
Enforcing RFID Data Visibility Restrictions
Using XACML Security Policies

Miguel L. Pardal†, Mark Harrison‡, Sanjay Sarma§, José Alves Marques†

†Department of Computer Science and Engineering
Instituto Superior Técnico, Technical University of Lisbon, Portugal

‡Auto-ID Labs, Institute for Manufacturing,
University of Cambridge, UK

§Auto-ID Labs, Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA

Email: miguel.pardal@ist.utl.pt, mark.harrison@cantab.net, sesarma@mit.edu, jose.marques@link.pt

Abstract—Radio Frequency Identification (RFID) technology
allows automatic data capture from tagged objects moving in
a supply chain. This data can be very useful if it is used to
answer traceability queries, however it is distributed across many
different repositories, owned by different companies.

Discovery Services (DS) are designed to assist in retrieving
the RFID data relevant for traceability queries while enforcing
sharing policies that are defined and required by participating
companies to prevent sensitive data from being exposed.

In this paper we define an interface for Supply Chain
Authorization (SC-Az) and describe the implementation of two
visibility restriction mechanisms based on Access Control Lists
(ACLs) and Capabilities. Both approaches were converted to the
standard eXtensible Access Control Markup Language (XACML)
and their correctness and performance was evaluated for supply
chains with increasing size.

I. INTRODUCTION

The world around us interwines thousands of supply chains
that provide goods from the points of production to the points
of consumption. Supply Chain Management (SCM) solutions
focus on supply chain planning and execution, integrated with
companies’ Enterprise Resources Planning (ERP) systems.
Their ultimate goal is to get the right amount of products
from production to consumption in the least amount of time
and at the lowest cost. The main obstacle to their effectiveness
is inaccurate or untimely information [1].

Radio Frequency Identification (RFID) technologies can
be used to significantly improve the quality of supply chain
information [2], especially when used with the EPCglobal
architecture [3] that provides global and unique identifiers for
physical objects along with hardware and software standards.

RFID and EPC standards can improve SCM and ERP
systems, by providing an interface to answer highly granular
traceability queries, like Tracking - Where is the object? - and
Tracing - Where has the object been? [4] However, the data
remains fragmented across the supply chain.

A. Problem

Traceability data is captured by different organizations at
diverse geographical locations, and then it is stored within
independent data silos, as depicted in Figure 1. These silos
use the EPC Information Services (EPC IS) [5] standard and
provide means to capture and exchange consolidated data.

EPC tags

Manufacturer

EPC IS

Query

Capture

Distributor

EPC IS

Query

Capture

Retailer

EPC IS

Query

Capture

Fig. 1. RFID data is captured and stored across the supply chain.

This disjunction is not simply a data partition problem
that can be solved technically with more network connections
and bigger databases. It is a security problem of paramount
importance for the participants of the supply chain. Although
companies can benefit from sharing data, data about the flow
of physical goods can expose sensitive business information
(e.g. levels of demand and inventory, supplier relationships,
etc.) and companies do not want to risk this being leaked to
competitors and to other unauthorized parties. So, the defini-
tion and enforcement of data sharing policies is indispensable,
if companies are ever going to participate in a Business-to-
Business (B2B) traceability system.

B. Proposal

EPC Discovery Services (EPC DS) [6] are an extension
to the EPCglobal architecture that is intended to address



the security and partition challenges. Figure 2 shows how
Discovery Services (DS) assist in traceability queries: earlier,
when EPC-identified objects are observed and data is captured,
a DS is notified; when a query is issued, a DS is contacted
to find the IS instances containing relevant data. However,
DS will only make the data visible if its owners explicitly
authorized it.

EPC 

id

Manufacturer M

EPC IS

Query

Capture

Distributor D

EPC IS

Query

Capture

Retailer R

EPC IS

Query

Capture

1: Who has data?

3: Get more data

2: Get data

Query
Publish

EPC DS

Fig. 2. Traceability information system using EPC IS and DS.

In this paper we define the Supply Chain Authorization
(SC-Az) Application Programming Interface (API) to express
authorizations with supply chain concepts, and we implement
it using two “classical” authorization mechanisms [7]: Access
Control Lists (ACLs) and Capabilities. We also translate both
approaches to eXtensible Access Control Markup Language
(XACML), a standard authorization language, and then com-
pare their correctness and their performance as the supply
chain size increases.

C. Overview

The rest of the paper is organized as follows. First we
review related work. Then we define SC-Az and its imple-
mentations. Next we briefly introduce XACML and describe
the assessment tool. We evaluate the performance and discuss
the findings and conclude the paper with a summary of the
contributions and future work.

II. RELATED WORK

A. Traceability architecture

The EPCglobal IS + DS traceability architecture is semi-
centralized - DS instances are few compared to IS instances
and play a “special” role - and traceability data is referenced
(not copied). For these reasons, this architecture is classified
by Do et al. [8] as Meta-Data Integration (MDI).

Previous work by Evdokimov et al. [9] qualitatively ana-
lyzed traceability architectures and compared functional re-
quirements. Pardal and Alves Marques [10] surveyed over
20 traceability systems, summarized them in four categories,
and quantitatively analyzed each one concluding that MDI
it has the second-best performance estimates and it provides

additional indirection levels that can be used to address other
concerns. Namely, DS can be implemented as a trusted third
party that can mediate (partial) trust between the supply chain
participants.

B. Visibility restriction approaches

In subsequent work, Pardal, Harrison and Alves Mar-
ques [11] studied visibility restriction mechanisms for MDI
and presented effort estimates. This compared the performance
of two approaches with a limited semantic expressivity, Enu-
merated Access Control (EAC) and Chain-of-Communication
Tokens (CCT), as well as a third option with extensible
semantics, named Chain-of-Trust Assertions (CTA). The re-
sults showed that the expected performance is similar for
all approaches, and that access control for supply chains is
different from traditional authorization: there is a lack of prior
knowledge about who should be authorized because of the
way each individual object path emerges.

C. Authorization

Data sharing policies need to be expressed in ways that
make sense both for the security and supply chain users while
meeting performance requirements [12].

Shi et al. [13] implemented a secure DS and used an
extended attribute-based access control to implement fine-
grained access policies. This implementation could be ex-
tended to support XACML as a policy input format because it
is a standard way of defining and enforcing policies, making
auditing and validation easier.

Policy translation approaches are presented by several au-
thors. Karjoth et al. [14] converted a vendor-specific policy
language to XACML that included ACLs. Alm and Illig [15]
translated complex policies such as ‘Role-Based Access Con-
trol’ and ‘Separation of Duty’. Motivated by the verbosity
of XACML, Cox [16] converted the policies to executable
Java classes and achieved increased performance and better
debugging capabilities.

Butler et al. [17] evaluated correctness by comparing res-
ponses from different XACML implementations.

Turkmen and Crispo [18] compared performance of
the ‘policy loading’ and ‘request evaluation’ operations of
XACML implementations, and they reported loading issues
with more than 100 policies. Liu et al. [19] discussed per-
formance optimization techniques and showed that several
improvements are possible.

III. SUPPLY CHAIN AUTHORIZATION

We propose an API called Supply Chain Authorization
(SC-Az) to allow companies participating in a supply chain
to express their authorization concerns using concepts in that
domain: item, company, etc. Figure 3 presents its operations:
init for initializing, share for granting access, request to ask
for access, and enforce to verify permission.

SC-Az is used to capture authorization requirements in a
formal way that is understandable by supply chain users and



<<interface>> SCAz

+initShare(owner, item)
+requestShare(partner, action, item) : Decision
+share(owner, partner, action, item)
+enforceShare(partner, action, item): Decision

Fig. 3. SCAz interface operations.

then it is translated to XACML policy that can be deployed
and enforced in a standard infrastructure.

We developed two alternative implementations of SC-Az.
Each one is a different formulation meant to express visibility
restriction approaches: Enumerated Access Control (EAC) and
Chain-of-Communication Tokens (CCT).

Figure 4 shows how the classes relate to the interfaces:
each class implements a mechanism-specific API and both
implement the SC-Az API, allowing the same business needs
to be mapped transparently to distinct implementations.

EACImpl

«interface»
SCAz

«interface»
EAC

«interface»
CCT

CCTImpl

Fig. 4. SCAz, EAC, and CCT interfaces and classes.

A. Enumerated Access Control

EAC is based on ACLs [7], represented in Figure 5, that
keep the access rights indexed by the object identifier. Each
ACL has an owner and several permissions that define autho-
rized user-action pairs.

<<datatype>> ACL

+object
+owner

<<datatype>> Entry

+user
+action1 0..*

Fig. 5. Access Control List (ACL) data structure.

Each data set - the events owned by a company C about
an item i - is protected by an ACL. Figure 6 shows the ACL-
related operations. The master ACL is maintained at the DS,
but a local copy is maintained at each IS to also protect its
records. The data owner contacts DS to add new partners to
the ACL.

<<interface>> EAC

+createACL(owner, aclName) : ACL
+requestAccess(acl, user, action) : Decision
+addToACL(acl, owner, user, action)
+checkACL(acl, user, action): Decision

Fig. 6. EAC interface operations.

B. Chain-of-Communication Tokens

CCT is an adapted Capabilities [7] mechanism because
the access rights are kept within the object structure. This
means that when the token is shared, the access rights are
automatically shared. Figure 7 presents the token’s contents
that are the authorized action-resource pairs, an Universally
Unique Identifier (UUID) for the ‘id’ and the ‘secret’.

<<datatype>> Token

+id
+secret
+owner
+resource
+action

Fig. 7. Authorization Token data structure.

Each data set is protected by a token. Figure 8 shows the
token-related operations. New visibility scopes can be created
by issuing new tokens. The data owner sends the token to new
partners directly or via DS to authorize them.

<<interface>> CCT

+createToken(owner, resource, action) : Token
+requestToken(id, user) : Token
+sendToken(token, owner, user)
+validateToken(token, user, action, resource) : Decision

Fig. 8. CCT interface operations.

IV. EXTENSIBLE ACCESS CONTROL MARKUP LANGUAGE

XACML is a standard proposed by OASIS [20], currently
in version 3.0. It is an eXtensible Markup Language (XML)
vocabulary that represents authorization policies and requests.
The authorization is the verification of a subject’s right to
execute an action on a resource.

The use cases for XACML are fine-grained access control
and externalized security. Externalized security encompasses
external user management, external authentication, external
logging and auditing, and external authorization. The idea
is to avoid hard-coded security and to unify the security
management across applications so that business rules can
be changed dynamically. Hebig et al. [21] demonstrated how
several technologies can work together for this purpose. Using
this approach, traceability data sharing policies can be au-
thored by the data owner and then used both at EPC DS and
IS level for improved enforcement consistency.

A. Policies

A XACML document has the structure represented in Fi-
gure 9. The document can contain a single policy or (nested)
policy sets. A policy consists of a set of obligations, a target,
a set of rules, and a rule-combining algorithm.

Obligations are actions that must be executed when a
request is processed and are typically used to write audit logs.

The target defines a simplified set of conditions and attribu-
tes that help in determining whether the policy is relevant for



policy 
combining 
algorithm

PolicySet

Policy

Target

Rule

Effect

Target

Condition

1

rule 
combining 
algorithm

*

1

1

0..1

*

Target

Obligation*

1

Obligation
*

*

Subject

Action

Resource

Environment

*

*

*

*

...

...

Fig. 9. XACML Policy structure.

the request. It is very important for performance, because it
provides policy index keys.

A policy rule is composed of: effect, target, and conditions.
The rule effect can be ‘Permit’, ‘Deny’, ‘NotApplicable’1, or
‘Indeterminate’2. The rule target again determines if the rule
is relevant for the request. The rule conditions are statements
about attributes with arbitrary nesting of functions that, upon
evaluation, return either ‘True’, ‘False’, or ‘Indeterminate’.
The rule effect is the intended consequence of the rule - ‘Per-
mit’ or ‘Deny’ - when the condition returns ‘True’. XACML
has a fixed set of functions to keep policies declarative
and with low algorithmic complexity [15]. However, custom
functions can be defined by the Policy Decision Point (PDP).

Finally, a policy/rule combining algorithm is responsible for
reconciling conflicts between policies/rules and to arrive at
one outcome per policy per request using logical conjunction,
disjunction or other algorithms.

B. Workflow

The authorization architecture [22] [23] and the request
processing workflow are represented in Figure 10. The Policy
Administration Point (PAP) is used to author and manage
policies, and they are loaded before the requests happen (0).
An access attempt is intercepted by Policy Enforcement Point
(PEP) (1) and an access request is sent to the PDP (2). The
Policy Information Point (PIP) provides attribute values, if
necessary (3) and the PDP makes a decision (4). Any implied
obligations are serviced (5) and the action is permitted or
denied (6).

1‘NotApplicable’ is used when no policy was matched or when some
required attribute was missing.

2‘Indeterminate’ signifies an error during evaluation of the policy.

PIP PEP

PAP PDP

Obligation 
service

1: access attempt

2: request

3: attribute values

4: response

6: Permit / Deny access

5: obligations

0: policies

ResourceAction

Subject

Environment

Fig. 10. XACML request processing.

V. ASSESSMENT TOOL

An assessment tool named SC-Az tool was developed to test
the correctness and performance of the security implementa-
tions. The tool can generate supply chain scenarios, generate
policies and requests, convert them to XACML, load and
evaluate them, and measure the performance.

The HERAS-AF3 [24] XACML engine was selected for use
because it is open-source and well documented.

A. Data flow

HerasAF
XACML
PDP

Authorizations 
generator

EAC / CCT

performance
measurement

XACML Job

supply chain
scenario

Supply chain 
generator

scenario stats
+ random seed

XACML 
converter

XACML

Analyzer performance
stats

Fig. 11. SCAz tool data flow diagram.

Figure 11 represents the data flow associated with the tool.
The initial input contains scenario statistics, such as the ‘chain

3Holistic Enterprise-Ready Application Security Architecture Framework.



length’ and the ‘number of items’, and the ‘random seed’, that
are used to generate a supply chain scenario. Next, authoriza-
tions and requests are also generated with equal probability
of ‘Permit’ or ‘Deny’. The access decision is computed using
either EAC or CCT to determine the expected outcome. Then
the policies and requests are translated to XACML, and a job is
sent to the PDP, where the policy files are unmarshalled4 and
deployed, the requests are unmarshalled and evaluated, and
the response is marshalled5. The measurements are collected
and final statistics are computed.

B. Conversion to XACML
1) From EAC: Each item data set has a single ACL, and

that ACL corresponds to a single XACML policy [14].
The policy name and target is the item identifier. The

rule combining algorithm is ‘first-applicable’ meaning that the
outcome of the first rule that matched is the access decision.
For each entry in the source ACL, a ‘Permit’ rule is generated
for each subject-action pair. Also a ‘Deny’ rule is generated.
Lastly, there is a “Deny all” rule for all other attempts.

2) From CCT: Each token corresponds to one XACML
policy that expresses its permissions.

The policy name and target is the token identifier. For each
capability encoded in the token there is a ‘Permit’ rule that
checks if the action-resource pair and the secret are correct.
In the end there is a “catch” rule to deny access for all other
attempts using the token.

The secret is represented as a Base-64 binary literal in the
policy6 but it could have been retrieved from a secure store.

VI. EVALUATION

Using the SC-Az tool we performed multiple experiments
to evaluate the correctness and performance of XACML for
supply chain authorizations.

A. Correctness
We generated the XACML policy from SC-Az using EAC

or CCT. We compared the SC-Az decisions with the XACML
decisions. If any inconsistent response is returned - e.g. the
implementation says ‘Deny’ but XACML PDP says ‘Permit’
- then the discrepancy is detected and the executing job is
cancelled to ensure that only correct responses are used.

B. Performance
To assess the performance we designed two experiments:

‘companies’ and ‘items’. The test machine was a Quad-
core CPU7 at 2.50 GHz, with 3.25 GB of usable RAM, and 1
TiB hard disk; running 32-bit Windows 7 (version 6.1.7601),
and Java 1.7.0 04. The absolute values of the presented results
will differ in a different server, but the relative performance
should be similar. The experiments were repeated several
times8 to obtain statistically meaningful values.

4Unmarshal: convert from XML text file to Java objects in-memory.
5Marshal: convert from Java objects in-memory to XML text file.
6Base-64 is a standard way to represent binary data as text.
7Intel Core 2 Quad Central Processing Unit Q8300
8At least 30 times each, so that the sampling distribution can be considered

‘normal’ according to the Central Limit Theorem.

1) Companies: We considered three supply chains with
different lengths: short (3), medium (6), and long (12).

0 1 2 3

short

medium

long

Time (ms)

policy unmarshal policy deploy

request unmarshal request evaluate

response marshal

Fig. 12. EAC processing time breakdown for request evaluation.

Figure 12 shows the processing time for the three supply
chains using EAC. The number of authorized partners in
a policy increases with the item path length, making the
generated policy size also increase. The average response
time grows with the chain length, but below linear for the
considered chains. For CCT (not shown), each XACML policy
has constant size, because the token and its authorized actions
have constant size. This improves the performance, making
CCT faster than EAC. The job times are dominated by the
persistent storage access times (91.5% of the overall time)
whereas ‘policy deployment’ and ‘request evaluation’ take
roughly just 0.5% and 8%, respectively.

2) Items: Figure 13 presents a plot of the ‘request evalua-
tion’ time for increasing number of ACL and token policies.

0 0.2 0.4 0.6 0.8 1

·104

0

10

20

30

Policies

T
im

e
(m

s)

EAC

CCT

Fig. 13. EAC and CCT evaluation time with increasing item numbers.

CCT has better performance, roughly 80%, explained by the
constant size of the token policies versus the increasing size
of the ACL policies.

VII. CONCLUSION

This paper introduced the SC-Az API for expressing au-
thorizations for data sharing in the supply chain domain. It
also introduced two implementations: EAC and CCT. Both



policy formats were converted to the standard XACML format,
and the HERAS-AF implementation was used to assess the
correctness and the performance. We verified that the data
sharing policies could be translated and enforced correctly
using a standard XACML infrastructure. We also verified the
correctness of the visibility restrictions.

We conclude that XACML is a useful policy inter-
change and execution standard for supply chain authorizations
whereas SC-Az can be much more intuitive to express the
intended restrictions. Combining both, we have a standard
policy infrastructure and a domain-specific interface.

Regarding performance, the results show that tokens (CCT)
are clearly better than ACLs (EAC). However, ACLs can
provide finer control over authorizations. We can leverage both
advantages by starting with a quicker token verification - Does
the querying party hold the token? - and then a more detailed
one - Is the querying party listed in the ACL?

We found that the policy loading and unmarshalling is
expensive and therefore it should be leveraged for several re-
quests, corroborating the findings of Turkmen and Crispo [18].
The performance of EAC started to degrade after 104 policies
and the performance of CCT after 105 policies, which might
pose problems for large item volumes (e.g. 106). However,
there is room for improvement by using a production-quality
XACML policy store, better indexing of policies, etc [19].

A. Future work

We will improve the job execution to try to effectively
measure the performance of XACML with more policies.

The performance impact of representing object groupings -
batches - and company sets - groups - will also be assessed. It
is expected that these formulations maintain the performance
level currently measured but allow for larger business domains.

We will also compare EAC and CCT with Chain-of-Trust
Assertions (CTA), a third implementation that uses logic and
that has extensible semantics. We will try to convert CTA to
XACML directly, but the predefined functions might not be
enough to express some of the assertions. We will either add
custom functions to the PDP or we will use the PIP to integrate
with an external reasoning engine.

Finally, the overall latencies of traceability queries for single
EPC, EPC enumerations, and EPC ranges will be measured
because these are the use cases that will have the most direct
impact on enterprise systems’ performance.

ACKNOWLEDGMENT

Miguel L. Pardal is supported by a PhD fellowship from
the Portuguese Foundation for Science and Technology FCT
(SFRH/BD/45289/2008).

REFERENCES

[1] K. Laudon and J. Laudon, Management Information Systems - 12th
edition. Prentice Hall, January 2011.

[2] E. W. Schuster, S. J. Allen, and D. L. Brock, Global RFID: The value of
the EPCglobal network for supply chain management. Springer, 2007.

[3] The EPCglobal Architecture Framework 1.4, Std.

[4] R. Agrawal, A. Cheung, K. Kailing, and S. Schonauer, “Towards
Traceability across Sovereign, Distributed RFID Databases,” in Int’l
Database Engineering and Applications Symp. (IDEAS), 2006.

[5] EPCglobal, EPC Information Services (EPCIS) 1.0.1 Specification, GS1
Std., September 2007.

[6] T. Burbridge and M. Harrison, “Security Considerations in the Design
and Peering of RFID Discovery Services,” in IEEE Int’l Conf. on RFID,
Orlando, USA, 2009, pp. 249–256.

[7] R. Sandhu and P. Samarati, “Access control: principle and practice,”
IEEE Comm. Magazine, vol. 32, no. 9, pp. 40–48, September 1994.

[8] H.-H. Do, J. Anke, and G. Hackenbroich, “Architecture evaluation for
distributed Auto-ID systems,” in Proc. 17th Int’l Workshop on Database
and Expert Systems Applications (DEXA), 2006, pp. 30–34.

[9] S. Evdokimov, B. Fabian, S. Kunz, and N. Schoenemann, “Comparison
of Discovery Service architectures for the Internet of Things,” in IEEE
Int’l Conf. on Sensor Networks, Ubiquitous, and Trustworthy Computing
(SUTC), 2010, pp. 237–244.

[10] M. L. Pardal and J. A. Marques, “Cost Model for RFID-based Trace-
ability Information Systems,” in IEEE Int’l Conf. on RFID Technology
and Applications, September 2011.

[11] M. L. Pardal, M. Harrison, and J. A. Marques, “Assessment of Visibility
Restriction Mechanisms for RFID Data Discovery Services,” in IEEE
Int’l Conf. on RFID, April 2012, p. 7.

[12] BRIDGE, “Requirements document of serial level lookup service for
various industries,” University of Cambridge and AT4 wireless and BT
Research and SAP Research and ETH Zurich and GS1 UK, Tech. Rep.,
August 2007.

[13] J. Shi, D. Sim, Y. Li, and R. Deng, “SecDS: a secure EPC discovery
service system in EPCglobal network,” in Proc. of the 2nd ACM Conf.
on Data and Application Security and Privacy, ser. CODASPY. New
York, NY, USA: ACM, 2012, pp. 267–274.

[14] G. Karjoth, A. Schade, and E. V. Herreweghen, “Implementing ACL-
Based Policies in XACML,” in Annual Computer Security Applications
Conf. (ACSAC), December 2008, pp. 183–192.

[15] C. Alm and R. Illig, “Translating High-Level Authorization Constraints
to XACML,” in Proc. 6th World Congress Services (SERVICES-1), 2010,
pp. 629–636.

[16] B. J. Cox, “Policy Based Access Control (PBAC) for Diverse DoD
Security Domains,” Technica Corporation, Tech. Rep., March 2011.

[17] B. Butler, B. Jennings, and D. Botvich, “XACML policy performance
evaluation using a flexible load testing framework,” in Proc. of the 17th
ACM Conf. on Computer and Communications Security, ser. CCS. New
York, NY, USA: ACM, 2010, pp. 648–650.

[18] F. Turkmen and B. Crispo, “Performance evaluation of XACML PDP
implementations,” in Proc. of the 2008 ACM Workshop on Secure Web
Services, ser. SWS. New York, NY, USA: ACM, 2008, pp. 37–44.

[19] A. Liu, F. Chen, J. Hwang, and T. Xie, “Designing Fast and Scalable
XACML Policy Evaluation Engines,” IEEE Transactions on Computers,
no. 99, 2010.

[20] B. Parducci, H. Lockhart, and E. Rissanen, eXtensible Access Control
Markup Language (XACML) Version 3.0, OASIS Std., August 2011.

[21] R. N. Hebig, C. Meinel, M. Menzel, I. Thomas, and R. Warschofsky,
“A Web Service Architecture for Decentralised Identity- and Attribute-
Based Access Control,” in Proc. IEEE Int’l Conf. Web Services (ICWS),
2009, pp. 551–558.

[22] R. Yavatkar, D. Pendarakis, and R. Guerin, RFC 2753 – A
Framework for Policy-based Admission Control, IEFT, Internet
Engineering Task Force Std., January 2000. [Online]. Available:
http://www.ietf.org/rfc/rfc2753.txt

[23] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross,
B. de Bruijn, C. de Laat, M. Holdrege, and D. Spence, RFC 2904 – AAA
Authorization Framework, IEFT, Internet Engineering Task Force Std.,
August 2000. [Online]. Available: http://www.ietf.org/rfc/rfc2904.txt

[24] F. Huonder, “Conflict Detection and Resolution of XACML Policies,”
Master’s thesis, University of Applied Sciences Rapperswil, July 2010.


