
International Journal of Web Services Practices, Vol.3, No.1-2 (2008), pp. 1-11

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

1

Abstract—Organizations expect Web Services to make their

information systems more agile so they can better adapt to
changes in business requirements. Hence, this technology's design
principles focus on interoperability and flexibility to give
developers the ability to customize, reuse and enhance
functionalities as well as non-functionalities such as security,
transactions and reliable messaging.

In particular, an effective Web Services customization must
give application developers simple and expressive ways to
program the changes they need without losing any capabilities
available in the platform.

We propose customization with Web Services Extensions and
present the concept, its core mechanisms and its implementation
on the STEP Framework, an open-source multi-layer Java
enterprise application framework.

Index Terms—Customization, Java, STEP Framework, Web
Services.

I. INTRODUCTION
HE internet allows an open and dynamic business

environment, where information and communication
technologies enable new and innovative ways to collaborate
and create value. Organizations use sophisticated software to
connect to their partners [1].

Enterprise applications for the Internet have heavy-duty
requirements: users in high numbers and diverse profiles, large
volumes of complex data, unsettled business rules, and several
integration interfaces with other applications [2].

The main challenge of Enterprise applications is change: the
needs of the customers change, businesses must also change
and so do their systems. Because of this, Enterprise
applications benefit from being agile i.e., adapting more easily
to requirement changes.

Manuscript received June 6, 2008. Joana Paulo Pardal is supported by

SFRH/BD/30791/2006 PhD fellowship from FCT. Sérgio Miguel Fernandes is
supported by SFRH/BD/41857/2007 PhD fellowship from FCT.

M. Pardal is a Lecturer at Department of Computer Science and Engineering
(DEI) of Instituto Superior Técnico (IST), Technical University of Lisbon
(UTL), Av. Rovisco Pais, 1049-001 Lisboa, Portugal; phone: +351 919 473
933; fax: +351 213 145 843; (e-mail: miguel.pardal@ist.utl.pt).

S. Miguel Fernandes is a Researcher at Software Engineering Group of
INESC-ID and a Lecturer at DEI (e-mail: sergio.fernandes@inesc-id.pt).

J. Martins is a Researcher at Software Engineering Group of INESC-ID and
a Lecturer at DEI (e-mail: jorge.b.martins@inesc-id.pt).

J. Paulo Pardal is a Researcher at Spoken Language Systems Laboratory
(L²F) of INESC-ID and a Lecturer at DEI (e-mail:
joana.pardal@l2f.inesc-id.pt).

Web Services (WS) [3] and Service-Oriented Architectures
(SOA) [4] address the need for agility at the technology and
architecture levels, respectively.

II. WEB SERVICES
WS technology is designed for the implementation of

Enterprise applications guided by service-oriented principles
[5]: Formal contract; Loose coupling; Encapsulation;
Composability; Reusability; Autonomy; and Discoverability.

Abiding to all these principles during Enterprise application
development is a significant investment in future reuse. The
single most important principle is using formal contracts to
ensure correct client-server integration.

A WS is an access endpoint to data and functional resources
of Enterprise applications. Fig. 1 exemplifies how a client
application interacts with a WS.

The WS endpoint is published in an UDDI [6] directory
where a client discovers its location. The available data and
operations are described in XSD (XML Schema Definition) [7]
and WSDL (Web Services Description Language) [8]. The
client generates invocation stubs that perform run-time data
conversion to SOAP [9] message format. Additional
requirements are described in WS-Policy [10]. Libraries are
engaged to satisfy these requirements both on the client and on
the server, and control data is added to the SOAP message
headers. The client invokes the service (using a transport
protocol, like HTTP [11]) and the service is executed.

XSD, WSDL, WS-Policy and SOAP all are based on XML
[12].

Customizing Web Services with Extensions
in the STEP framework

Miguel Pardal, Sérgio Miguel Fernandes, Jorge Martins and Joana Paulo Pardal

T

Fig. 1. Web Services client-server interaction.

International Journal of Web Services Practices, Vol.3, No.1-2 (2008), pp. 1-11

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

2

A. Standards
WS technology is defined by standards that leverage

Internet network protocols and other open standards. Fig. 2
shows WS-Map [13], a broad and vendor-independent
standards index.

WS-Map categorizes WS standards in a set of categories that
give a sense of the technology's broad scope: Data
representation; Transport; Message; Contract; Discovery;
Security; Transactions; Management; and Interoperability.

The data representation standards address the problem of
heterogeneous data representation i.e., how to represent data in
a format that is equally understood by everyone. XML is at the
base of all other WS standards.

The transport standards define ways to establish a
communication channel between a client and a WS. The
communication can be synchronous or asynchronous, meaning
that the client blocks waiting for an answer from the remote WS
or not, respectively.

The message standards define the structure of the
communication units and the ways they can be exchanged
between services. SOAP is also a fundamental standard, as it
enables message level extension using SOAP headers.

The contract standards accurately describe the data,
functions, policy and other resources of a WS. They are used
for client-server binding.

The discovery standards define ways to publish and discover
services. UDDI [6] defines a WS directory. WS-MEX [14] is a
protocol for WS self-description and meta-data access.

The main concerns for security standards are message
protection, access control and configuration flexibility.
WS-Security [15] states how to protect SOAP messages with
XML Signature [16] and XML Encryption [17] and how to
transport security-related tokens, like cryptographic keys,
digital certificates, assertions, etc.

The reliable messaging standards address the reliability of

message exchanges in a transport independent way.
WS-Reliability [18] and WS-ReliableMessaging [19] are two
proposals for assured delivery, duplicate elimination and
correct ordering in WS messaging.

The transactions standards address the problem of providing
well-defined semantics for the combined result of a group of
WS operations on distributed resources. There are two
proposals for transactions: WS-Coordination [20] and
WS-CompositeApplicationFramework [21].

The business process standards define development
concepts and tools at an abstraction level closer to the needs of
business people. An example is WS-BPEL [22] for composing
orchestrations of existing WS.

The management standards address the problem of keeping a
Web Services infrastructure up-and-running.

Finally, the interoperability profiles are necessary because of
the ambiguities in the standards that result in implementation
differences. Each profile defines guidelines, example
applications and compatibility test toolkits. The
WS-Interoperability organization [23] brings together the main
vendors of WS tools in defining interoperability profiles such
as basic interaction [24] and security [25].

III. WEB SERVICES CUSTOMIZATION CHALLENGES
A custom requirement is an application-specific variation on

a general requirement. Most of the implementation code
required to satisfy it is the same as the general case, except for
small tweaks.

For instance, consider a digital signature library that
performs document signature and verification. A custom
requirement would be to require the signing principal to belong
to a subset of entities.

An effective customization tool must:
• Support functional and non-functional

requirements;
• Allow configuration flexibility.

A. Functional and non-functional requirements
WS requirements can be classified as functional or

non-functional.
Informally, functional requirements say what a WS can do.

Non-functional requirements say what properties hold when
the WS is executed. Non-functional requirements include:
security, transactions, reliable messaging, management,
usability, and performance. The non-functional requirements of
a WS can be contradictory, so they must be balanced during
implementation.

Let's consider an example WS that gives access to an on-line
inventory. A functional requirement is “The service allows
reading data from the product inventory”. A non-functional
requirement is “The service interface must be simple to use”
and another one is “The service must assure data is kept secret
from non-authorized users”. There is a non-functional
requirement conflict here, as the service would be easier to use
if it didn't need a password, but it would be less secure.

Fig. 2. Web Services standards map.

International Journal of Web Services Practices, Vol.3, No.1-2 (2008), pp. 1-11

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

3

The functional requirements should be implemented as
components that can be structured and composed as generic
procedures. The non-functional requirements should be
implemented as aspects that allow additional procedures to be
executed around or inside components.

This can be achieved with design patterns [26] that improve
relations between components and overall program structure,
or with new programming language paradigms, like AOP
(Aspect Oriented Programming) [27].

B. Configuration flexibility
Another issue is configuration flexibility when supporting

non-functional requirements. For instance, service protection
can be adjusted to data value: low value messages can use a
weaker cipher algorithm than higher value messages. Also,
service protection can be adjusted to invocation circumstances:
a request made from a client inside the corporate network can
use a local security credential whereas an external client must
use a cross-domain security credential.

IV. WEB SERVICE EXTENSIONS
WS Extensions are a customization mechanism that provides

interception points where application developers can add
custom code and leverage the underlying WS implementation's
capabilities.

First we describe a WS Extension example, then the core
mechanisms required for it and finally the proof-of-concept
implementation.

A. Security Report Extension
The security report is an example of a useful WS Extension.
Some applications prefer not to know about security, they

just want it to be guaranteed. But others need to know what has
been done, for instance, to store audit information in a database.

A security report is produced during WS security processing,
containing all performed actions and all used parameters, in a
simple, easy-to-use data schema. This effectively leverages the
security implementation and enables context sharing through a
meaningful abstraction, delegating security decisions in a
simple and effective way.

B. Core mechanisms
The following mechanisms are required for WS Extensions:

• Configuration;
• Contexts management;
• Message interception;
• Operation interception.

Requirements declaration (Policy) is optional.
Fig. 3 shows the dependencies between packages.
1) Requirements declaration

The (non-functional) requirements declaration is done with a
policy.

The policy states additional requirements that must be
fulfilled by the client and by the WS so that the interaction
between them can occur as required.

This capability is needed, for instance, to declare that a WS

can be invoked with transport security or with message security.
It can also be used to declare an operation with transactional
properties or reliable messaging needs.

The standard for policy declaration is WS-Policy [10]. A
WS-Policy states a set of configuration alternatives supported
by a service. The client has to support at least one of the
alternatives.

WS Extensions can be a means to satisfy specific
requirements stated by a policy.

2) Configuration
The configuration selects the extension to engage and the

parameters to use or to request from the application in run-time
(e.g., which digital certificate will be used to securely sign
messages). This capability is needed to control the behavior of
the extensions.

Ideally this configuration should be generated automatically
from the client and server policies, after a negotiation. However,
a simpler approach is to perform the configuration off-line and
then rebuild both the client and the server. This approach also
yields better performance, because the policy negotiation is
performed in advance.

3) Contexts management
Execution contexts are an abstraction to organize state

variables related to the WS. Contexts enable data sharing
between the extension library and the rest of the application.
Some relevant context scopes are: Application, Session, and
Thread.

For instance, the session context allows the storing of a
cryptographic key used to store the set of messages in the same
security scope. It can also be used to store distributed
transaction state, like: id, coordinator location, etc.

4) Operation interception
The operation execution interception allows interception

points before the domain logic is actually executed. The
business objects, data objects, stubs and other objects are
created in factories that can be customized to return different
implementations according to the desired behavior.

Using this feature it's possible, for instance, to implement
generic security authorization mechanisms.

5) Message interception
The message flow interception provides access to the

Fig. 3. Extension mechanisms package diagram.

International Journal of Web Services Practices, Vol.3, No.1-2 (2008), pp. 1-11

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

4

message's routing and contents (headers and body).
This capability allows, for instance, the forwarding of a

rejected incoming message, sending it to a security node for
reporting. It can also be used to retry sending a lost message, to
achieve reliable messaging.

The message flows are usually sequential, but there are
proposals, like SPEF (SOAP Profile Enabling Framework) [28],
for more elaborate flows.

C. Proof-of-concept
The presented mechanisms for WS Extensions were drafted

from the results and evaluation of a study [29] about the
following implementations:

• WSE 3 (Web Services Enhancements 3) for
Microsoft .NET 2 [30];

• WSS4J (Web Services Security for Java) for
Apache Axis2, for Java [31];

• XWSS (XML and Web Services Security) for
JAX-WS 2, for Java [32].

The study included extensive tests for each implementation
and the development of a prototype for a business case-study.

The selected implementations were biased towards security,
but additional tests were performed for transactions and reliable
messaging usage scenarios.

After the conclusion of the prototype, an Extensions
proof-of-concept implementation was developed for testing
and further evaluation in a laboratory project for a Distributed
Systems course.

1) Case-study
The chosen case-study was “real-estate contracts” and the

main functionality supported by the prototype was “signing of
sale agreement between seller and buyer”.

The full business process and informational entities were
modeled using a service-oriented methodology [33] for
enterprise architecture. The prototype use-cases and interaction
diagrams were modeled using UML [34]. The prototype
specification and development explicitly accounted for binding,
invocation and key distribution, as briefly illustrated in Fig. 4,
and detailed in [29].

2) Implementation
The WS extension mechanisms were implemented

leveraging existing open-source libraries, primarily JAX-WS
(Java API for Web Services) 2 [32].

Requirements declaration was implemented with WS-Policy

provided by Apache Commons Policy 1.0 [31].
Message interception was based on JAX-WS handlers.
Configuration, execution contexts and operation

interception were implemented using singleton and factory
design patterns [26] with additional custom coding.

3) Field tests
The WS extension proof-of-concept implementation was

used by 300+ students in a Distributed Systems course's
laboratory project, requiring the implementation of a WS
application and extension libraries for security and
transactions.

The security extension library supported encryption, MAC
(Message Authentication Code) and digital signature [35].

The distributed transactions extension library implemented a
“two-phase commit” consensus protocol for transactions with
relaxed isolation [36].

The final results were compared with results from a previous
course, with similar goals and contents, but without Extensions.

The new projects were better at separating the application
specific code from the customization code.

The field tests showed that the identified mechanisms were
necessary and sufficient for the development of WS
Extensions.

V. EXTENSIONS IN THE STEP FRAMEWORK
 After the proof-of-concept implementation, a more

complete implementation was deemed necessary to further
develop WS Extensions as a customization mechanism. A more
complete implementation was built on top of the STEP
Framework1.

The Extension concept only makes sense in an application
domain that is being extended. To properly intercept an
application's messages and operation execution, we need a
framework that provides a common architecture for
applications.

A. Framework
The STEP Framework is an open-source, multi-layer Java

enterprise application framework with support for Web
Applications (Servlet/JSP) and Web Services.

The main design goals of STEP are simplicity and

1 http://sourceforge.net/projects/stepframework

Fig. 4. Prototype collaboration diagram.

International Journal of Web Services Practices, Vol.3, No.1-2 (2008), pp. 1-11

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

5

extensibility, and it's been designed for teaching purposes2.
The STEP framework source code is intended to be small

and simple enough to allow any developer to read it and
understand it thoroughly, seeing how the multiple layers are
implemented in practice.

In its layers, STEP leverages other open-source projects,
such as Hibernate3 for data persistence, Stripes4 for the web
layer, Sun's JAX-WS reference implementation 5 for Web
Services, etc. These specific libraries are used in the current
version, but different ones have been used before (e.g. Struts6,
OJB7) and different ones will probably be used in the future.

The framework aims to be a learning step towards more
complete and powerful application frameworks, like Java
Enterprise Edition8 itself, Spring9, etc.

The STEP Framework is also novel in the way it combines
the features of a Web Application framework with a distributed
application model, using different domains and providing
means to cross physical and trust boundaries.10

B. Application layers
The STEP Framework layers are the following (illustrated in

Fig. 5): Domain; Service; View; Presentation.

There are also, Web Service (server and client) layers.
Fig. 6 shows the layer's package diagram and its

dependencies.
The main application layers are Domain and Service.
Fig. 7 shows a sequence diagram for a STEP Framework

application when a request is processed.
The client request is received at the presentation layer, and

then it is directed towards a service. The presentation doesn't
access the domain directly, only through services and views.
Each service has a unit-of-work [2] associated with it. The
current implementation of the unit-of-work relies on the
underlying database transaction.

2 The STEP name stands for “Simple, Extensible for Teaching Purposes”

(you have to read from left to right and step down and up to form STEP and not
SEPT).

3 http://www.hibernate.org
4 http://www.stripesframework.org/
5 http://jax-ws.dev.java.net/
6 http://struts.apache.org/
7 http://db.apache.org/ojb/
8 http://java.sun.com/javaee/
9 http://www.springframework.org/
10 Organizations (or organization units) have trust boundaries in the sense

that they don't fully trust other for all purposes but just for a limited set of
interactions and with defined and previously agreed-upon purposes.

1) Domain layer
The domain layer is where an object-oriented solution for an

application's problem is modeled.
Persistence of the domain objects is essential to ensure the

state of an application is properly stored (i.e. data must survive
the application instance that created it). We are currently
leveraging the Java Persistence API11 to provide the persistence
model for object-relational mapping, using Hibernate as the
service provider.

An application should have a single root domain object that
represents the application itself and acts as the single entry
point to the domain objects. This allows for a seamless
navigation through the entire object graph without the need to
explicitly query the underlying persistence mechanism. The
domain root is typically implemented as a Singleton [26]
object.

2) Service layer
The service layer (not to be confused with Web Service)

mediates the access of presentation to the domain layer.
A service is a class that implements certain functionality

through the invocation of domain objects. The architecture
mandates that all functionality must be provided by services,
isolating the domain model from upper layers. Services are
where non-functional requirements that aren't relevant to the
domain logic itself should be added.

In order to invoke a service, the invoker must first create a
new instance of the service and pass all the necessary data to its
constructor. When the service is invoked (through its
execute() method), the service performs its work within a
unit-of-work context. If exceptions occur during service
execution, the unit-of-work is always aborted.

Services can be domain-bound, if they only invoke domain
classes from a single domain, or they can be multi-domain, if
they use one or more services from different domains.
Multi-domain services can also be called orchestrator services.

Services can execute locally or remotely, using WS stubs.
3) View layer

The view layer provides a set of Data Transfer Objects
(DTO)12 that are used to provide/return information to/from

11 http://java.sun.com/javaee/technologies/persistence.jsp
12 http://java.sun.com/blueprints/patterns/TransferObject.

html

Fig. 5. STEP Framework application layers.

Fig. 6. STEP Framework application layers package diagram.

International Journal of Web Services Practices, Vol.3, No.1-2 (2008), pp. 1-11

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

6

services.
The view layer is a read-only set of classes that are mapped

to and from the domain. These can be safely returned to a
presentation layer, because they don't give direct access to the
domain and the underlying database.

Views are described in XSD and the corresponding classes
are generated through automated tools. This guarantees the
DTO has no logic and simplifies their use in the context of Web
Services, as a WSDL can easily import the definitions and
reuse them.

4) Presentation layer
The presentation layer is responsible for maintaining user

interaction i.e. convert user intents into service executions,
report errors in meaningful ways, organize information clearly
for humans to understand.

5) Web Service layer
The WS layer is akin to a presentation layer, but its purpose

is to allow a domain to be accessed remotely by another
application and not by a human user.

For each application service there will be a WS operation
declared in the WSDL.

Fig. 8 shows a sequence diagram for a WS, highlighting the
interception points used by Extensions. The inbound and
outbound SOAP messages are intercepted. The WS operations
(i.e., services) are intercepted before and after their execution.

C. Extensions implementation
The Extensions implementation was tested on the platform

supported by the current release of the STEP Framework:
• Java 5 (programming language and libraries);
• JWSDP 2.0 (additional XML and Web Services

libraries);
• Tomcat 5.5 (Web Application Container);
• Apache Ant 1.7 (build tool);
• ImportAnt 5.5 (build tool library).

The application extension points (including the ones

represented in Fig. 8) are the following:
• The Service super-class that calls a service

interceptor manager before and after the main

action for all services13;
• A JAX-WS Handler is used to intercept all SOAP

messages and invoke the web service interceptor
manager;

• A Web Application ContextListener is used to
perform the extension engine configuration loading
on deploy time14.

The Extensions Application Programming Interface (API)
was designed to use the extension points. Three kinds of
objects can be declared in an Extension:

• Service Interceptor;
• Web Service Interceptor;
• Listener.

A Service Interceptor is executed before and after the
service's main action. The extension itself is executed within
the same unit-of-work scope as the service it is extending, and
can influence its outcome.

A Web Service Interceptor is executed when messages arrive
or leave the WS. The extension can influence the message flow.

Finally, a Listener is executed when the extension is
initialized and destroyed, allowing for resource allocation and
release, respectively.

1) Requirements declaration
Policy support was dropped from the current implementation

and planned for a later version. Its implementation was
considered premature before the underlying configuration
mechanism was evaluated and thoroughly tested in practical
use.

2) Configuration
The main configuration artifacts are the properties files. The

main file is called extensions.properties and an example
is presented in Fig. 9.

The enabled option is the main on/off switch. This allows a
quick and easy way to disable extensions entirely.

The list is where the extension instances are declared. An
extension instance is known only after being listed here. The

13 The Service class hierarchy could be outlined differently if we wanted
services that could not be extended, by creating an ExtensibleService type,
to make the extensibility explicit.

14 It is useful, but not mandatory, to immediately report if the extensions'
configuration was properly initiated, as the extension engine can initialize itself
on demand, only when the first interceptor is executed.

Fig. 7. STEP application layers interaction during a request processing.

International Journal of Web Services Practices, Vol.3, No.1-2 (2008), pp. 1-11

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

7

engine initializes the extensions according to the declared

sequence. In the example, there are three extension instances
declared with identifiers: hello, trace, and errors.

After being properly declared, extensions can be used to
intercept services and web services.

The intercept service properties can have a specifier inside
square brackets. It can be:

• Empty – all services will be intercepted;
• Package name – all service classes inside the

package will be intercepted;
• Class name – the specific service class will be

intercepted.
The property can be specified several times with different

specifiers, and the most specific configuration will be selected
at run-time. For instance, if a class and package select the same
service class, then the class definition is chosen, as it is more
specific than the package one.

The intercept list order defines before processing sequence
and inverted after processing sequence.

The web intercept service properties also can have a specifier
inside square brackets. It can be:

• Empty – all web services will be intercepted;
• Namespace – all web services in the namespace

will be intercepted;

• Service, Port – the specific web service will be
intercepted.

The property can also be specified several times and the most
specific configuration will be selected at run-time.

The intercept list order defines outbound processing
sequence and inverted inbound processing sequence.

For each declared extension, a extension-id.properti
es file is expected to exist, with additional extension
configuration. The id is replaced with the declared name of the
extension. An example hello extension file is shown in Fig.
10.

Fig. 8. STEP Framework layers interaction during a web service request processing.

Fig. 9. Example extensions.properties file.

International Journal of Web Services Practices, Vol.3, No.1-2 (2008), pp. 1-11

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

8

The enabled option applies only to the current extension.
The service interceptor property allows specifying the

extension's service interceptor class name. It is optional.
The web service interceptor property allows specifying the

extension's web service interceptor class name. It is also
optional.

The listener property allows specifying an extension
listener's class name. It is also optional.

Using this configuration flexibility, an extension can
combine the following useful capabilities:

• Service interceptor only;
• Web Service interceptor only;
• Service and Web Service interceptor team.

Custom properties can be specified both in
extensions.properties and in extension-id.proper
ties.

3) Contexts management
Execution contexts help to store state variables according to

its scope. Extensions have two types of contexts:
• Extension engine context – can be used to share

data globally between extensions;

• Extension instance context – can be used to share
data inside the same extension team of service
interceptor and web service interceptor.

There is no explicit support for contexts with request scope.
However, a custom solution can be developed using the
existing extension contexts by using a request-specific
identifier as a map key. The Framework also has generic
context management classes, with scopes: Application (global),
Session (externally managed identifier) and Thread (thread
identifier is used implicitly to distinguish between contexts).

4) Operation interception
The WS operations are mapped to services for their actual

execution. A Service Interceptor (SI) intercepts service
executions as illustrated in Fig. 11.

A Service Interceptor can access the service instance data by
using Java Reflection or by casting the service instance to a
known type.

The error behaviors for a service interceptor are the
following.

Throw a DomainException
The unit-of-work is aborted and the presentation layer

receives a domain exception that is indistinguishable from one
thrown by the service itself.

Throw a ServiceInterceptorException
The unit-of-work is aborted and a ServiceException is

thrown to report a system condition.
Throw a RuntimeException or Error
The unit-of-work also aborts.
5) Message interception

Fig. 10. Example extension-hello.properties file.

Fig. 11. STEP Framework service interceptor collaboration diagram.

Fig. 12. STEP Framework web service interceptor collaboration diagram.

International Journal of Web Services Practices, Vol.3, No.1-2 (2008), pp. 1-11

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

9

The message interception gives access to the SOAP
message's header and body. A Web Service interceptor (WSI)
intercepts all web service messages as illustrated in Fig. 12. The
SOAP message context enables the interceptor to access the
SOAP message.

The message situation can also be queried:
• Is it outbound or inbound?
• Is it a fault message?
• Is it being intercepted on the server-side or on the

client-side?
To modify the message flow, a WSI can:
Return false
If the message is moving towards the server, it is reversed to

go back to the client, as illustrated in Fig. 13.
The WSI is responsible for setting the message contents

appropriately.

Throw a SOAPFaultException
If the message is moving towards the server, it is reversed to

go back to the client, as illustrated in Fig. 14.
The message body is replaced with the SOAP fault provided

by the exception.
Throw a WebServiceInterceptorException
If the message is moving towards the server, it is reversed to

go back to the client, as illustrated also in Fig. 14.
The message body is replaced with a SOAP fault that is

created automatically containing the text message specified in
the exception.

Throw a RuntimeException or Error
The message processing is interrupted, as illustrated in Fig.

15. If the error occurs on the server-side, a SOAP fault message
will be sent to the client.

Fig. 13. Web service interceptor returns false.

Fig. 14. Web service interceptor throws a SOAPFaultException or a WebServiceInterceptorException.

International Journal of Web Services Practices, Vol.3, No.1-2 (2008), pp. 1-11

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

10

VI. CONCLUSIONS AND FUTURE WORK
The main goal of Web Services & XML tools should be to

empower developers and to simplify programming. The tools
should focus on contracts, with specification of data schemas,
functions and policy, rather than Java-centric approaches that
map other concepts to XML, making the contracts less explicit
and therefore more difficult to manage and maintain.

The layered architecture is also very important to the
separation of concerns that makes practical customization
possible.

We presented Web Services Extensions, an
interception-based approach to customization.

The clear identification of the core mechanisms and its
mapping to different WS implementations makes it simpler for
developers to focus on the extension's added value and to
abstract the platform specifics.

Extensions support both functional and non-functional
requirements, and allow flexible configuration. Whenever
possible, custom requirements should be implemented by
Extensions that share context with applications through
meaningful abstractions, to delegate decisions in a simple and
effective way.

These features make Extensions a very attractive tool for
teaching purposes, because students can focus on the more
advanced technological aspects, leveraging an easy-to-use
configuration mechanism.

Future work on Extensions in the STEP Framework will be
directed towards supporting customization of more capabilities
available in the underlying platform as the current
implementation uses only the core Web Services stack. Policy
support is also a future concern. Interoperability aspects like
message transports beyond HTTP and a .NET platform
implementation are also planned.

Extensions decrease the “cost-of-entry” into WS
customization, broaden the number of developers that can try
new ideas and encourage competition and best-of-breed
selections that can help practitioners to further advance the
state of the art of Web Services technology.

REFERENCES
[1] K. Laudon and J. Laudon, Management Information Systems, Pearson

Prentice-Hall, 2002.
[2] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R. Stafford,

Patterns of Enterprise Application Architecture, Addison Wesley, 2002.
[3] F. Curbera, F. Leymann, T. Storey, D. Ferguson, and S. Weerawarana,

Web Services Platform Architecture: SOAP, WSDL, WS-Policy,
WS-Addressing, WS-BPEL, WS-Reliable Messaging and More, Prentice
Hall, 2005.

[4] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA: Service-Oriented
Architecture Best Practices, Prentice Hall PTR, November 2004.

[5] T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design,
Prentice Hall, 2005.

[6] L. Clement, A. Hately, C. von Riegen, and T. Rogers “UDDI version
3.0.2” OASIS, Systinet, IBM, SAP AG, Computer Associates, 2004.
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm.

[7] D. C. Fallside and P. Walmsley, “XML Schema part 0: Primer second
edition”, W3C, October 2004.
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/.

[8] D. Booth and C. K. Liu, “Web services description language (WSDL)
version 2.0”, W3C, Hewlett-Packard, SAP Labs, 2005.
http://www.w3.org/TR/2005/WD-wsdl20-primer-20050803.

[9] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F. Nielsen,
“SOAP version 1.2 part 1: Messaging framework”, W3C, Microsoft, Sun
Microsystems, IBM, Canon, June 2003.
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/.

[10] J. Schlimmer, “Web services policy framework (WSPolicy) version 1.2”,
Microsoft, IBM, VeriSign, Sonic Software, SAP, BEA Systems, March
2006, editor.

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T.
Berners-Lee, “Hypertext transfer protocol – HTTP/1.1”, IETF, June 1999.
http://www.w3.org/Protocols/rfc2616/rfc2616.txt.

[12] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau,
“Extensible markup language (XML) 1.0 (3rd edition)”, W3C, Textuality
and Netscape, Microsoft, Sun Microsystems, 2004.
http://www.w3.org/TR/2004/REC-xml-20040204.

[13] M. Pardal, “WS-Map: Web services standards map”,
http://web.ist.utl.pt/miguel.pardal/ws-map, November 2006.

[14] F. Curbera and J. Schlimmer, „Web services metadata exchange
(WS-MetadataExchange)”, MSDN, Microsoft, IBM, Computer
Associates, SAP, BEA Systems, Sun Microsystems, webMethods,
September 2004.
http://msdn.microsoft.com/ws/2004/09/ws-metadataexchan
ge/.

[15] A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo, “Web services
security: SOAP message security 1.0 (WS-Security 2004)”, OASIS, IBM,
Microsoft, Verisign, Sun, March 2004.
http://www.oasis-open .org/committees/tc_home.php?wg_ab
brev=wss.

Fig. 15. Web service interceptor throws a RuntimeException or an Error.

International Journal of Web Services Practices, Vol.3, No.1-2 (2008), pp. 1-11

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

11

[16] D. Eastlake, J. Reagle, and D. Solo, “XML-Signature syntax and
processing”, W3C, February 2002.
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/.

[17] D. Eastlake and J. Reagle, “XML encryption syntax and processing”,
W3C, December 2002. http://www.w3.org/TR/2002/REC-xml
enc-core-20021210/.

[18] K. Iwasa, “Web services reliable messaging TC WS-Reliability 1.1”,
OASIS, Fujitsu Limited, Novell, Inc., Oracle Corporation, Sun
Microsystems, November 2004. http://docs.oasis-open.org/
wsrm/ws-reliability/v1.1.

[19] C. Ferris and D. Langworthy, “Web services reliable messaging protocol
(WS-ReliableMessaging)”, Microsoft, IBM, BEA, TIBCO Software,
February 2005, editors.

[20] M. Feingold, “Web services coordination (WS-Coordination) version
1.0”, IBM, Microsoft, Hitachi, Arjuna Technologies, IONA, August 2005,
editor.

[21] M. Little, “Web services composite application framework (WS-CAF)
version 1.0”, Sun, Oracle, IONA, Arjuna, Fujitsu, July 2003, editor.

[22] S. Thatte, “Business process execution language for web services version
1.1”, Microsoft, IBM, Siebel Systems, BEA, SAP, May 2003, editor.

[23] WSI, “Interoperability: Ensuring the success of web services – an
overview of WS-I”, WS-I Web Site, 2005. http://www.ws-i.org/
about/Default.aspx.

[24] C. Ferris, C. K. Liu, M. Nottingham, P. Yendluri, M. Gudgin, K. Ballinger,
and D. Ehnebuske, “WS-I basic profile version 1.1”, WS-I, Microsoft,
IBM, SAP, BEA Systems, webMethods, August 2004.
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-2
4.html.

[25] A. Barbir, M. Gudgin, M. McIntosh, and K. S. Morrison, “WS-I basic
security profile version 1.0”, WS-I, Nortel Networks, Microsoft, IBM,
Layer 7, August 2005. http://www.ws-i.org/Profiles/BasicSe
curityProfile-1.0.html.

[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[27] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming”, in Proceedings
of the European Conference on Object-Oriented Programming (ECOOP),
Finland, volume LNCS 1241, Springer-Verlag, June 1997.
http://www2.parc.com/csl/groups/sda/publications/papers
/Kiczales-ECOOP97/for-web.pdf.

[28] H. B. Malek and J. Durand, “A SOAP container model for e-Business
messaging requirements”, in M. Kitsuregawa, editor, Proceedings of
WISE 2005, volume LNCS 3806, page 643–652, Springer-Verlag, 2005.

[29] M. Pardal, Security of enterprise applications in service architectures,
Master's thesis, Instituto Superior Técnico, September 2006.
http://mflpar.googlepages.com/MScMflp20060908.pdf.

[30] Microsoft, “Microsoft web services enhancements (WSE) 3.0
documentation”, 2005. http://msdn.microsoft.com/webservices
/webservices/building/wse/default.aspx.

[31] Apache, “Securing SOAP messages with WSS4J”, 2006. http://ws.
apache.org/axis2/modules/rampart/1_0/security-module.ht
ml.

[32] Sun, “Java web services developer pack”, Sun Microsystems Web Site,
2006. http://java.sun.com/webservices/.

[33] M. Guerra, M. Pardal, and M. M. da Silva, “An integration methodology
based on the enterprise architecture”, in Proceedings of the 2004
Conference of the UK Academy for Information Systems (UKAIS 2004),
May 2004. http://mflpar.googlepages.com/GuerraPardal
Ukais2004.pdf.

[34] M. Fowler and K. Scott, UML Distilled, Addison-Wesley, 1999.
[35] R. E. Smith, Internet Cryptography, Addison Wesley, 1997.
[36] A. S. Tanenbaum and M. van Steen, Distributed Systems – principles and

paradigms, Prentice Hall, 2003.

Miguel Pardal (M'2007) became a Member
(M) of IEEE in 2007. He was born in Lisbon,
Portugal in 1977. He graduated (2000) and
mastered (2006) in Computer Science and
Engineering from Instituto Superior Técnico
(IST), Technical University of Lisbon, Portugal.
His MSc topic was "Security of
Service-Oriented Enterprise Applications". In

2008, he started his PhD at IST, on the subject "The Internet of Things".
He has been a researcher and lecturer at IST since 2002, teaching distributed
systems, enterprise applications integration and operating systems courses.
Before his return to academia, Miguel worked from 2000 to 2002 as a
consultant for Unisys, in major Banking and Insurance projects. His work was
recognized in 2004, when he was awarded the best computer science admission
work to the Portuguese Engineers Association (Ordem dos Engenheiros). He
has authored 6 publications. His main research interests include web services,
service-oriented architectures, enterprise integration technologies, RFID and
sensor networks.
Eng. Miguel Pardal is a member of ACM.

Sérgio M. Fernandes was born in Lisbon, Portugal in
1978. He graduated (2001) and mastered (2006) in
Information Systems and Computer Engineering from
Instituto Superior Técnico (IST), Technical University of
Lisbon, Portugal. His MSc thesis focused on "A
Workflow Virtual Machine". He began his PhD studies in
2007 on "A Programming Model for Long Transactions
in Web Applications".
Since 2002, he has been a Researcher for INESC-ID's
Software Engineering Group. He his also a Lecturer at
IST teaching Compilers, Algorithms and Data Structures, Software Engineering,
and Advanced Programming. He has participated in the COMBINE and
ACE-GIS European Research Projects.

Jorge Martins (M'2001) became a Member (M) of
IEEE in 2001. He was born in Lisbon, Portugal in
1978. He graduated (2001) and mastered (2006) in
Information Systems and Computer Engineering from
Instituto Superior Técnico (IST), Technical
University of Lisbon, Portugal. His MSc thesis
focused on "Monitoring Support in WorkSCo". He
began his PhD studies in 2007 on "Composition
traceability within Software Product Lines".
Since 2002, he has been a Researcher for INESC-ID's Software Engineering
Group. He his also a Lecturer at IST teaching Computer Architecture,
Algorithms and Data Structures, Software Engineering, and Software Quality.
He has participated in the ACE-GIS European Research Project. His main
research interests include software architectures, software composition and
software product lines.

Joana Paulo Pardal was born in Lisbon,
Portugal back in 1978. She got a "Licenciatura"
in informatics and computer science engineering
(a 5 year full-time degree), artificial intelligence
in 2001 from Instituto Superior Técnico (IST),
Technical University of Lisbon, Portugal. She
received an MSc degree in 2004 also from IST.
In 2006 she started her PhD work also at IST on
"Dynamic Integration of Ontologies in Practical
Spoken Dialogue Systems", with Nuno J.
Mamede, H. Sofia Pinto and James F. Allen as advisors.
She is a researcher at the Spoken Language Systems Laboratory (L²F) of
INESC-ID since 2001. She participates on «Dialogs on Dialogs» Reading
Group at CMU. She is a Lecturer at IST since 2002, teaching object-oriented
programming and design patterns, knowledge representation, artificial
intelligence, autonomous agents and multi-agent systems, and distributed
systems. She participated in several national projects. In 2004 she was invited
for a training period at GRIL, at Université Blaise Pascal, Clermont Ferrand,
France. In 2006 she spent the Fall term at the Computer Science Department,
University of Rochester, NY, USA as part of the Continuous Understanding
project. In 2001 she received an MSc fellowship from FCT (Portuguese
National Science Foundation). In 2007 she received a fellowship from ACL to
added a Doctoral Consortium at Rochester, NY, USA. She holds a PhD
fellowship from FCT. She authored 1 book chapter and 16 papers. Her main
research interests include spoken dialogue systems, natural language
processing, machine translation, ontologies, semantic web services, distributed
systems and software engineering.
Eng. Joana Paulo Pardal is a student member of ISCA (International Speech
Communication Association), ACL (The Association for Computational
Linguistics) and AAAI (Association for the Advancement of Artificial
Intelligence) since 2007.

