
Smart Web Services: systems’ integration using

policy-driven automatic configuration

João C. C. Leitão
1
, Miguel L. Pardal

1

1 Instituto Superior Técnico, Technical University of Lisbon

Av. Rovisco Pais, 1

1049-001 Lisboa, Portugal

{joaoleitao, miguel.pardal}@ist.utl.pt

Abstract: Web Services (WS) are an important tool for the integration of

enterprise applications. With a growing set of WS related standards (WS-*), the

technology has become increasingly more complicated to configure and manage,

even more so when the Quality of Service (QoS) requirements of the system are

changing. This paper presents the results of a study conducted on the ability of

the major Web Services implementations to adapt to changing QoS attributes.

Their shortcomings are then used as motivation for SmartSTEP, a proposal for a

more advanced policy-driven automatic configuration solution.

Keywords: Web Services, Quality of Service, Information Systems Integration,

Policy, Automatic Configuration, Java, STEP Framework.

1 Introduction

Enterprise applications have demanding requirements: many users, large volumes

of data, ever-changing business rules, and multiple systems’ integration interfaces to

connect to other applications [1]. The fundamental challenge is change so there is great

value in techniques that enable information systems to quickly adapt to changes in

requirements.

Web Services (WS) [2] and Service-Oriented Architectures (SOA) [3] are a

technology and architecture, respectively, which propose services as the building block

for flexible information systems. WS technology is defined by multiple IETF, W3C,

and OASIS standards.

A Web Service is defined as a network access endpoint to resources: data and

business functions [2]. Although this endpoint can be accessed in many different ways,

the most common is SOAP
1
 [4], an extensible XML-based protocol for exchanging

information in distributed environments.

1 Although SOAP was initially defined as Simple Object Access Protocol, the 1.2 version of the

standard dropped this definition and simply refers to itself as SOAP.

The two major Web Services implementations are Windows Communication

Foundation (WCF) [5] and Metro [6]. There are also open-source implementations,

such as Apache Axis2 [7].

Recently, these projects have been focusing on the support of WS related standards

(WS-*). These were created to extend the Web Services functionalities and capabilities

and include standards like WS-Security [8].

Another important WS-* standard is WS-Policy [9], a framework for expressing

policies that refer to capabilities, requirements or other characteristics of an entity.

This paper presents the results of an extensive analysis conducted on the Quality of

Service (QoS) features of WCF, Metro and Axis2, with special interest in their

configuration and limitations. To overcome the identified limitations, a proposal for a

new approach and a real world use scenario of its capabilities are also described.

2 Service-oriented ideas

Erl [3] presents the eight principles of SOA: services share a formal contract,

abstract underlying logic and are loosely coupled, autonomous, composable, reusable,

stateless and discoverable.

In Web Services the formal contract is defined using an XML-based language

known as WSDL (Web Services Description Language) [10]. This contract presents all

the information that describes a service in a standard machine-readable format. The

data types and message structures are described as XSD (XML schema definitions),

which can be used by code generation tools to create appropriate representations in any

supported programming language. This is called a contract-first approach, whereas the

development of the service’s implementation followed by the automatic generation of

the WSDL is known as a code-first approach [11].

Figure 1. Web Service binding process [12]

Regardless of the chosen approach, the WSDL and other metadata must always be

published: as an accessible resource (URL), a service endpoint as defined by

WS-MetadataExchange [13] or using a service metadata repository, like UDDI [14].

This is represented in Figure 1 as step #1 in the Web Service binding process.

Using these mechanisms the clients can retrieve the contract (step #2) and create

the necessary code – stubs – to convert their data into the format specified by the

service (step #3).

Services often have other QoS requirements that need to be met, like security or

reliability. These requirements can be stated as policies, which can be used in step #4

to configure message handlers, components responsible for executing the required

operations to meet the non-functional requirements. Examples include: message

ciphering, security token validation, and transactional support.

After the successful configuration, the service can be invoked (step #5) and

executed (step #6).

3. Web Services implementations

This section presents how the major WS implementations support WS-* standards

and describes their configuration mechanisms. The section ends with a comparison

table to summarize their configuration features.

3.1 WCF

WCF [5] is part of Microsoft’s .Net Framework since version 3.0 (2006). It bundles

several communication technologies, from .Net Remoting to Web Services, supporting

several WS-* standards.

In WCF, the entire configuration is done in the Web.config file. Using a .Net

specific XML-based syntax, one can define the features to use as well as any necessary

parameters.

The code-first development is based on this configuration file and code

annotations. Visual Studio
2
 provides wizards that can be used to create or edit

configurations. In a contract-first approach the configurations can be automatically

created by code generation tools. Most code generation tools available can interpret

policies defined in the WSDL as long as these are already supported by WCF’s

supported WS-* standards [15].

To extend the platform, one must extend or even override system classes [16]. This

extensibility goes as far as creating elements to use in configuration files or defining a

new WSDL generator to include custom policies.

3.2 Metro

Metro is Sun Microsystems’ Java-based [17] Web Services stack. Version 2.0 was

released on November, 2009. The Web Services Interoperability Technology (WSIT)

2 Product home page: http://www.microsoft.com/visualstudio/.

http://www.microsoft.com/visualstudio/

package is built on top of the JAX-WS 2.2 (Java API for XML Web Services) [6] core

engine and implements the WS-* standards [18].

Metro’s configuration is based on WSDL and sun-jaxws.xml configuration file that

defines mappings between the contract and the service implementation.

The code-first approach is based on two sources: annotations on service

implementation classes and a wsit-*.xml configuration file. This file is a simplified

WSDL and defines the policies to apply to each supported element (messages,

operations, endpoints).

In a contract-first approach, the entire configuration is based on the WSDL and its

policies. Some of the platform’s specific configuration is also policy-based, using

system configuration policies. Metro’s code generation tools only support system

pre-defined policies, as required by the implemented standards.

Custom policies are ignored in compilation, but prevent the Web Service from

being correctly deployed, as they are not recognized by the platform on initialization.

In version 2.0 of Metro, custom policies are entirely unsupported.

Any additional behavior should be implemented using JAX-WS Handlers [6] or

using the DeclarativeTubelineAssembler [19] feature. Another way of achieving

similar results is by manipulating Metro’s source code to attach a custom module.

One of the new features in Metro 2.0 is dynamic reconfiguration, which enables the

remote management of a Web Service’s policies at runtime. This feature is based on

JMX (Java Management Extensions) [20], a Java technology that enables management

and monitoring of applications, by dynamically loading and instantiating classes.

3.3 Axis2

Apache Axis2 follows a different approach from the other platforms. It contains the

core functionality for Web Services, but the main WS-* standards are available as

independent modules [21]. These modules can then be attached to the Axis2 core and

used in applications as necessary.

The modules announce the policies they can handle, so that any defined policy can

be handled by the proper module. This enables the creation of custom modules to

handle any additional behaviors and respective policies. Additional application

behaviors can be implemented in a custom MessageReceiver, a class that defines how

messages should be handled.

Axis2 configuration is based on the services.xml file. In a code first approach, this

configuration file should define the policies and their targets. In a contract-first

development, the code generation tools provided by Axis2 are used to create the

configuration file.

The Web Services hosting in Axis2 is also different from any other platform, as it

is a Web Application itself. The very Web Services it supports are deployed as

modules, which are simple JAR packages. These packages often use the AAR (Axis

Archive) file extension, but do not differ from the normal JAR structure.

This is the base for another important feature of Axis2: Hot Deployment. Axis2

supports the deployment and initialization of services without having to restart the

main Web Application. The attachment of new modules requires redeployment, but

their association with the running applications can be made without restarting them.

3.4 Discussion

The following table summarizes the main features of the studied platforms.

Table 1. Features of existing Web Services implementations

Area Feature WCF Metro Axis2

Policies

WS-Policy Yes Yes Yes

Custom policies Yes (1) No Yes

Server-side policy alternatives No No No

Configuration

WSDL-based configuration No Yes Yes (2)

Runtime policy configuration No Yes Yes

Automatic reconfiguration (3) No No No

Extensibility

Extensible platform Yes Yes Yes

Modular platform No No Yes

Message handler extensibility Yes (1) Yes Yes

Message handler hot deployment No No Yes (4)

(1). Requires WCF extensions (3). Without user intervention

(2). WSDL and custom configurations (4). If available in Axis2 Web Application

Figure 2 proposes a dynamic binding spectrum based on the moment where

non-functional requirements can be changed, leading to the reconfiguration of message

handlers.

Figure 2. Dynamic binding spectrum

Development and Deployment are the implementation and loading phases of the

application, respectively. The Execution phase includes any action made on the system

by some part of the system itself (management interfaces are considered as part of the

system so this feature is considered to be in this phase). Anything that acts on the

system but is not initiated by it is considered as an External event (e.g. incoming

message). A system with the ability to reconfigure itself as a reaction to this type of

event is normally referred to as a self-adaptive system [22].

WCF is the easiest platform to develop secure and reliable services without great

knowledge of WSDL or WS-Policy languages, mainly due to the IDE support. The

main disadvantage lies in the lack of runtime configuration support.

Metro and Axis2 both support runtime configuration of policies through

management interfaces, which is why they are placed in the execution phase of the

spectrum.

Metro has many other features which make it one of the best equipped Java Web

Services platforms in use. Other than the unsupported policy extensibility, there aren’t

many weaknesses. This and other features are planned for upcoming releases. The

most important downside of Metro is that it requires some knowledge of WSDL and

WS-Policy languages, even in code-first development.

Axis2 is clearly a platform with extensibility and customization in mind, as it can

support virtually any feature. Although there are modules supporting the main WS-*

standards, there are still many without a public stable implementation. The

implementation of a module from scratch is a very complex procedure.

4 SmartSTEP

STEP Framework [23] is an academic open-source multi-layer Java enterprise

application framework, with support for Web Applications (Servlet/JSP) and Web

Services. Its main design goals are simplicity and extensibility. The framework’s

source code is intended to be small and simple enough to allow any developer to read it

and understand it thoroughly, as part of a learning process.

SmartSTEP aims to support user-free automatic reconfiguration of QoS

capabilities, thus achieving the last phase of the dynamic spectrum: reconfiguration

based on an external event (see Figure 2). The proposed feature list is composed by all

the features on Table 1, including those unsupported by all studied platforms, namely

server-side policies, automatic reconfiguration and handler hot deployment.

4.2 Proposal

In the current version of the STEP framework, message handlers are supported

using an extension engine [23]. This engine is conceptually similar to the JAX-WS

Handlers, but it integrates with other STEP layers, namely the business logic layer

(services). The engine executes several extensions sequentially, where each extension

manipulates the message that results from the execution of the previous extensions.

The execution ends when all required extensions where executed or an error is

detected. Currently these extensions are configured using static property files, which

prevent runtime modification of the extension sequence or even deployment of new

extensions.

This proposal requires a more dynamic approach, so the extensions will be

packaged as independent JAR files, following the modular approach used by Axis2.

Each JAR will have a specific configuration file to identify a class responsible for the

auto-installation of the extension.

The extension JAR's should then be placed in a directory that will be periodically

checked for new files. Once a new JAR is detected, it will be loaded and the specified

installation class will be invoked. This new approach enables the runtime deployment

of extensions, which can then be used in different applications.

The extension execution sequence should also be dynamic, enabling the usage of a

different sequence for different messages. This can be achieved through factories,

classes that create an extension sequence given a message context. Basic factories

should be implemented as part of the framework. The implementation of custom

factories should also be supported, thus covering any special configuration scenario.

This feature makes automatic reconfiguration possible, as it can create a new

extension sequence for each sent or received message.

Policies can be supported by mapping a policy namespace to an extension. This

association should be done using configuration files, which can be updated and

reloaded in runtime, without any code manipulation.

When policy alternatives are defined in the server contract, any received message

should indicate the alternative used by the client in the outbound processing, so the

server can use the correct inbound extension sequence. This indication should be a

header in the SOAP message, taking advantage of the policy attachments specification

[24]. The definition of server-side policy alternatives can be a useful feature when a

server needs to support multiple configuration scenarios.

5 Use scenario

To demonstrate the usefulness of policy-driven automatic configuration as

proposed for SmartSTEP, a real world use scenario was picked: insurance sales.

Many insurance salesmen spend much of their time outside the office, where the

prospective clients are. In order to perform their tasks, they need to communicate with

the office's main system, which must be prepared to deal with requests that originate

inside or outside the corporate network. We will assume that requests from the inside

use a different security scheme than the ones from the outside (Figure 3).

Figure 3. Real world scenario

This situation would require that the office system provided two or more

connection points, each with different configurations, creating a significant

administrative burden. With server-side policy alternatives, one could define multiple

configuration scenarios for one connection point, which would be properly activated

whenever a new request was received.

The choice is then made by the client application, which would be prepared to

activate the necessary measures according to some environmental parameter. This is

possible with automatic reconfiguration and the ability to customize the configuration

process to consider the environment.

This customization applies not only to security, but to other requirements. For

instance, an application running on a PDA does not have the same available resources

as a laptop. These limitations could be considered to create other configuration

profiles.

Another important requirement is interoperability (as seen in Figure 3). A salesman

might need to retrieve information about a client from a business partner, which might

require an unsupported feature. By installing a new extension, the new feature could be

ready to use in minutes, without the need for professional technical assistance.

In other platforms, this simple scenario would require multiple applications or

extensive configurations, and any update would require professional technicians. With

SmartSTEP, applications would be flexible and powerful enough to infer all

configurations and adapt.

6 Conclusion

Our study of the most popular WS implementations shows that even though they

support many WS-* standards and configuration options, they are not as dynamic and

extensible as one could wish for. WCF is completely static from the configuration

point of view. Metro and Axis2 are more dynamic, but some of their mechanisms are

hard to extend or even to work with.

SmartSTEP tries to incorporate the best ideas from the studied implementations

into STEP, maintaining its main characteristics: simplicity and extensibility. All

proposed features were extensively researched and are considered feasible given the

time and complexity constraints.

6.1 Future Work

The next step in the SmartSTEP project is the implementation of the proposed

features and their evaluation using the use scenario and performance metrics.

These features open new doors for STEP, making possible to implement new

independent modules to support virtually any WS-* standard and possibly publish

them in an on-line STEP extension repository, shared by the whole development

community, creating new learning opportunities. This would not only be an interesting

work from the extensibility point of view, but it can also help in achieving

interoperability with other WS platforms.

Acknowledgments

The authors acknowledge the STEP designers and community for their contributions to

the framework’s source code.

Miguel L. Pardal is supported by a PhD fellowship from the Portuguese Foundation for

Science and Technology FCT (SFRH/BD/45289/2008).

References

1. Hohpe, G., & Woolf, B.: Enterprise Integration Patterns: Designing, Building,

and Deploying Messaging Solutions. Addison-Wesley Professional. (2003).

2. Alonso, G., Casati, F., Kuno, H., & Machiraju, V.: Web Services - Concepts,

Architectures and Applications. Springer. (2004).

3. Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology, and Design.

Prentice Hall. (2005).

4. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen, H. F.,

Karmarkar, A., et al.: SOAP Version 1.2 Part 1: Messaging Framework (Second

Edition). (2007). From http://www.w3.org/TR/soap12-part1/

5. Lowy, J.: Programming WCF Services, Second Edition. O'Reilly Media. (2008).

6. Kalin, M.: Java Web Services: Up and Running. O'Reilly Media. (2009).

7. Tong, K. K.: Developing Web Services with Apache Axis2. TipTec Development.

(2008).

8. Nadalin, A., Kaler, C., Monzillo, R., & Hallam-Baker, P.: Web Services Security:

SOAP Message Security 1.1. (2006). From http://docs.oasis-

open.org/wss/v1.1/wss-v1.1-spec-errata-os-SOAPMessageSecurity.pdf

9. Vedamuthu, A., Orchard, D., Hirsch, F., Hondo, M., Yendluri, P., Boubez, T., et

al.: Web Services Policy 1.5 - Framework. (2007). From

http://www.w3.org/TR/ws-policy/

10. Chinnici, R., Moreau, J.-J., Ryman, A., & Weerawarana, S.: Web Services

Description Language (WSDL) Version 2.0 Part 1: Core Language. (2007). From

http://www.w3.org/TR/wsdl20/

11. Sosnoski, D.: "Code First" Web Services Reconsidered. (2007). From

http://www.infoq.com/articles/sosnoski-code-first

12. Pardal, M.: Segurança de aplicações empresariais em arquitecturas de serviços.

(2006).

13. Davis, D., Malhotra, A., Warr, K., & Chou, W.: Web Services Metadata

Exchange (WS-MetadataExchange). (2009). From http://www.w3.org/TR/ws-

metadata-exchange/

14. Bellwood, T., Capell, S., Clement, L., Colgrave, J., Dovey, M. J., Feygin, D., et

al.: UDDI Version 3.0.2. (2004). From http://www.oasis-

open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm

15. Web Services Protocols Supported by System-Provided Interoperability Bindings.

From http://msdn.microsoft.com/en-us/library/ms730294.aspx

16. Skonnard, A.: Extending WCF with Custom Behaviors. (2007). From

http://msdn.microsoft.com/en-us/magazine/cc163302.aspx

17. Arnold, K., Gosling, J., & Holmes, D.: Java(TM) Programming Language, The

(4th Edition). Prentice Hall. (2005).

18. Metro Specifications. From

https://metro.dev.java.net/guide/Metro_Specifications.html

19. Declarative Tubeline Assembler One Pager. From

http://wikis.glassfish.org/metro/Wiki.jsp?page=DeclarativeTubelineAssemblerOn

ePager

20. Kreger, H., Harold, W., & Williamson, L.: Java(TM) and JMX: Building

Manageable Systems. Addison-Wesley Professional. (2003).

21. Apache Axis2 Modules. From http://ws.apache.org/axis2/modules/index.html

22. Heuvel, W.-J. v., Weigand, H., & Hiel, M.: Configurable adapters: the substrate

of self-adaptive web services. In ICEC '07: Proceedings of the ninth international

conference on Electronic commerce (pp. 127-134). Minneapolis, MN, USA:

ACM. (2007).

23. Pardal, M., Fernandes, S. M., Martins, J., & Pardal, J. P.: Customizing Web

Services with Extensions in the STEP framework. In International Journal of

Web Services Practices, Vol.3, No.1-2 , 1-11. (2008).

24. Vedamuthu, A., Orchard, D., Hirsch, F., Hondo, M., Yendluri, P., Boubez, T., et

al.: Web Services Policy 1.5 - Attachment. (2007). From

http://www.w3.org/TR/ws-policy-attach/

