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Abstract—Communication through the Internet raises privacy
and confidentiality concerns. Protocols such as HTTPS may be
used to protect the communication, but occasionally vulnerabili-
ties that may allow snooping on packet content are discovered. To
address this issue, we present MACHETE, an application-layer
multi-path communication mechanism that provides additional
confidentiality by splitting data streams in different physical
paths. MACHETE has to handle two challenges: sending packets
over different paths when Internet’s routing imposes a single path
between pairs of network interfaces; splitting streams of data
sent over TCP connections. MACHETE is the first to exploit
MultiPath TCP (MPTCP) for security purposes. It leverages
overlay networks and multihoming to handle the first challenge
and MPTCP to handle the second. MACHETE establishes an
overlay network and scatters the data over the available paths,
thus reducing the effectiveness of snooping attacks. Mechanisms
are provided to select paths based on path diversity.

Index Terms—Multi-path Routing, Communication Confiden-
tiality, Eavesdropping, Communication Privacy, MultiPath TCP

I. INTRODUCTION

Sending information over the Internet has the disadvantage
of making it vulnerable to eavesdropping by unauthorized third
parties. This problem is especially important for organizations
that handle critical data, such as governments, military, or
healthcare. Communication protocols based on cryptographic
mechanisms such as HTTPS and IPsec are the common
solution to this problem. However, recent events show that
it may be possible to break these protocols under certain
conditions, and suggest that powerful adversaries may be able
to do it if they access the encrypted data. For example, Adrian
et al. presented a flaw in the Diffie-Hellman key exchange
that allows downgrading the security of a TLS connection for
a specified 512-bit group [1]. They claim that a nation-state
may have the computational power to attack 1024-bit groups,
which would allow decryption of many TLS channels over the
Internet that implement this method.

We present MAChETe (Multi-pAth Communication for sE-
curiTy), a means to mitigate the impact of such vulnerabilities.
This system consists on using MultiPath TCP (MPTCP) [2]–
[4] and overlay networks [5], [6] to split communication
flows on different physical paths, possibly over a multihomed
subnetwork [7], [8], as a defense-in-depth mechanism.

The rationale is that more effort is required to eavesdrop
data split over several flows in comparison to a single flow.
The problem addressed in this paper is, therefore, achieving

additional communication confidentiality for critical data while
still assuming confidence in the cryptography mechanisms.

MACHETE has to handle two challenges. The first con-
sists in sending packets over different paths when Internet’s
routing imposes a single path between a pair of source and
destination network addresses. Overlay routing enables doing
application-layer routing, allowing packets to deviate from the
routing imposed at network level, by the Internet’s routers
and routing protocols. Overlay networks, in combination with
multihoming, are used to create path diversity, allowing flows
to be split over physically disjoint paths. Using a topology-
aware decision algorithm, several overlay nodes are chosen,
according to their location. Each node will create a single-hop
overlay path to the destination, generating an overlay network.

The second challenge is to split the stream of data sent
over a TCP connection. MPTCP is a recent extension of the
TCP protocol that has the ability to distribute and send data
among the different network interfaces of a device, e.g., the
IEEE 802.3 (“wired”, “Ethernet”) and the 802.11 (“wireless”,
“WiFi”) interfaces of a personal computer. However, MPTCP
neither ensures the use of different physical paths, nor their
diversity, as it was created mostly with performance in mind.
The paths used by a MPTCP connection are imposed by the
network interfaces of the source and destination hosts.

The combination of MPTCP with application-layer routing
is itself a third challenge. Our objective is that MACHETE
works at the application layer, without modifications to lower
layers, but it has to route packets sent at transport layer under
the control of MPTCP. MPTCP is a transport-layer protocol,
so applications provide it source and destination IP addresses
and ports. However, the overlay nodes have their own IP
addresses and ports, unrelated to the previous ones. Therefore
MACHETE has to play with the destination IP addresses and
ports for communication to be possible.

The paper has three main contributions: (1) MACHETE
is a system that improves communication confidentiality by
splitting TCP data streams over diverse physical paths lever-
aging MPTCP, overlay networks, and multihoming; (2) It is
the first work that leverages MPTCP for security and the
first to combine MPTCP with application-layer routing and
overlay networks; (3) Provides an experimental evaluation of
MACHETE over the Internet in a wide-area deployment.

II. BACKGROUND AND RELATED WORK

This section covers background and related work on the
mechanisms used in MACHETE: MultiPath TCP, overlay978-1-5090-3216-7/16/$31.00 c©2016 IEEE



routing, and multihoming.

A. MultiPath TCP

MultiPath TCP (MPTCP) is an extension of the TCP
protocol that enables endpoints to use several IP addresses
and interfaces simultaneously when communicating [2], [3].
The protocol discovers which interfaces are available to use,
establishes a connection, and splits the traffic among them.
It presents the same programming interface as TCP, however
the data is spread across several flows. The option field in
the regular TCP protocol is filled with MPTCP data structures
in order to inform the other end-point about the capability
of implementing this protocol and to add flows to the com-
munication. MPTCP has two important components on its
configuration: path manager and packet scheduler.

The path manager is the module that handles how the flows
are created in an MPTCP connection. The implementation of
the protocol in Linux currently provides four schemes [4]:
default does not create new flows, but accepts incoming;
fullmesh creates a full-mesh of flows with all available
interfaces/addresses in the device; ndiffports takes only
one pair of IP addresses and modifies the source port to create
the number of flows set by the user; binder uses the loose
source routing algorithm of the Binder system [9].

The scheduler handles the distribution of the TCP packets
(segments) over the flows, in close collaboration with TCP’s
congestion control mechanism [10]. MPTCP does not use a
single congestion window as TCP, but one per flow. Similarly
to TCP, the congestion control mechanism manages the size
of each congestion window based on the round-trip time
(RTT) of the flow and other factors (timeouts, reception of
acknowledgments). The implementation of MPTCP for Linux
by default fills the flow congestion window before starting
to schedule packets on the next flow. Although in terms of
performance it is important to take advantage of the throughput
of the channels, in terms of splitting data for confidentiality it
may be a disadvantage. In a communication composed by two
flows where one has twice the throughput of the other, that
flow will tend to send twice the amount of data of the other,
which leads to a higher amount of data is susceptible to being
spied upon. Linux’s MPTCP implementation provides three
scheduling modes: default, the one we just presented and
the one with best performance; only uses another flow if the
window of the flow in use does not allow sending data that is
pending; starts sending using the flows with lower RTT; fast
round-robin which uses sequentially all flows but fills the
congestion window of a flow before starting with the next;
strict round-robin, does real round-robin by sending
the same amount of data through all the flows in sequence;
waits for a flow to have free space to send a packet before
scheduling the next one.

MPTCP is very similar to TCP in terms of security. Specifi-
cally, the RFC says that “The basic security goal of Multipath
TCP (...) can be stated as: provide a solution that is no worse
than standard TCP” [2]. There are a few works concerned with
the security of MPTCP [11], [12].

B. Path Diversity

Path diversity can be achieved in multiple ways in a
Multipath Communication. Overlay Routing and Multihoming
are among some of the options.

Overlay routing allows the creation of a virtual network (an
overlay network) on top of an already existing network in-
frastructure, like the Internet, without modifying it. The nodes
of the network are hosts, i.e., machines that implement the
network stack up to the OSI application layer. An overlay link
may connect two nodes either directly or indirectly, through
other nodes. These nodes route (forward) the packets at the
application layer to the next or final node of the link. This
adds a level of indirection in relation to the underlying OSI
network layer topology. At the network layer the packets travel
through the routes imposed by the Internet routing protocols,
namely the Border Gateway Protocol v4 (BGPv4) [13]. At
application layer the traffic may be deviated from these routes
by sending it through overlay nodes in other locations. The
original motivation for overlay routing is resilience [5], [6]. In
case a network layer route is congested or faulty, routing done
at the application layer may allow passing the traffic through
other routes.

Another method of achieving path diversity is to use multi-
homing. This approach consists simply in having a customer
network linked to two or more ISPs. Resilience and perfor-
mance are the main advantages of this approach [14]. Different
providers offer different performance levels to different parts
of the network, so choosing the “right” provider will result in a
performance increase [7], [8]. Akella et al. [8] evaluate the use
of multihoming, using Hand-shake Round Trip Time (HRTT)
as a measurement unit for data centers and enterprises. These
studies [7], [8] conclude that simply by using two providers
the performance is increased by at least 25% and that the
improvements are very small beyond four providers.

III. MACHETE

MACHETE is an application-layer mechanism for improv-
ing communication confidentiality by splitting packets in dif-
ferent paths. It uses MPTCP over an overlay network to create
multi-path communication. By setting up a network composed
by several nodes it is possible to implement an overlay
network, which consists of several links between the source
and destination of a communication. MPTCP will use these
overlay links to split the data to be transferred. Path diversity is
sought by exploiting diversity between Autonomous Systems
(ASs). MACHETE uses single-hop overlay routing as there
seems to be no gain in using more hops, both in terms of
performance and diversity [15].

The architecture of MACHETE is represented in Figure 1
and has three main components: Multi-path devices which
communicate using MACHETE, that also can play the role
of server (wait for connections) or client (start connections),
similarly to TCP; Overlay nodes which are the nodes of the
overlay network that forward messages on behalf of multi-path
devices and create alternative communication paths; Multi-
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Fig. 1. The architecture of MACHETE. The solid lines represent data
communication flows and the dashed lines control communication (e.g., node
registration in the overlay network).

path manager which is the component in charge of keeping
track of the nodes that compose the overlay network.

This section presents MACHETE abstractly but in some
places delves into the details of its implementation in Linux.

A. Threat Model

MACHETE is concerned about attacks against the confiden-
tiality of data exchanged, so it considers passive attackers that
eavesdrop on communication at certain physical locations. We
assume that the attackers can eavesdrop on all packets at those
locations, so confidentiality has to be achieved by reducing the
locations where all traffic passes.

We assume that communications between the manager
and each other component of MACHETE use default secure
channels with a configuration which maximizes security, e.g.,
TLS using a 2048 bit key with elliptic curve Diffie-Hellman
key exchange. Therefore the attackers can not compromise the
manager’s communication integrity and confidentiality.

We assume that the devices and nodes of the system are
trustworthy, i.e., that they follow the protocol. This assumption
has to be assured using proper security mechanisms, such
as hardening, sandboxing, and access control. MACHETE is,
however, prepared to recover from node crashes.

The multi-path manager might be a single-point of failure of
the architecture, so it is replicated. We assume that a subset of
the replicas can be compromised by an attacker or crash and
we use a specific scheme to make overall multi-path manager
tolerate these issues.

It is also important to notice that MACHETE has the
objective of dealing with the most resourceful adversaries such
as a nation-states. An adversary this resourceful can acquire
control over several ASs in his area. Therefore it is important
that the nodes are placed in a wide geographic area. Beyond
that, it can also be stated that the closer an attacker is to the
source or destination of the communication, the easier it is to
find a single point of interception1. This being, multihoming

1In this case, a autonomous system routing many or all of the data streams
in a multi-path communication is considered a single point of failure
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Fig. 2. MACHETE multi-path device architecture. MACHETE proper is a
user level process running in a computer, which connects the application to the
communication stack in the kernel (MPTCP) and netfilter (using iptables).
MACHETE only establishes new rules when it creates a new connection
(essentially an MPTCP connection).

is a very important component of MACHETE’s deployment
as it is discussed further ahead in this document.

B. Multi-path Manager

The multi-path manager is the component that contains
information about every entity in the network. Its function
is to register every node and device addresses and to provide
that information to devices that aim to communicate.

The multi-path manager was not developed from scratch but
instead is a tuple space that implements Linda’s generative
coordination model [16]. A tuple space is a repository of data
items called tuples and provides mainly three operations: insert
tuple (out), read tuple (rd), and remove tuple (in).

MACHETE uses a specific tuple space called DepSpace
[17], [18]. DepSpace is replicated in order to tolerate faults
in some of the replicas. Specifically, it continues to operate
correctly despite the failure of up to f out of 3f + 1 replicas
(typically 1 out of 4). DepSpace is Byzantine fault-tolerant,
so it provides its service correctly even if f replicas are
compromised or fail arbitrarily. Whenever server multi-path
devices and overlay nodes start to run, they register with the
multi-path manager by inserting a tuple on the tuple space.

C. Multi-path Device

A multi-path device is designated as a computer that uses
MACHETE to communicate. The architecture of such a de-
vice is represented in Figure 2. This component dynamically
establishes paths and splits the packets among them.

After a device registers itself on the multi-path manager, the
process of transferring a stream of data (e.g., sending a file)
is composed of three steps: path setup, data transfer and path
tear down. Figure 3 represents this process. Next we describe
each of these steps, dividing the first in two substeps.

MPTCP requires devices to have several network addresses
to create more than one flow. If the device has several physical



interfaces, possibly connected to more than one provider –
multihoming –, each one has an IP address. If that is not the
case or that number of addresses is not enough, more than one
address can be assigned to each interface, e.g., using Linux’s
virtual network interfaces [19]. Having two addresses (in total)
on each device is enough to establish a network composed of
four paths, which in general is enough to achieve the objective.

1) Path setup – choosing overlay nodes: The process
starts by querying the multi-path manager about the available
overlay nodes. Although the manager replies with all nodes
available in the network, the number of nodes to be used by
a certain connection, Nn, is a configuration parameter.

The overlay nodes are chosen taking into consideration the
path diversity they provide. If there are several paths with the
same diversity, the path with best performance (e.g., lowest
RTT) is chosen. In the current version of MACHETE, the
metric of diversity among two paths used is the number
common ASs on both paths (higher number means worse
diversity). For a path, the ASs are obtained using layer-
4 traceroute [20], which provides precisely the ASs of the
nodes along a path. The metric of performance is the RTT,
measured using the tokyo-ping tool, which avoids some
anomalies in ping [21]. When available, multihoming tends
to improve diversity as the first ASs along the path will already
be different, whereas with single-homming the opposite is true.

In MACHETE the path manager is set to fullmesh, to al-
low defining the number of flows in a way that makes MPTCP
use the number of overlay nodes defined (Nn). This manager
will create a network mesh composed by all the available
interfaces/addresses in both the source and destination.

To balance the data among all nodes and obtain the ex-
pected confidentiality, the best packet scheduler is strict
round-robin. This scheduler is configured with the number
of packets sent in each flow before passing the turn to the next
flow. To reduce the information sent in each flow (thus in each
path), this parameter is set to 1. The fast round-robin
scheduler can also be used if the communication is encrypted
and the amount of bytes sent is high enough to ensure that
not all communication passes in the same node, as it is not
possible to decrypt data if it is not complete. The amount of
bytes sent being enough or not to make the communication
pass in more than one node is analyzed in Section IV-C2.

2) Path setup – managing addresses and ports: As already
pointed out, the combination of MPTCP with application-layer
routing is challenging. MACHETE works at application layer
but it has to route packets sent by, and under the control of,
a lower layer protocol: MPTCP, at transport layer.

Similarly to what happens with TCP, in MPTCP all packets
sent over a connection take two pairs of IP addresses and
port numbers, one for the source device, another for the
destination (the difference in relation to TCP is that source
and destination may have more than one address/port pair).
However, in MACHETE the destination address and port may
have to be different: (1) if the packet is leaving the sender
device, the destination address/port should be those of the
overlay node for the packet’s flow; (2) if the packet is leaving
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Fig. 3. MACHETE communication setup and data transfer example with a
single overlay node.

an overlay node, the destination address/port should be those
of the destination device and the source address/port should be
those of the overlay node; (3) if the packet is returning to the
overlay node, the destination address/port should be those of
the source device and the source address/port should be those
of the overlay node.

The application requires MACHETE, thus also MPTCP, to
send packets to the destination address and port. When a
device does the setup of a path, it has to force these alternative
addresses and ports to be used. To do it MACHETE leverages
Linux’s netfilter framework and the iptables command
[22]. This framework allows doing network address translation
(NAT), packet filtering, and other forms of packet handling.
MACHETE uses it for network address translation.

When a path is setup, the iptables command is used
to tell netfilter to change the destination IP address and port
by those of an overlay node, depending on the flow (case (1)
above; arrow setup in Figure 2). MPTCP inserts the destination
IP address/port in the packets, but netfilter exchanges them
before they are transmitted into the network. The iptables
command inserts NAT rules for that purpose in the output
chain, which is the set of rules applied to traffic being sent by
a computer. For each link, a NAT rule is set2.

Once this is done, the device informs each node about the
rules they have to establish. In the overlay node it is necessary
to route the traffic in both directions: when forwarding to the
server (case (2) above) and when returning to the client (case
(3) above). As soon as all nodes confirm that the rules are set,
the data transfer may begin.

Figure 3 shows a time diagram that represents this process
with a single overlay node.

2The format of the iptables rule is: iptables -t nat -A -p
tcp -s <source address> -d <destination address> -j
DNAT --to-destination <new destination address>



3) Data transfer: MACHETE uses MPTCP to establish a
connection to the destination device. The client application
will create a socket and provide it one of the server’s ad-
dress/port pairs; the MPTCP protocol will handle the passive
creation of the flows. Despite the fact that netfilter modifies
the destination addresses to deviate the connection’s packets
through the overlay nodes, the connection and each of its flows
end up established similarly to what would normally happen
with MPTCP.

This connection has two data streams, one in each direction,
so that the client and server can send data to each other. This
is represented in Figure 2 through the send and receive arrows.
Notice again that the scheduler should be set to strict
round-robin, otherwise MPTCP will fill each flow until
its congestion window is full instead of sending packets using
all flows, which is not desirable from the confidentiality point
of view.

Each packet will suffer changes on its source and destination
address twice: first in the source device, second in the overlay
node. The same will happen to the acknowledgement packets.

4) Path tear down: To terminate a connection, the client
device notifies the nodes that compose the overlay paths to
remove the rules. The overlay device is listening on a specific
port for receiving this indication, so that the packets destined to
the node itself are never re-routed. Again, this device waits for
all nodes to reply before removing its own rules. After all the
steps are done the communication can be declared as finished.
If the client fails to inform the nodes about the rules removal,
the rules can stay established, since it is specific for a pair
of source and destination addresses and, therefore, does not
modify other connection’s correct behavior or the possibility
for the same source to create an identical connection.

D. Overlay Node

The overlay node is the component that plays the role
of application-layer router, i.e., which forwards the packets
received from the client device to the server device and vice-
versa.

Overlay nodes receive from clients NAT rules and
add/remove them from netfilter. These rules are set, again, with
the iptables tool, this time using the prerouting and
postrouting chains. The first chain leverages the changes
on the traffic immediately after it was received by and interface
and the second leverages the changes right before it leaves that
interface. For each overlay network, four rules are established,
two to change the source and destination when forwarding to
the destination and two when forwarding to the source, as
mentioned above in cases (2) and (3).

IV. EXPERIMENTAL EVALUATION

This section presents the evaluation of MACHETE. We
placed hosts in the Amazon AWS EC2 service [23] in nine
different regions (Ireland, Frankfurt, North Virginia, Califor-
nia, Oregon, Tokyo, Seoul, Singapore and Sydney) and one
in Portugal. We used up to 8 overlay nodes, one in each of
the AWS regions, except for Ireland that contains the server.

TABLE I
LEAST DIVERSE PAIR OF PATHS IN TERMS OF NUMBER OF COMMON ASS
WITH THE SINGLE-HOME CONFIGURATION. THE PATHS ARE DESIGNATED

BY THE LOCATION OF THE OVERLAY NODE.

Pair of paths Common ASs Common ASs
(except first 7)

Singapore, Tokyo 13 6
Frankfurt, Seoul 12 5
Frankfurt, Tokyo 12 5
California, Seoul 12 5
California, Tokyo 12 5
Oregon, Tokyo 12 5
Seoul, Tokyo 12 5

TABLE II
LEAST DIVERSE PAIR OF PATHS IN TERMS OF NUMBER OF COMMON ASS

WITH THE DUAL-HOME CONFIGURATION, IN COMPARISON TO THE
SINGLE-HOME CONFIGURATION. THE PATHS ARE AGAIN DESIGNATED BY

THE LOCATION OF THE OVERLAY NODE. IN THE DUAL-HOME
CONFIGURATION THE LEFT PATH USES THE ORIGINAL CONNECTION AND

THE RIGHT THE 4G CONNECTION.

Pair of paths Common ASs
single-homed

Common ASs
dual-homed

Oregon, Sydney 10 3
Oregon, Tokyo 12 3
Oregon, Seoul 11 2
Sydney, Tokyo 10 2
Frankfurt, California 9 1
Frankfurt, Oregon 10 1
Frankfurt, Seoul 12 1

Moreover we placed the client in the Portugal node. Therefore,
between the client and server there are 8 single-hop overlay
paths: one per overlay node.

Recall that the objective is to provide confidentiality by
splitting communication over physically diverse paths with
an acceptable performance. Therefore, the evaluation provides
an assessment of the diversity in our scenario, presents a
performance benchmark of the system, and analyses the con-
fidentiality achieved.

A. Diversity

As stated before, confidentiality is only achieved if the paths
are topologically disjoint, as attackers eavesdrop on traffic at
certain locations (Section III-A). The approach used to verify
the topology of the paths is to trace each route’s chain of ASs
from the source device to each node and from that same node
to the destination. For that purpose we use layer-4 traceroute
(i.e., the lft tool).

Table I shows the number of common ASs in the pairs of
paths with highest value, between the 8 single-hop overlay
paths, where each is designate by the location of the overlay
node. There are at least 7 ASs in common in all paths leaving
the client (Portugal). The reason for this lack of diversity is
the fact that we did not use multihoming. Moreover, several
ASs belong to Amazon, as also expected.
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Fig. 4. Latencies between the Portugal host and the EC2 hosts used for the
experimental evaluation.

We did an additional experiment to confirm that multihom-
ing is beneficial in terms of diversity. We connected a second
interface of the client device to a public provider of 4G service
through a smartphone, then we used lft to obtain the ASs
traversed by the paths. As shown in Table II, using multi-
homing provides an evident diversity, where the common
nodes are again part of AWS’s network. Notice that we used
this multihoming configuration only for this test; the single-
home configuration was used in all the experiments presented
in the following sections. Multihoming is revealed to be a key
component for MACHETE to achieve path diversity.

B. Performance

The performance evaluation considers three different as-
pects: the impact of adding paths on the delay of transferring
files, the performance with diverse paths when transferring
files, and the performance of path set up and tear down.

Figure 4 provides some insight on the network by showing
the latencies between the hosts in the different locations,
obtained with the tokyo-ping tool.

MACHETE forced MPTCP to use all the paths defined for
every experiment by changing the number of IP addresses at
the client (i.e., Portugal): 2 addresses for 2 paths, 3 addresses
for 3 paths, etc. The client had a single network interface;
the server had a single interface and a single IP address. All
measurements were repeated 30 times.

1) Impact of adding paths: The evaluation consisted in
observing the performance when paths (equivalently, nodes)
were added one by one based on latency to the cluster: first
in Frankfurt, next in N. Virginia, California, Oregon, Tokyo,
Seoul, Singapore and finally Sydney (that has a the highest
latency, as observed in Figure 4). The size of the files varied
from 1 Byte to 1 GByte. In this experiment we used the fast

Fig. 5. Time to transfer a file versus number of paths. 0 paths means a normal
TCP connection.

TABLE III
AVERAGE TIME OF SENDING FILES USING TWO NODES WITH TWO TYPES

OF ROUND-ROBIN SCHEDULERS, COMPARED TO A NORMAL TCP
CONNECTION. ALL VALUES ARE PRESENTED IN MILLISECONDS. EACH

EVALUATION WAS REPEATED 30 TIMES.

File size TCP Fast r.-r. Strict r.-r.
1 B 49 81 97

10 B 49 95 94
100 B 49 87 98
1 KB 49 94 90

10 KB 49 181 122
100 KB 49 265 201

1 MB 304 382 409
10 MB 1644 2295 3106

100 MB 11556 18836 23452
1 GB 121069 172215 218332

round-robin scheduler to improve performance (and the
fullmesh path manager which is fixed for MACHETE).

Figure 5 shows the values obtained for the time to transfer
files of all sizes and from 2 to 8 paths, plus using a standard
TCP connection (with no overlay nodes), and includes 95%
confidence intervals, although most are too small to be visible.

The figure shows that splitting the packets in up to four
different paths does not generate considerable overhead on
the communication. From the fifth the duration increases due
to the overlay nodes that compose the network at that point
being farther away from both the source and destination.
It is important to note that to achieve a physically disjoint
network, using more nodes in the overlay network will result
in selecting these further away from the source and destination.

2) Performance with diverse paths: Considering the di-
versity achieved in each of the eight regions used on the
previous tests, this evaluation considers the two paths with
highest diversity, i.e., those with overlay nodes at Frankfurt
and California.

Table III, shows the overhead of using these two
nodes, in comparison to a normal TCP stream. As shown,
there is an overhead of 42% when using the fast
round-robin scheduler and of 80% when using the
strict round-robin scheduler. This overhead is the
result of sending traffic through a node that is geographi-



cally distant from the source and the destination, California.
When using a round-robin packet scheduler the whole multi-
path connection is conditioned to each path’s throughput. In
fact, for the strict round-robin scheduler, the whole
throughput is highly dependent of the path with the smallest
bandwidth or highest congestion, since it waits for this channel
to have free window space before sending to the next one.

3) Path set up and tear down: Figure 6 shows the time
for setting up and tearing down the overlay paths. The current
MACHETE implementation is suboptimal in the sense that
both the setup and tear down phases are executed sequentially.
According to the location of the node, this time will vary,
however, as it can be seen, it always takes longer than one
second, but never more than two in our scenario.

C. Confidentiality

The usual way of considering confidentiality in the security
and cryptography literature is by relying on cryptographic pro-
tocols. For example, in protocols like IPsec AH/ESP or TLS,
confidentiality is guaranteed as far as no vulnerabilities exist in
the protocol design, implementation, and configuration. In this
work we do not aim to provide such guarantees but to improve
confidentiality in case communication is eavesdropped, (1)
either it is not encrypted or (2) if it is encrypted but there is a
vulnerability. This means that confidentiality was not studied
in an absolute perspective, even though it is possible that in the
second scenario, it might mitigate cryptography vulnerabilities
to provide full confidentiality.

This different way of considering confidentiality led us to
transmit a visual intuition of the MACHETE approach: an
image is transmitted over MACHETE where an eavesdropper
has access to one of the flows and reconstructs the image with
that data. For the figures we did the reconstruction assuming
the adversary managed to guess the metadata (figure size, color
depth, etc.) even if the captured flow did not contain it.

When evaluating the confidentiality that MACHETE of-
fers it is necessary to remember the operation of MPTCP.
The most important factor is the scheduling that is used.
MPTCP implements different types of scheduling, however,
splitting data in packets in a round-robin fashion is the best
approach to achieve confidentiality. The multi-path protocol
implements two types of round-robin: fast round-robin,
which takes advantage of the whole throughput of that channel,

Fig. 6. Time for setting up and tearing down the overlay paths versus number
of overlay nodes used.

and strict round-robin, that waits for the next channel
to have window space before sending the packet. The former
is expected to perform faster, but the second to provide access
to less data to an eavesdropper.

We evaluate two aspects of confidentiality: the effect of the
scheduling algorithm, and the effect of the file size.

1) Effect of the scheduling algorithm: Figures 7b and 7c
show the different amount of data captured by two of four
channels when sending the bitmap picture (the Linux penguin)
shown in Figure 7a, with both types of round-robin scheduling.
The channels shown in each figure are the ones that receive
the most distinct amount of data, i.e., the one that receives the
most (on the left) and the one that receives the least (on the
right).

As shown on Figure 7b, using strict round-robin it
is possible to notice that both channels receive approximately
the same amount of data, resulting of the even distribution
of packets. However, a pattern can also be noticed on its
reconstruction.

Figure 7c shows the results of capturing the data when the
fast round-robin scheduler is used. As expected, the
flow where less data was transferred was the one passing
through Sydney’s node, the one with lowest throughput. As
mentioned before, this scheduler depends on the throughput
of each channel when distributing data, since a channel with
better throughput has a larger congestion window to be filled.

In the standard MACHETE configuration, the result is the
balance between flows observed in Figure 7b. The perfor-
mance in the two cases was different, though. By filling the
congestion windows with fast round-robin scheduling,
the file that had 17MB was sent in 4 seconds. By using the
strict round-robin the file took 88 seconds to be transferred,
which is much slower. The first mode achieves a throughput
of 34 Mb/s, whereas the second a mere 1.9 Mb/s.

In short both approaches have their advantages and disad-
vantages: the first one takes longer and might be susceptible
to easier data reconstruction, but provides a good control on
how the packets are distributed; the second has its packet
distribution dependent of each flows’ throughput, but transfers
the files faster.

2) Effect of the file size: Another factor to take into account
is the size of the files sent. At this point it is important to
remember MPTCP’s behavior when creating new flows. The
first flow does not wait for the creation of new flows to start
transferring data. This means that for very small files (<10KB)
MPTCP does not split the packets through any new flows,
since this data is sent before any new flow can be established
for the stream. Regarding larger files, it is only necessary to
experiment with the fast round-robin mode, since the strict
round-robin is not influenced by congestion window sizes and,
therefore, the sizes are not a factor to take into account.

Figure 8 shows the results of capturing the data transferred
in the flow with highest throughput (which is the same as
mentioned above of 34 Mb/s), when sending the same image
with different sizes: from 1 MB to 17 MB. As it can be



(a) The origi-
nal image sent.

(b) The data sent over the flows is
balanced (strict round robin).

(c) The data sent over the flows is
unbalanced (fast round robin).

Fig. 7. Original image and two reconstructions considering the eavesdropper has access to 2 of the 4 flows in each case.

Fig. 8. Results of capturing the data transferred by the flow with most throughput. The same image was sent with different sizes.

observed, larger files have stronger resistance to eavesdropping
as data is better split among the paths.

V. CONCLUSIONS

MACHETE is a first effort on providing confidentiality to
communications by splitting the packet flows among different
physical paths. By establishing dynamic overlay networks,
composed by several paths with a single overlay node it was
possible to provide physical path diversity. Using MPTCP it
was possible to develop a system that transfer data streams
(instead of isolated packets) without compromising perfor-
mance. We evaluated the performance and confidentiality
achieved by our implementation, showing that, not only it
prevents the attacker from accessing considerable amounts of
data, in the case it is trying to spy on the communication,
but also provides different tradeoffs between confidentiality
and performance. We believe, that efficiently splitting the
communication over physically disjoint channels is the key
to maintain confidentiality.
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