intersection in [xs4, xs5)

given an intersection before xs4, and that there can be at most one intersection in

[xs4, xs5) given no intersection before xs4, is similar to the proof for the interval

[xs2, xs3) and is thus omitted.

The proofs for the other intervals can be done in the same fashion as in either [α, xs2) or

[xs2, xs3). We conclude that, given an intersection before α, there can be no additional

intersection in [α, η−σ). On the other hand, given no intersection before α, there can

be at most one intersection in [α, η − σ).

Combining the results for the intervals (0, xmax], (xmax, α), and [α, η − σ), we conclude

that there can be at most one intersection in (0, η − σ). ✷
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Appendix B

Comments on Scheme 2 of the

Attack Detection System

In this section, we shall find the worst case attack scenario under scheme 2 for a particular

example in which the SNR is 20 dB, and the attack detection device threshold α is 0.15
√
P

(M = 1). The analysis presented in this section is done in parallel with the work in section

3.3.

However, all the results presented in this appendix are not derived theoretically as in

some parts of section 3.3. Our approach in solving the corresponding minimization problem

in this appendix is based on various observations of the function curves. Our goal is to

compare the results obtained for scheme 2 to the results for scheme 1. Establishing the

theoretical results in a general case under scheme 2 is the subject of future research.

In what follows, we rely on the same set of notations as in section 3.3.

B.1 Attack at a Single Bit at Two Network Nodes

Finding the worst case scenario in this case is equivalent to solving for J (1) and J (2) in the

following optimization problem.

minimize A(J (1)) +A(J (2)) for scheme 2

subject to Ĵ = J (1) + J (2), (B.1)
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Figure B-1: (Scheme 2) The curve of A′(Ji) superposed on the curves of λ for different
values of λ (λ > 0). Note that there are at most two positive intersection points. In this
plot, the SNR is 20 dB, and α is 0.15

√
P (for M = 1).

The Lagrangean and its derivatives with respect to J (1) and J (2) are

L(J (1), J (2), λ) = A(J (1)) +A(J (2))− λ(J (1) + J (2) − Ĵ) (B.2)
∂

∂J (k)
L = 0 = A′(J (k))− λ, k = 1, 2, (B.3)

Consider the curve of A′(J) superposed on the constant curve λ (λ > 0) as shown in

figure B-1. By observation (without theoretical proof), we can see there are at most two

positive intersection points for any positive λ.

As a result, an extremum could correspond to constant jamming with (J (1), J (2)) =

(Ĵ/2, Ĵ/2), or sporadic jamming with (J (1), J (2)) = (Ja, Jb) or (Jb, Ja), where Jb > Ja.

We can investigate the nature of these extrema by evaluating the bordered Hessian of

the Lagrangean which is

|H|(J(1),J(2)) =

∣∣∣∣∣∣∣∣∣∣

0 −1 −1
−1 A′′(J (1)) 0

−1 0 A′′(J (2))

∣∣∣∣∣∣∣∣∣∣
= −A′′(J (1))−A′′(J (2)). (B.4)
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Figure B-2: (Scheme 2) The curve of A′′(J). Note that there is a unique positive value J∗

such that A′′(J∗) = 0. In this plot, the SNR is 20 dB, and α is 0.15
√
P (for M = 1).

For constant jamming, the bordered Hessian |H|(Ĵ/2,Ĵ/2) of the Lagrangean is equal to

−2A′′(Ĵ/2). Figure B-2 shows the curve of A′′(J). Note that there is a unique value denoted

by J∗ at which A′′(J∗) = 0 (lemma 3.9). Observe that A′′(J) > 0 in (0, J∗) and A′′(J) < 0

in (J∗,∞).

It follows that (Ĵ/2, Ĵ/2) corresponds to a local minimum for Ĵ < 2J∗ and a local

maximum for Ĵ > 2J∗.

We next investigate the extrema of the form (Ja, Jb) and (Jb, Ja). We claim that

Ja+Jb > 2J∗. To see this, note that the condition Ja+Jb > 2J∗ is equivalent to Jb−J∗ >

J∗ − Ja. This inequality holds for all values of Ja and Jb if the reflection of A′(J), J > J∗

across J = J∗ into the region (0, J∗) is above the graph of A′(J) in (0, J∗). Figure B-3

verifies the claim for this example.

Therefore, given that Ĵ < 2J∗, the local minimum (Ĵ/2, Ĵ/2) is the only extremum

in the constraint set of problem B.1. At either end point of this constraint set, i.e. when

(J (1), J (2)) = (−∞,∞) or (∞,−∞), we have that the expected alarm rate takes the maximal

possible value of 2 since limJ→±∞A(J) = 1. Therefore, the objective function cannot be

minimized in the limit (at the end points). We conclude that (Ĵ/2, Ĵ/2) is indeed the global

minimum.
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Figure B-3: (Scheme 2) The curve of A′(J) together with its reflection across J∗, where
A′′(J∗) = 0. Note that the reflection of A′(J) lies above A′(J) in the interval [0, J∗).

In summary, given that B̂ < B(2J∗), the wost case attack scenario corresponds to the

event in which coherent components of jamming signals at two network nodes are equal.

B.2 Attack at a Single Bit at Multiple Network Nodes

In this case, the corresponding optimization problem is

minimize
M∑
k=1

A(J (k)) for scheme 2

subject to Ĵ =
M∑
k=1

J (k). (B.5)

The Lagrangean L(J (1), ..., J (M), λ) is equal to
∑M
k=1 A(J

(k)) − λ(
∑M
k=1 J

(k) − Ĵ). Dif-

ferentiating the Lagrangean yields the same condition for each J (k) as in the two-node case,

namely A′(J (k)) = λ (equation B.3). As before, each J (k) can take only one of the two

values denoted by Ja and Jb, where Jb > Ja.

Using the results from the case of jamming at 1 bit and 2 network nodes (section B.1),

we claim that, for B̂ < B(2J∗), the worst case scenario corresponds to the event in which

coherent components of jamming signals at all M network nodes are equal.
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To see that the above claim is true, note that Ja+Jb > 2J∗ (see section B.1). It follows

that, for Ĵ < 2J∗ (equivalently B(Ĵ) < B(2J∗)), J (k) can take only a single value since

the sum of two distinct values of J (k) exceeds 2J∗. Therefore, there is only one extremum

(Ĵ/M, ..., Ĵ/M). We now argue that this extremum is indeed the global minimum.

We shall proceed by contradiction. Assume there exists a scenario with jamming signals

(coherent components) denoted by (J∗(1), J∗(2)..., J∗(M)) such that not all signals are equal;

and this scenario yields the lowest expected device alarm rate. Consider two unequal signals

in such a scenario, namely J∗(i1) and J∗(i2). Based on the optimality of equal jamming

signals (coherent components) at two network nodes when J∗(i1) + J∗(i2) < 2J∗, it follows

that there exists a lower expected device alarm rate when both J∗(i1) and J∗(i2) are equal

to 1
2J

∗(i1) + 1
2J

∗(i2). We thus arrive at a contradiction.

In summary, given that B̂ < B(2J∗), the wost case attack scenario corresponds to the

event in which coherent components of jamming signals at M network nodes are equal.

In general, the value of J∗ (> α) is approximately close to α. For convenience in later

analysis, we choose to restrict B̂ to be below B(2α) instead of B(2J∗) (as in the analysis

for scheme 1 in section 3.3).

B.3 Attack at Multiple Bits at Multiple Network Nodes

Based on the discussion in section 3.3.3, the corresponding optimization problem in this

case is given in problem 3.34 which we represent again below for convenience.

minimize
1
T

T∑
i=1

AM (Ji) for scheme 2

subject to B̃ =
1
T

T∑
i=1

B(Ji) (B.6)

We have argued in section B.2 that, given J < 2α, AM (J) = MA(J/M). In this case,

we can express A′
M (J) and A′′

M (J) as A′(J/M) and 1
MA′′(J/M) respectively.

Consider again the optimization problem B.6, the Lagrangean and its derivatives are

equal to

L(J1, J2, λ) =
1
2
[AM (J1) +AM (J2)]− λ

(
1
2
[B(J1) +B(J2)]− B̃

)
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Figure B-4: (Scheme 2) The curve of B′(J) superposed on the curves of A′
M (J) for a few

values of M . In the range (0, η−√
Mσ), there exists at most one positive intersection point

(η −√
Mσ is 0.45

√
P in this case). The SNR is 20 dB, and α is 0.15

√
P (for M = 1).

∂

∂Ji
L = 0 = A′

M (Ji)− λB′(Ji). (B.7)

Figure B-4 shows the curves of A′
M (Ji) for a few values of M superposed on the curve

of B′(Ji). Note that 0 is always a solution to A′
M (Ji) = λB′(Ji) since A′

M (0) = A′(0) = 0

(equation 3.12) and B′(0) = 0 (equation 3.14).

Consider the range (0, η−√
Mσ), there exists at most one intersection in (0, η−√

Mσ).

Thus, given that B̃ < 1
2B(η − √

Mσ), any extremum must correspond to either constant

jamming (J̃ , J̃) or sporadic jamming (0, Js) (or (Js, 0)).

The bordered Hessian of the extremum of the form (J̃ , J̃) can be expressed as

|H|(J̃ ,J̃) = −
[
1
M

A′′(J̃/M)− A′(J̃/M)
B′(J̃)

B′′(J̃)

]
(B′(J̃))2. (B.8)

Figure B-5 shows the curves of |H|(J̃ ,J̃) as given in equation B.8 as a function of J̃ for

different values of M . Observe that in all cases, |H|(J̃ ,J̃) > 0 in (0, η − √
Mσ) and thus

constant jamming corresponds to a local maximal expected device alarm rate.

For the extrema of the form (Js, 0) or (0, Js). Their bordered Hessian can be expressed
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Figure B-5: (Scheme 2) |H|(J̃ ,J̃) as a function of J̃ . In all cases, |H|(J̃ ,J̃) > 0 in (0, η−√
Mσ).

The SNR is 20 dB, and α is 0.15
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Figure B-6: (Scheme 2) |H|(Js,0) as a function of Js. In all cases, |H|(Js,0) < 0 in (0, η −√
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as

|H|(Js,0) = −1
2

[
1
M

A′′(0) − A′(Js/M)
B′(Js)

B′′(0)
]
(B′(Js))2. (B.9)

Figure B-6 shows the curves of |H|(Js,0) as given in equation B.9 for different values of

M . Observe that |H|(Js,0) < 0 in (0, η −√
Mσ) and thus sporadic jamming corresponds to

a local minimal expected device alarm rate.

Since there is no other extremum and since the constraint set in problem B.6 has no

boundary (note that this constraint set is the same as the one defined by equation 3.39 and

we have argued in section 3.2.1 that it has no boundary), sporadic jamming with (Js, 0)

or (0, Js) yields the smallest expected device alarm rate and thus corresponds to the worst

case attack scenario.

We can extend the result to the case when T > 2 using the same arguments given in the

proof of proposition 3.2 in section 3.2.2. To do so, we must make sure that all the arguments

given in proof of proposition 3.2 are still valid. Notice that as long as the desired average

BER is less than 1
TB(η −√

Mσ), we are in the region that all the arguments in the proof

of proposition 3.2 can still be applied.

Therefore, given the device alarm rate function AM (Ji) = MA(Ji/M), for jamming at

M network nodes and at T bits, as long as B̃ < 1
TB(η − √

Mσ), the worst case attack

scenario corresponds to the event in which jamming occurs at a single bit.

To make sure that our alarm rate function is indeed AM (Ji) = MA(Ji/M), we must

guarantee that Ji < 2α (section B.2). Therefore, given that B̃ < 1
TB(ξ), where ξ =

min(2α, η−√
Mσ), the worst case attack scenario corresponds to the event in which jamming

occurs at a single bit, and coherent components of jamming signals at M network nodes at

that particular bit are equal.

In comparison to the results for scheme 1, we can see that the restriction on the value

of degraded BER (denoted by B̃) is tighter for scheme 2 than for scheme 1. In both cases,

the restriction on B̃ can be expressed as B̃ < 1
TB(ξ). The values of ξ are given below.

ξ =




min(Mα, η −√
Mσ) for scheme 1

min(2α, η −√
Mσ) for scheme 2

(B.10)
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