
Performance Assessment of Web Services
in the STEP Framework

Miguel L. Pardal, Joana P. Pardal, and José Alves Marques

Department of Computer Science and Engineering
Instituto Superior Técnico, Technical University of Lisbon

Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
{miguel.pardal,joana.paulo.pardal}@ist.utl.pt,

jose.marques@link.pt

Abstract. This chapter presents a performance study of the STEP Framework, an
open-source application framework implemented on the Java platform that uses
many popular open-source libraries, including: Hibernate, JAX-WS, and Log4J.
This framework has been used for several years to teach development of dis-
tributed enterprise applications to undergrad students. This chapter also describes
the performance measurements over a flight reservation web service that is in-
cluded as an example in the source code distribution. It presents an assessment of
the web service and shows how the performance of this specific application was
studied in detail. The achieved results are put in context and compared with other
technologies, highlighting the existing trade-offs.

Keywords: Web Services, Performance, Measurement.

1 Introduction

Enterprise applications have many demanding requirements [1], and some of the most
important are related to performance. Performance analysis is a challenge [2] [3], that
can be especially hard for inexperienced developers. To verify if an implementation is
performing as expected, run-time data must be collected and analyzed. This data can be
used to compare design and configuration alternatives. However, collecting such data
in the application requires many modifications to the original source code.

The Simple, Extensible, and for Teaching Purposes (STEP) Framework1 [4] is an
open-source application framework. Its source code is intended to be small and sim-
ple enough to allow any developer to read and understand it thoroughly. The goal is to
learn how the architectural layers are implemented in practice and to be able to change
small details that are usually hidden in professional frameworks. This is especially im-
portant for students. The collected metrics allow them to better understand the existing
trade-offs of alternative approaches. In fact, this framework has been used for several
years in ‘Software Engineering’ and ‘Distributed Systems’ courses lectured at Instituto
Superior Técnico (IST), Technical University of Lisbon, to teach Computer Science
and Engineering undergrad students how to develop Web Services with enterprise-like
requirements.

1 http://stepframework.sourceforge.net/

I. Ivanov et al. (Eds.): CLOSER 2012, CCIS 367, pp. 200–214, 2013.
c© Springer International Publishing Switzerland 2013

http://stepframework.sourceforge.net/


Performance Assessment of Web Services in the STEP Framework 201

Before the improvements we describe here, the STEP framework did not provide
means to collect run-time data for later analysis. With this work the framework was
extended with monitoring and analysis tools that enable developers to collect actual
performance data and to use it to study how different decisions impact the overall per-
formance.

What follows is a brief overview of the STEP framework architecture, followed by
the description of a performance assessment study, detailing the new added tools and
the results of the conducted experiments over a flight reservation web service that is
available in the distribution.

2 STEP Framework Overview

The STEP Framework is a multi-layer, Java-based, enterprise-like application frame-
work. It can be used to develop Servlet/JSP Web Applications and Web Services.

2.1 Architecture

The STEP Framework defines a typical layered architecture [1]. The main layers are
Domain and Service. There are also Persistence, View, Presentation and Web Service
layers. Each layer considers different implementation concerns.

The Domain layer is where an object-oriented solution for the requirements is im-
plemented. Domain objects are persisted to a database using object-relational mapping
through the Hibernate2 library and its annotations.

The Service layer provides access to the application’s functionalities through service
objects, that access the domain objects, isolating them from upper layers, and managing
transactions to ensure atomic, consistent, isolated, and durable (ACID) persistence.

The View layer provides Data Transfer Objects (DTO) that are used as input and
output for service objects and uses JAX-B3 technology.

The Presentation layer is responsible for user interaction through a Web interface,
implemented with servlets and Java Server Pages (JSP). It uses Stripes4 but there are
also STEP variants using Struts5 and the Google Web Toolkit6.

There is a Web Services (WS) layer that provides remote access to services, using
JAX-WS7 technology.

STEP supports Extensions [5][4], a mechanism for intercepting the Service and Web
Service layers that simplifies the implementation of cross-cutting concerns. Extensions
proved very useful for implementing the performance monitors described later in the
chapter.

A STEP development branch, called SmartSTEP [6] supports WS-Policy-like auto-
matic configuration of Extensions to provide security, reliable messaging, logging, etc;
as required by parties communicating with WS.

2 http://www.hibernate.org/
3 https://jaxb.dev.java.net/
4 http://www.stripesframework.org/
5 http://struts.apache.org/
6 https://developers.google.com/web-toolkit/
7 https://jax-ws.dev.java.net/

http://www.hibernate.org/
https://jaxb.dev.java.net/
http://www.stripesframework.org/
http://struts.apache.org/
https://developers.google.com/web-toolkit/
https://jax-ws.dev.java.net/


202 M.L. Pardal, J.P. Pardal, and J.A. Marques

Fig. 1. Sequence diagram of a STEP Web Service invocation

2.2 Request Processing

The processing sequence of a request for a STEP Web Service is shown in Figure 1.
A request begins in the client application (WS Client) that sends a SOAP envelope in
an HTTP request to the server (WS). The application container at the server assigns
a thread to execute the request from start to finish. The HTTP request is interpreted
and dispatched to an instance of the JAX-WS servlet. The WS layer parses the SOAP
envelope. The payload is deserialized from XML to Java objects using JAX-B.

The Service layer receives the view objects, starts an implicit database transaction,
and invokes one or more domain objects. The Domain layer implements business logic
using entity and relationship objects. The Persistence layer maps entities and relation-
ships to database tables and vice-versa. SQL queries are generated and executed auto-
matically by Hibernate. When the application-specific logic is complete, and if no error
is reported, the Service layer commits the database transaction. Otherwise, the transac-
tion is aborted and an error is returned. The resulting views (either the required results
or the error message) are created and returned to the WS layer. The response payload
is serialized from Java objects to XML. The JAX-WS servlet sends the SOAP envelope
back to the client in the HTTP response. The request thread is typically returned to a
thread pool, for later reuse. Several requests can be executed in parallel.

3 Performance Tools

The goal of the performance assessment tools is to breakdown the overall processing
time, to identify the parts of the application that are worth improving.



Performance Assessment of Web Services in the STEP Framework 203

Performance measurement tools can be classified as tracers and profilers [2]. A
tracer [7] is a component that intercepts application code to record typed time-stamped
events. Examples of tracing tools include libraries like Perf4J8. A profiler [8] is a pro-
gram that monitors an application to determine the frequency of execution in specific
code regions. A profiler can operate using sampling (application is interrupted peri-
odically and measurements are taken), hardware counters (processor stores application
performance data), or instrumentation (application source or binary code is augmented).
Overall, sampling is faster but less accurate. There are several profiling tools available
that combine the approaches mentioned above, like JProfiler9 and YourKit10. Tracer are
more lightweight than profilers because the latter require more complex interactions
with applications [9]. Also, profilers are usually harder to use for server-side applica-
tions that have to handle multiple concurrent requests.

3.1 Our Approach

The performance tools for the STEP Framework follow the tracer approach. The goal
was to collect run-time data, to analyze it, and to test performance improvement hy-
potheses. The main metric used was request processing time to measure (and improve)
responsiveness.

The performance of Java programs is affected by application, inputs, virtual ma-
chine, garbage collector, heap size, and underlying operating system. All these factors
produce random errors in measurements that are unpredictable, non-deterministic, and
unbiased [10]. To quantify the random errors in measurements, the program runs had
to be repeated several times. The presented values are the mean of the samples with a
confidence interval (margin of error) computed with a confidence level of 90%, 95%, or
99%. At least 30 runs were executed for each program variation, so that the calculation
of the confidence level could assume a normal distribution of the samples, according to
the Central Limit Theorem [11]. Only changes in values greater than the error margin
were considered statistically relevant and not the effect of random errors.

The performance analysis process encompasses all activities necessary to generate,
collect, and analyze performance-related data. Figure 2 presents the data-flow diagram
of our approach. Each activity is performed by a specific tool: Domain Data Generator,
Load Generator, Load Executor, Monitor, Analyzer, and Report Generator.

The Domain Data Generator tool populates the database with realistic data, both in
values and in size. The data population was realized using Groovy11 scripts that parsed
data files with domain descriptions and accessed the database to insert them.

The Load Generator tool produces files with serialized request objects, following
templates for normal and error situations, creating loads that can be reproduced later.

The Load Executor tool was programmed to send requests. The script opens an object
stream, reads request objects from it, and executes the operations: think (wait), search

8 http://perf4j.codehaus.org/
9 http://www.ej-technologies.com/products/
jprofiler/overview.html

10 http://www.yourkit.com/
11 http://groovy.codehaus.org/

http://perf4j.codehaus.org/
http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.yourkit.com/
http://groovy.codehaus.org/


204 M.L. Pardal, J.P. Pardal, and J.A. Marques

Fig. 2. Performance tool chain data flow diagram

flights, create single reservation, and create multiple reservations. The requests are sent
to the specified WS endpoint. If an error is caught, the output message is logged, and the
processing continues. This tool uses a thread pool of fixed size implemented with the
java.util.concurrent package to run simultaneous virtual users and there is one thread
for each simulated user.

The Monitor is the core component of performance analysis. When enabled, it col-
lects request processing times for each architectural layer. It intercepts request process-
ing at relevant interception points (represented in Figure 1, using grey boxes at the WS,
Service and Persistence layers). Each specific interception point inserts measurement
code. STEP extensions are used to intercept both the Service and the WS layers.

The Analyzer takes all samples of execution data resulting from multiple runs us-
ing the same settings, and computes sample statistics. A complete records file is sum-
marized in a single row. For each numeric field, the mean, standard deviation, upper
quartile, median, and lower quartile are computed. Finally, the overall statistics are
computed. A similar procedure is applied to the virtual user output logs to produce er-
ror statistics from the WS client perspective that is the most relevant one for quality of
service purposes.

Finally, the Report Generator uses the statistical data produced by the Analyzer and
uses it to produce custom reports. For a more in-depth description of these tools, see
our paper on the topic[12].



Performance Assessment of Web Services in the STEP Framework 205

4 Experiments

Several experiments were conducted using the performance analysis tool chain, to iden-
tify performance problems and to propose solutions. The results are presented and dis-
cussed in this section.

4.1 Scenario System

The analyzed system was the “Flight reservation Web Service” (Flight WS) that is one
of the example applications included in the STEP Framework source code distribution.

The initial Flight WS had only one operation: “create low price reservation”. The
following additional operations were developed: “search flights”, “create single reser-
vation”, and “create multiple reservations”. The reason for adding new operations was
to allow more diverse kinds of requests using the most common data types (text, nu-
meric, date, currency, and collections) and with different message sizes.

With the new operations it became possible to instantiate all the message archetypes
defined in the JWSPerf Web Service benchmark [13], making Flight WS a typical Web
Service. To a limited degree, conclusions made using Flight WS can be extrapolated to
other WS with similar software architecture and user loads.

4.2 Hardware and Software Platform

The following machines and networks were used for the test runs.

Machine A with a Quad-core12 CPU running at 2.50 GHz, 3.25 GB of usable RAM,
and 1 TiB hard disk. It ran 32-bit Windows 7 (version 6.1.7600), MySQL 5.1.43,
Java Developer Kit 1.6.0 18, Groovy 1.7.3, Apache Tomcat 6.0.14 and STEP 1.3.3
(includes Hibernate 3.3.2.GA, JAX-B 2.1.10, JAX-WS 2.1.7, Stripes 1.5.1).

Machine B with a Dual-core13 CPU running at 2.53 GHz, 3 GB of RAM, and 500 GiB
of hard disk storage. It ran the same software.

The machines were connected either by a 100 Mbit LAN or by a 10 Mbit LAN. The
machines were configured to disable all system maintenance activities. The measure-
ments were taken for the application’s steady-state performance and not for start-up
performance, since we are concerned with the running application’s response times.
Garbage collection and object finalization were considered as part of the steady-state
server workload [14]. Unless otherwise stated, all the presented results were produced
running in Machine A.

4.3 Request Time Breakdown

Table 1 presents the request processing time breakdown. Figure 3 represents the same
data graphically.

12 Intel Core 2 Quad CPU Q8300.
13 Intel Core 2 Duo CPU P9500.



206 M.L. Pardal, J.P. Pardal, and J.A. Marques

Table 1. Request processing time breakdown

Slice Time (ms) Time %
Web 2.83 0.98
Web Service 14.33 4.94
Service 203.14 70.07
Hibernate Engine 40.97 14.13
Hibernate Writes 15.52 5.35
Hibernate Reads 13.10 4.52

Fig. 3. Request processing time breakdown

The largest time slice is Service (70%) because it includes all the application-specific
logic and also because it is the slice where the remaining – not specific to any layer –
processing time is accounted for. The second largest slice is Hibernates (24%) as it
manages the domain objects in the database. The Hibernate engine slice is significant
(14%) because it includes when data is actually written to the database, at transaction
commit time. The absolute value of roughly 300 milliseconds average processing time
is only useful to compare with other measurements made in the same machine.

4.4 Monitor Implementation Comparison

The STEP framework performance monitor [12] had several iterations. Each was an
attempt to more accurately capture the performance data.

Table 2 and Figure 4 present a comparison of the results of the same workload exe-
cuted but using different monitor implementations to capture data:

– Perf4J monitor raw records (Perf4J raw);
– Perf4J monitor with aggregated records (Perf4J agg);
– Event monitor (Event);
– Layer monitor without Hibernate wrapping (Layer -Hwrap);
– Layer monitor with Hibernate wrapping (Layer).



Performance Assessment of Web Services in the STEP Framework 207

Table 2. Request processing time percentages of different performance monitors. Each row sums
to 100% of time spent.

Monitor Web WS Svc Hib Eng Hib W Hib R
Perf4J raw 0.71 4.26 87.00 0.00 4.58 3.45
Perf4J agg 0.79 4.51 4.59 0.00 10.86 79.25
Event 0.99 5.15 83.74 0.00 5.39 4.72
Layer -Hwrap 0.89 4.82 85.17 0.00 4.82 4.30
Layer 0.98 4.94 70.07 14.13 5.35 4.52

Fig. 4. Request processing breakdown of different performance monitors

The first choice for monitor was the Perf4J14 library that uses stop-watch objects to
time the execution of code blocks: on entry, the stop-watch is started; on exit, the stop-
watch is stopped, timing of execution inside each layer. Perf4J delegates actual logging
on the Apache Log4J library, already used by the STEP Framework. The performance
events are logged in a separate log file and each stop-watch record has a start, time, tag,
and (optional) message.

At first glance Perf4J was assumed to be underestimating the value of the Hibernate
slice. Especially because the performance log files had (literally) thousands of lines stat-
ing that the time spent to load an object was 0 ms. These values were due to excessively
fine-grained measurement of Hibernate calls. In practice, each call was too short to be
accurately measured.

In the Perf4J monitor with aggregated records (Perf4J agg) the consecutive 0 ms
records were combined and the elapsed time was computed using the time-stamps. The
result of this mitigation attempt was a gross overestimation of the Hibernate slice, as
confirmed by the other monitors. The mitigation failure was confirmed also by many

14 http://perf4j.codehaus.org/

http://perf4j.codehaus.org/


208 M.L. Pardal, J.P. Pardal, and J.A. Marques

Table 3. Request processing breakdown for different request types, in percentages

Request Web WS Service Hib Eng Hib W Hib R
All 0.98 4.94 70.07 14.13 5.35 4.52
Searches 1.25 8.75 74.15 11.31 0.00 4.55
Reservations 0.71 0.83 62.69 19.37 12.17 4.23
Faults 0.83 4.60 86.73 1.96 0.00 5.89

Fig. 5. Request processing breakdown for different request types

occurrences of records where the hibernate time was larger than the service time (a
physical impossibility).

Since the results were not satisfactory, two new monitor approaches were imple-
mented: Event and Layer. The Event monitor records one data record to the log for
each interception point (just like Perf4J), producing a log file size proportional to the
number of accessed objects, and data is written to the log file immediately after each
interception. The Layer monitor keeps totals in memory and writes them to file only
once per request, at the end of the request processing.

Both Event and Layer had a lower overhead when compared to Perf4J. However only
Layer was capable of wrapping hibernate objects - Session, Transaction, etc - and cor-
rectly handling the nesting of calls between them. This difference is important as Layer
monitor without Hibernate wrapping (Layer -Hwrap column) shows. It does not capture
the Hibernate Engine slice, just like Event monitor, and a large slice of Hibernate time
is lost. For this greater accuracy, the Layer monitor with Hibernate object wrapping was
chosen as the final reference monitor that was used for all other experiments.

4.5 Request Types

In this experiment, request types are filtered and analyzed separately. Table 3 and Figure
5 present the results.



Performance Assessment of Web Services in the STEP Framework 209

Fig. 6. Request processing breakdown for increasing SOAP size

Table 4. Request processing breakdown for increasing SOAP size, in percentages

Avg. XML len. Web WS Service Hib Eng Hib W Hib R
3215 0.96 5.26 73.93 14.33 0.80 4.73
5190 0.98 4.94 70.07 14.13 5.35 4.52

28348 1.53 3.93 55.69 11.78 23.57 3.51
142145 1.60 2.35 45.16 8.95 39.35 2.59
222281 1.50 1.64 50.62 7.28 36.88 2.08

Searches are read-only, reservations are read-write. Faults were mostly produced by
invalid input, so no data was written. Notice how Hibernate Writes slice are empty on
searches and faults. The framework handling of failed transactions is efficient because
significant time savings are achieved when there is a database rollback.

4.6 Web Service Message Size

In this experiment, the SOAP message size is increased by making flight reservation re-
quests with more passengers. Figure 6 and Table 4 present a comparison of the different
workloads with increasing average XML length. The dominant slices are still Service
and Hibernate. The impact of request time is very significant, above linear progression.
Figure 7 shows the detail only for the Web and SOAP slices. The XML processing
behavior is also increasing above linear progression.

Increasing XML size has less impact than initially predicted, providing evidence
that XML parsers have been greatly optimized since the early versions where the per-
formance degradation was more significant [13]. However, there are still practical limits
for the message sizes: for messages above 150,000 characters (roughly 150 KiB assum-
ing UTF-8 encoding) the server starts to fail with java.lang.OutOfMemoryError due to
lack of Java heap space. This explains why the percentage of time spent in the service
layer (c.f. ‘Service’ column in Table 4) actually decreases with increasing XML length.



210 M.L. Pardal, J.P. Pardal, and J.A. Marques

Fig. 7. Web and Web Service layers detail of request processing breakdown with increasing SOAP
size

Table 5. Request processing breakdown for different cache settings, in percentages

Configuration Web WS Service Hib Eng Hib W Hib R
Local DB 0.98 4.94 70.07 14.13 5.35 4.52
w r-only cache 0.95 5.28 70.46 13.63 4.81 4.88
w r-w cache 0.91 5.05 65.32 13.40 4.67 10.65
100 Mbit LAN DB 0.72 4.06 65.20 16.01 8.96 5.06
w r-only cache 0.75 4.42 65.74 14.93 8.61 5.54
w r-w cache 0.68 4.19 62.33 14.76 8.16 9.88
10 Mbit LAN DB 0.28 1.88 78.50 6.83 10.64 1.88
w r-only cache 0.32 2.53 77.66 6.55 10.86 2.08
w r-w cache 0.25 1.90 77.28 6.80 10.26 3.51

4.7 Hibernate Second-Level Cache

The goal of this experiment was to measure the improvement of performance by us-
ing the out-of-the-box Hibernate second-level caching [15], EHCache (Easy Hibernate
Cache). The first-level cache is turned on by default and is managed at the Hibernate
Session object. Since each request has its own Session, the cache is not shared between
them. The second-level cache is managed at the Session Factory object and allows shar-
ing between sessions.

When running Tomcat and MySQL in the same machine, using the second level
cache actually did not improve performance (c.f. first 3 rows of Table 5). The read-only
cache has negligible effect (c.f. next 3 rows). The read-write cache actually decreases
performance (c.f. last 3 rows).

When running Tomcat in machine A and MySQL in machine B, connected by a 100
Mbit LAN, the results were only marginally worse, despite the network communication.

Only when running Tomcat in machine A and MySQL in machine B, connected by a



Performance Assessment of Web Services in the STEP Framework 211

Table 6. Request processing breakdown for increasing concurrent users

Users Web WS Service Hib Eng Hib W Hib R
1 0.98 4.94 70.07 14.13 5.35 4.52
2 1.10 4.89 70.06 14.08 4.08 5.80
4 1.21 4.04 71.09 13.58 3.97 6.11
8 2.04 4.62 65.06 17.07 5.47 5.74

16 2.75 6.07 62.55 19.56 4.80 4.26

Fig. 8. Request processing breakdown for increasing concurrent users

more constricted 10 Mbit LAN, did the read-only cache prove beneficial. However, the
request processing time for this configuration was approximately 3 times slower than
the others.

The best solution for this application is to leave the second-level cache turned off as
most caching benefits were achieved with the first-level cache.

4.8 Concurrent Users

The performance of an application in a production environment heavily depends on the
number of users, making it hard to properly test the implementation in a development
environment where a single user is available. In this experiment several virtual users
were running at the same time. Table 6 and Figure 8 present the results.

The server scales reasonably well for the tested number of users. The request pro-
cessing time stays in the same order of magnitude for a ten-fold increase in load (from
1 user to more than 10, it stays near the 1 second range).

However, there is a problem: the number of Application Exceptions stays the same
(as expected in a simulated workload) but the number of System Errors steadily in-
creases, from 0% for 1 user, to 30% for 16 users. This is caused by Hibernate optimistic
cache [15] approach that throws org.hibernate.StaleObjectStateException when it de-
tected concurrent modifications of the same objects. This happens not only for entity



212 M.L. Pardal, J.P. Pardal, and J.A. Marques

Table 7. Log level average processing time and average functional log size

Log level Time (ms) Log size (bytes)
Off 332.52 0
Fatal 332.10 0
Error 331.69 1792
Warn 333.70 1792
Info 332.91 13978
Debug 4431.41 296059571
Trace 37430.76 2029488189

Fig. 9. Request processing times for log level settings. The y axis is in logarithmic scale.

data modifications, but also for relationship modifications. The impact of this issue is
magnified because the STEP Framework cookbook15 advocates the use of a “Domain
Root” object that connects to all the main domain entities. This guideline has a mea-
surable impact on the scalability of STEP applications and should be reconsidered in
future versions.

4.9 Logging Cost

Log libraries are very important for server-side applications as a debug and diagnostics
tool. The STEP Framework and the libraries it uses rely on Apache Log4J16 to log
program messages. In this experiment, the functional log level was changed from no
messages (”off”) up to the most detailed level (”trace”). Table 7 and Figure 9 present
the results.

The cost of logging beyond “info” level is enormous, making the “debug” and “trace”
levels impractical for production environments.

15 Cookbooks available at http://stepframework.sourceforge.net/
16 http://logging.apache.org/log4j/

http://stepframework.sourceforge.net/
http://logging.apache.org/log4j/


Performance Assessment of Web Services in the STEP Framework 213

Additional detail levels could help alleviate this problem, as well has selecting partial
output only from some of the layers and not all of them, or activating them for a subset
of requests (e.g. requests from a specific user).

5 Conclusions

This chapter presented the performance assessment of a representative Web Service
developed using the STEP Framework. Performance monitoring is much harder than
first expected. Also, assembling a tool chain to collect, process, and visualize the data
is an extensive work. But the benefits of having it in place are greatly beneficial for
development, especially in an open-source, academic learning environment.

The detailed description of the performance analysis process provides insight to how
similar techniques can be used in other frameworks, and how to avoid some of the
pitfalls, in particular, regarding monitor implementation and how measurements should
always be interpreted with regard for the bias introduced by the measurement process
itself.

The presented experiment findings – time slice breakdown, monitors comparison,
request types, SOAP size, caching, concurrent users, and logging – are illustrative of
the framework’s new capabilities and of how they can be used by learning developers
make more informed decisions that help give better performance to their Web Services.

Acknowledgements. Miguel L. Pardal and Joana Paulo Pardal are supported by PhD
fellowships from the Portuguese Foundation for Science and Technology FCT (SFRH/
BD/45289/2008 and SFRH/BD/30791/2006).

The authors wish to thank Prof. Paulo Jorge Pires Ferreira for his insightful review
of an earlier manuscript.

References

1. Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, R., Stafford, R.: Patterns of Enterprise
Application Architecture. Addison Wesley (2002)

2. Jain, R.: The Art of Computer Systems Performance Analysis - Techniques for Experimental
Design, Measurement, Simulation, and Modeling. Wiley (1991)

3. Menascé, D.A., Almeida, V.A.F., Dowdy, L.W.: Performance by Design - Computer Capacity
Planning by Example. Prentice Hall (2004)

4. Pardal, M., Fernandes, S., Martins, J., Pardal, J.P.: Customizing Web Services with Exten-
sions in the STEP framework. Int’l Journal of Web Services Practices 3(1) (2008)

5. Pardal, M.: Core mechanisms for Web Services extensions. In: 3rd Int’l Conf. on Next Gen-
eration Web Services Practices (NWeSP). IEEE Computer Society (2007)

6. Leitão, J.C.C., Pardal, M.L.: Smart Web Services: systems integration using policy driven
automatic configuration. In: Quintela Varajão, J.E., Cruz-Cunha, M.M., Putnik, G.D., Trigo,
A. (eds.) CENTERIS 2010, Part II. CCIS, vol. 110, pp. 446–454. Springer, Heidelberg (2010)

7. Roza, M., Schroders, M., van de Wetering, H.: A high performance visual profiler for games.
In: ACM SIGGRAPH Symp. on Video Games (Sandbox 2009), pp. 103–110. ACM, New
York (2009)



214 M.L. Pardal, J.P. Pardal, and J.A. Marques

8. Shankar, K., Lysecky, R.: Non-intrusive dynamic application profiling for multitasked appli-
cations. In: 46th Annual Design Automation Conf. (DAC), pp. 130–135. ACM, New York
(2009)

9. Pearce, D.J., Webster, M., Berry, R., Kelly, P.H.J.: Profiling with aspectj. Softw. Pract. Ex-
per. 37, 747–777 (2007)

10. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous Java performance evaluation.
In: 22nd Annual ACM SIGPLAN Conf. on Object-Oriented Programming Systems and Ap-
plications (OOPSLA), pp. 57–76. ACM, New York (2007)

11. Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers. Wiley
(2010)

12. Pardal, M.L., Pardal, J.P., Marques, J.A.: Improving Web Services performance, one STEP
at a time. In: 2nd Int’l Conf. on Cloud Computing and Services Science (CLOSER) (2012)

13. Machado, A., Ferraz, C.: JWSPerf: A performance benchmarking utility with support to
multiple web services implementations. In: Int’l Conf. on Internet and Web Applications and
Services (ICIW), pp. 159–159 (2006)

14. Boyer, B.: Robust Java benchmarking. IBM Developer Works (2008)
15. Bauer, C., King, G.: Java Persistence with Hibernate. Manning (2006)


	Performance assessment of Web Services in the STEP Framework
	Introduction
	STEP Framework Overview
	Architecture
	Request Processing

	Performance Tools
	Our Approach

	Experiments
	Scenario System
	Hardware and Software Platform
	Request Time Breakdown
	Monitor Implementation Comparison
	Request Types
	Web Service Message Size
	Hibernate Second-Level Cache
	Concurrent Users
	Logging Cost

	Conclusions


