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Abstract—Commercial cloud storage services are being widely
adopted. The most common integrity verification methods for
data stored remotely are based on cryptographic hashes and
digital signatures. These allow checking that the data has not
been tampered while stored in the cloud. However, both require
downloading all the data before doing the verification, with
significant time and monetary costs.

This paper presents S-AUDIT, a service that provides integrity
verification of data stored in commercial clouds. S-AUDIT uses
homomorphic authentication with digital signatures to avoid
retrieving the protected data from the cloud. The service was
integrated with a cloud-backed file system called SCFS to show
how it can be used in practice. Our experimental evaluation
shows that using S-AUDIT is 7.1% cheaper than using RSA
signatures when the integrity of the data is verified monthly,
and 34.9% when verified weekly, in a typical setting.

I. INTRODUCTION

Commercial cloud storage services such as Dropbox,
Google Files, Microsoft OneDrive, and Amazon S3, are being
widely adopted. With these services and together with re-
search cloud-backed storage solutions [10], [39], [36], [31],
[11], [15], [43], [32], users can store their data in remote
datacenters and benefit from resource elasticity and world-
wide access [25]. Datacenters are managed by the cloud
providers, which are paid by the users for the resources they
consume. Despite these benefits, users inevitably lose the
control of their data, at least in part. Moreover, there is a recent
growth on attacks against the integrity of data stored in public
infrastructures [7], [5], [6]. The affected organizations, e.g.,
hospitals and companies, can fall victim of ransomware that
encrypts their data. Next they are blackmailed to get it back,
as in the recent case of WannaCry [30]. Similar attacks and
other modifications to the data may also be done by malicious
insiders [16], [24]. The damage caused by these changes may
be visible immediately or may go unnoticed for a long time
until data is used again.

Nowadays data owners use integrity control mechanisms
based on cryptographic hashes [29], [20] to protect their
outsourced storage. Digital signatures are used for collab-
orative storage when data is shared among several cloud
users, and MACs (Message Authentication Codes) are used
for private storage when data is used by a single cloud user.
For performing the integrity control, users need to have some
personal key: an asymmetric private/public key pair for digital
signatures or a symmetric key for MACs. The user data is
stored together either with a signature or a MAC, computed
with the user’s private key or symmetric key, respectively.

Whenever the user wants to guarantee that the integrity of
the data is preserved, the user must first download the data
and the corresponding signature/MAC from the cloud, then
verify if the data matches the signature/MAC. If they match,
the integrity is verified and the user can rest assured that the
data was not tampered while in the storage.

Notwithstanding the effectiveness of these mechanisms, if
the users do not trust the cloud, they must download all the
data to verify it. Therefore, when users are only interested
in verifying the integrity of the data, not in reading it, each
verification requires an unnecessary download that implies a
potentially large bandwidth consumption, delay and monetary
cost (downloads have a significant cost in most cloud storage
services). For example, consider a user with 1000 files stored
on the Amazon Web Services (AWS) cloud [4] in Ireland, each
with 1GB of size. If the user wants to check the integrity of
every file 4 times a month, he has to download a total of 4TB
from the cloud monthly. In this scenario the user is subjected
to the latency of downloading 1TB every time and a charge
of 360 USD monthly (for every 1GB read, approximately
0.09USD is charged [3]).

In order to reduce delay and bandwidth consumption some
works proposed more advanced integrity mechanisms that are
homomorphic, i.e., that produce integrity control structures
that have the same structure as the signed data [8], [42], [40],
[13], [41], [18], [35]. These mechanisms provide verifiability
(data integrity can be verified using proofs) and unforgeability
(a malicious cloud cannot forge a proof without having the
files) without needing to download the data to be verified.
These new mechanisms fall into two categories: homomorphic
digital signatures, that provide public verifiability (anyone can
perform the integrity verification); and homomorphic message
authentication codes, which provide private verifiability (only
the user that possesses the secret key can perform the integrity
verification). To understand the benefits of these mechanisms
consider the previous example of 1000 1GB files stored at
AWS. If homomorphic digital signatures with 40-byte public
keys are used, a user would have to download only 60 bytes
from the cloud during the verification process. Therefore,
independently of the size of the data to be verified, integrity
verification with these mechanism requires downloading a
small proof, with the associated low communication delay and
negligible cost.

In contrast with prior works that explore the potential of
compact integrity proofs by presenting theoretical demonstra-
tions of their feasibility and security analysis [8], [42], [40],



2

[13], [41], [18], [35], this work explores the practical appli-
cability of these techniques for verifying data on commercial
cloud storage. For that purpose, we present a service capable
of being integrated on real world storage solutions, including
commercial clouds and cloud-backed applications.

This paper presents S-AUDIT, a software service that im-
proves the Shacham-Waters (SW) integrity verification scheme
[35] and adapts it for use with cloud storage. S-AUDIT
improves the original SW scheme by providing: an overall
performance increase by carefully selecting pairing-friendly
elliptic curves [9] for SW scheme parametrization; and a
storage cost decrease of 50% in relation to the original
scheme using point compression [27]. Moreover, it leverages
the Function-as-a-Service (FaaS) model1 [21], [26] to reduce
cloud costs, by using computation resources in the cloud only
when necessary. These improvements make S-AUDIT the
most cost-efficient homomorphic verification mechanism for
use in commercial clouds.

S-AUDIT was designed as a practical implementation that
can be easily plugged into current commercial cloud services
and cloud-backed applications. S-AUDIT is simple to use, as
using it does not require advanced cryptography knowledge.
To demonstrate its potential, the service was deployed at AWS
and integrated with the SCFS cloud-backed file system [11].
Our experimental evaluation has shown that using S-AUDIT
is 7.1% cheaper than using RSA signatures when the integrity
of the data is verified monthly, and 34.9% cheaper when it is
verified weekly in a typical setting in AWS.

The main contributions of this paper are: the design and
implementation of the S-AUDIT integrity verification service;
a protocol for verifying data stored in remote clouds; a proof-
of-concept integration of S-AUDIT with a commercial cloud
and a cloud-backed file system; and an experimental evaluation
of the use of this service standalone and integrated with AWS
and SCFS.

II. S-AUDIT

The goal of the S-AUDIT software service is to assure
users that all the data they store in the cloud is retrievable
with its integrity preserved, i.e., it has not been tampered.
This service is envisioned to be easily integrated with: current
commercial storage clouds, such as AWS [4], for providing
integrity proofs on the stored data; and cloud-backed storage
applications (such as [10], [11], [31], [36], [15], [43], [32]),
to generate all the necessary digital signatures and automate
the request and verification of the integrity proofs supplied by
the clouds.

S-AUDIT leverages homomorphic digital signatures for
integrity control of the stored data, and the computation
resources of commercial clouds infrastructures for executing
code and generating compact integrity proofs based on the
data and signatures present in the cloud storage. Also, by
requesting and verifying these small proofs, cloud-backed

1The FaaS model is also called serverless computing because the developer
does not need to manage the server where the function code is executed. The
function code runs when desired and there is no need to have a server instance
reserved and awaiting commands.
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Figure 1. S-AUDIT components and entities.

applications can perform storage integrity control without
being constrained by network bandwidth limitations or having
to download large quantities of data.

A. Entities involved in S-Audit

In S-AUDIT there is interaction among three types of
entities: clouds, users and auditors (Figure 1) . All these
entities need to run S-AUDIT code at some point.

Clouds are commercial public infrastructures that provide to
their users both data storage and code execution capabilities
for integrity proofs. Users are the normal commercial cloud
users, who store data on the cloud and perform operations
on the stored data (read, write, delete, or set access control
permissions). Auditors are entities trusted by the users for
auditing the data stored in the cloud. They are responsible
for issuing and verifying integrity proof requests to the cloud.

B. Threat Model and Assumptions

S-AUDIT was designed for a threat model where attackers
have full permissions to access the storage cloud and perform
any operation on the users’ data, particularly the operations
that compromise integrity: write and delete. Under this sce-
nario the attackers can be: an external agent that managed
to bypass the cloud’s access control mechanisms and has
obtained remote root access to one or more cloud storage
machines; or an internal agent who is trusted by the cloud
and authorized to have physical access to the machine (e.g., a
cloud employee), has obtained control of one or more storage
machines and, moved by malicious intent, performs several
operations that compromise the integrity of the stored data.
Also it is assumed that all the attackers fingerprints have been
erased. The cloud either has no knowledge of the attack or is
hiding it from the user and auditor.

Since the purpose of S-AUDIT is to detect cloud integrity
attacks, this service is based on the assumption that the
only way the attackers can compromise the users’ data is by
attacking the cloud. This assumption was made to isolate the
threat model from problems related with network or identity
spoofing attacks, which are outside of the scope of this work.
The threat model assumes that all communication between
entities is authenticated and secure at all times and that neither
the user nor the auditor are malicious and their machine do
not respond arbitrarily to requests from the other entities.
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C. Preliminary Concepts

S-AUDIT is built on top of multiplicative cyclic groups
and uses pairing-based cryptographic techniques, namely
Boneh–Lynn–Shacham (BLS) homomorphic digital signatures
[27] and the Shacham-Waters (SW) integrity verification
scheme [35]. This section provides mathematical background
and summarizes the aforementioned cryptographic techniques.

1) Multiplicative Cyclic Group: A cyclic group is com-
posed by members that are generated by a single group
generator element g. In a multiplicative cyclic group G every
member is generated by powering the generator g with integers
belonging to Z (the set of all integers). Multiplicative cyclic
groups can be finite or infinite. The infinite ones are generated
by powering with unbounded integers from Z. The finite ones
of order p are generated by powering g with a bounded set
of integers belonging to Z that are modulo of p (also called
group order p). For example, consider a multiplicative cyclic
group of order n = 6 and generator g = 2. The multiplicative
group is composed of six members [g0 = 1, g1 = 2, g2 =
4, g3 = 8, g4 = 16, g5 = 32]. Linear operations over members
of the group are mapped as follows:

• gx = gxmod6, for example g6 = g0 = 1 and g7 = g1 = 2
• gx × gy = g(x+y)mod6, for example g1 × g2 = g3 = 8

and g7 × g8 = g(7+8)mod6 = g(15)mod6 = g3 = 8

Due to their modular nature, the finite multiplicative cyclic
groups can represent large numbers of unbounded size into
finite group elements. S-AUDIT relies on this technique to
represent data and signatures of unbounded sizes into small
sized group elements and uses them for creating compact
proofs.

2) Pairing-based cryptography: S-AUDIT leverages
pairing-based cryptography to obtain homomorphism. In this
type of cryptography, each cryptographic function uses a
pairing e (also called bilinear map) to convert a multiplicative
cyclic group (G) of prime order p, generated with the number
g, into another multiplicative cyclic group (GT ) of the same
prime order (p), i.e., e : G × G → GT . The pairing enforces
the following properties: computability – there exists an
efficient algorithm to compute the pairing; bilinearity – for
all u, v belonging to G, a, b belonging to Zp and pairing
e : G×G→ GT , it is guaranteed that e(ua, vb) = e(u, v)ab .

3) BLS Signature Scheme: In order to provide integrity
control of a data file, S-AUDIT uses the BLS signature scheme
[12] for constructing digital signatures over pairing-based
cryptography. To do so, integrity control takes the following
steps:

• Setup: Choose two distinct multiplicative cyclic groups G
and GT of order p, and a generator g for G and generate
pairing e : G×G→ GT .

• Key Generation: Using e and g compute an asymmetric
secret/public key pair sk ∈ Zp and pk ∈ G. First compute
sk, by selecting a random number that belongs to Zp and
then generate pk as gsk.

• Signature: Sign the data d ∈ Zp using the secret key sk
belonging to Zp and by computing the signature θ = dsk

belonging to G.

• Verification: Using the public key pk ∈ G, the pairing
e and the generator g, verify the signature θ ∈ G of
the data d ∈ Zp by testing the following hypothesis:
e(θ, g) = e(d, pk). If the hypothesis is verified, the
integrity is assured.

4) SW Scheme for Homomorphic Verifiable Integrity
Proofs: The use of BLS signatures ensures the homomorphic
property for integrity verification and consequently allows the
construction of homomorphic verification schemes, where data
and signatures are aggregated using additions and multiplica-
tions into compact verifiable proofs. This is done because if
each file and signature can be divided into blocks of a given
size and these blocks can be mapped into multiplicative cyclic
groups with order = size . Multiplications and additions will
always produce elements of the same order. Thus, files and
signatures of unbounded size can be aggregated into compact
structures of the multiplicative cyclic group. In S-AUDIT, the
SW integrity verification scheme [35] is used in order to
provide homomorphic generation and verification of compact
integrity proofs. To do so, under this scheme, integrity control
takes the following steps:

• Setup: Choose two distinct multiplicative cyclic groups G
and GT of order p, and a generator g for G and generate
the pairing e : G×G→ GT .

• Key Generation: Using e and g, compute: a signature
parameter w, by selecting a random number that belongs
to G; and an asymmetric secret/public key pair sk ∈ Zp
and pk ∈ G. First, compute sk by selecting a random
number that belongs to Zp and then generate pk as gsk.

• Block Signature: Given a block with the identifier id ∈
Z and the data corresponding to the block did ∈ Zp, a
hash function that maps H : Z → Zp, the secret key
sk ∈ Zp, and the signature parameter w, compute the
signature θid = (H(id)× wdid)sk ∈ G.

• Proof Generation: Given a collection of block identi-
fiers id1...idn ∈ Z, the corresponding data d1...dn ∈
Zp and numerical challenge vector of random numbers
chal1...chaln ∈ Zp, the hash function that maps H :
Z → Zp, and the signature parameter w, compute the
integrity proof:
α =

∑n
i=1 di × chali ∈ Zp and β =

∏n
i=1 θ

chali
i ∈ G.

• Proof Verification: given the proof (α and β), the iden-
tifiers i...n, the public key pk ∈ G, the signature θ
∈ G, the pairing e, the generator g, and the signature
parameter w, by applying pairing verify that: e(β, g) =
e(
∏n
i=1H(idi)× wα, pk). If the verification is positive,

integrity is assured.

In short, the SW scheme combines pairings and BLS signa-
tures with standard cryptographic hash functions like SHA-1
in a single integrity verification protocol. It allows users to
select any arbitrary sample of data stored on a remote cloud
location and verify that the integrity of that sample is kept
by just downloading proofs of small and constant size that
compress both the data and signatures. This is an innovation
when compared with integrity verification schemes like RSA
digital signatures because the SW scheme guarantees that the
amount of data downloaded from the cloud remains constant



4

even as the size of the selected sample grows.
There are significant challenges in adopting the SW scheme

for verifying the integrity of clouds that S-AUDIT mitigates.
Namely: the SW scheme requires coordination between the
user and the cloud for selecting the several underlying param-
eters used in the scheme (addressed in Section II-D by the
S-AUDIT protocol); and the SW scheme increases the cloud
data storage requirements (addressed in Section II-E by pairing
parameter selection in S-AUDIT).

D. S-Audit Protocol

In order to preserve the integrity of the data stored on the
cloud, the entities involved – cloud, user and auditor – need to
follow the S-AUDIT protocol, described herein. The protocol
is divided into four tasks: setup (Section II-D1), store data
(Section II-D2), request and verify integrity proof (Section
II-D3), and generate integrity proof (Section II-D4).

1) Setup: Before storing any data in the cloud, the user and
auditor must perform the following protocol steps:

• The user and the auditor exchange data. The auditor
provides two files2 to the user for setting-up pairing-based
cryptography: the ‘.param’ file with all the secure public
initialization parameters needed for configuring cyclic
groups G, GT and the pairing for mapping G×G→ GT ;
and the ‘.g’ file with generator g of the cyclic group G.
The user provides configuration information to the auditor
about the time when each audit should be performed (e.g.,
daily, weekly), and other settings.

• The user generates his secret/public asymmetric key pair
and the signature parameter (w) for signing and verifying
data under the SW scheme, using respectively the key and
random number generators (explained in Section III).

• The user shares the public key and w with auditor and
stores w on the cloud.

• The user configures the cloud for listening to requests
from the auditor requests and for responding to them,
with the execution of the proof generator service (detailed
in Section III).

After these steps are performed users can now store their
data in the cloud, as explained next.

2) Store Data: When the user stores data in the cloud, all
data must be divided into blocks belonging to Zp and signed.
The signature generator (further explained in Section III)
automates these tasks and produces a signature equivalent to
the SW Block Signature step (described in Section II-C4). To
do so, the client provides as input for the signature generator:
the data and its identifier (e.g., the file content of the ‘data.txt’
file is used as the data and the identifier is the file name),
alongside with the pairing cryptography parameters (’.param’
and ‘.g’ files), secret key (‘.sk’), and the signature parameter
(‘.w’); and obtains the signature of all the data blocks. After
the signature of the data is obtained, the user stores both the
data and signature in the cloud. Data can now be verified.

2Data structures would be a more rigorous term but files is more concrete
and is how data is stored in our implementation.

3) Request and Verify Integrity Proof: The auditor is re-
sponsible for integrity verification. To do so, whenever the
auditor wants to obtain integrity proofs of a file stored on the
cloud, it must perform the following steps:

• Select a file composed of x data elements (vector
[0, ..., x− 1]).

• Generate a random challenge (number belonging to Zp)
for each of the x data elements chosen, using the random
number generator.

• Issue the integrity proof request to the cloud specifying
the identifiers vector ([id0, ..., idx]) and the corresponding
challenge vector ([chal0, ..., chalx]).

• Upon receiving a response from the cloud with the
requested integrity proof, the auditor verifies it using
the proof verifier (further explained in Section III). The
auditor provides the public key pk and the signature
parameter w, alongside with the identifiers and challenges
used on the integrity request, and obtains the integrity
verification result. This step corresponds to the Proof
Verification step of the SW scheme (described in Section
II-C4).

4) Generate Integrity Proof: Whenever the cloud receives
an integrity proof request for a given file, it performs the
following steps:

1) Fetch all the data and signatures of the file from the
storage cloud corresponding to the identifiers specified.

2) Fetch from the storage cloud, the pairing cryptography
parameters (‘.param’ and ‘.g’), and the signature param-
eter (‘.w’), of the user requested.

3) Generate integrity proof, composed of: aggregation of
signatures provided (β); and aggregation of data pro-
vided (α), by using the proof generator (explained
in III-E). The generator receives data, setup parame-
ters (‘.g’ and ‘.param’), signatures, challenges, pairing
cryptography parameters and the random initialization
parameter related to the file; and produces the α and β.
This step corresponds to the proof generation step of the
SW scheme.

4) Respond to requester with the integrity proof (α and β).

E. SW Signature Size Reduction

The size of the block signatures produced by S-AUDIT is
equal to the size of the multiplicative cyclic group G stipulated
by the auditor (e.g., if G is equal to 128 bits then the block
signatures are also 128 bits). Also, the size of the groups G are
determined by the elliptic curve selected for its initialization
and are always larger than the integers used for its generation
Zp. For example, when a type A elliptic curve [27] is used
for the generation of multiplicative cyclic groups, with the
recommended sizes where G and GT are 128 bytes and Zp
is 20 bytes, the signatures produced are 6.4 times bigger than
the original file, raising the storage cost in that proportion.
This large overhead would make the technique too costly
for practical use. S-AUDIT introduces two techniques in the
original SW scheme to address this issue.

The first is the selection of the pairing curve that produces
the shortest multiplicative cyclic groups, which is the pairing-
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friendly elliptic curves of prime order [9] (also named type F
curves and described in [12]), as recommended by both BLS
and SW authors in [35] and [27]. This optimization allows the
creation of multiplicative cyclic groups G that are two times
the size of the original data Zp, producing signatures with
twice the size of data.

The second technique is to incorporate a signature com-
pression scheme in S-AUDIT using the point compression
described in [27]. The improvement comes from the fact that
the multiplicative cyclic group G, where the signature belongs,
is a two coordinate point (x, y) where y is one of the possible
results of applying the elliptic curve function selected for
pairing initialization. Due to this fact, the y coordinate of the
signature can be computed solely based on the x coordinate,
the elliptic function, and a one-bit value indicating which value
to select from the possibilities. Thus, the y coordinate can be
completely discarded, and the signature is compressed always
by half of the original size and represented by its x coordinate
and the one bit value necessary to recompute the y coordinate.
This allows signatures to have half of the expected size of
applying the signature step of SW scheme. In the best case,
where type F elliptic curves [9] are used, signatures are of
the same size of the original data.

With these two optimizations, S-AUDIT is able to produce
signatures that are of the same size as the original data, which
is the lowest possible value using the known homomorphic
signature schemes.

III. IMPLEMENTATION OF S-AUDIT

The S-AUDIT service, represented in Figure 1, is composed
of several components, each one implementing a task of the
S-AUDIT protocol. This separation in components simplifies
the integration with cloud-backed applications, commercial
clouds, and auditors. S-AUDIT was developed in Java, so
each component is essentially a Java class. The pairing-based
cryptographic mechanisms were implemented using the Java
Pairing-Based Cryptography Library (JPBC) [17], which im-
plements multi-linear maps and the operations that manipulate
them.

Auditors use the Pairing Generator component to generate
the setup parameters for pairing-based cryptography. Users
utilize the Key Generator component to generate their asym-
metric secret/public key pair and signature parameter (w); and
use the Signature Generator component to sign their data.
Both these entities use the Random Generator component
to generate random numbers belonging to any field of their
choosing (Zp, G or GT ).

Clouds run the Proof Generator component to generate
integrity proofs. Auditors use the Proof Verifier component
to verify the proofs obtained from the cloud.

Each of the mentioned components will be explained in
detail in the following subsections.

A. Pairing Generator

This component allows auditors to construct setup param-
eters (‘.param’ and ‘.g’) for initializing pairing-based cryp-
tography, according to their security specification.Auditors

provide as input the type of pairing curve3 to be used for
pairing generation, and the parameters needed for initializing
the curves. The Pairing Generator outputs: a specifier file
(‘.param’) detailing all the information about the multiplicative
cyclic groups G and GT , the integer range of the Z integers
used for generating elements, and the pairing specifications
for mapping G to GT ; and the generator file ‘.g’ containing
the absolute value of the element used for generating the
multiplicative group G.

B. Key Generator

The Key Generator component allows users to generate their
own asymmetric key pair and signature parameter according to
the security information provided by the auditor. The generated
keys are used for the BLS and SW schemes. The generator
works as follows: the user inputs the setup parameters provided
by the auditor ‘.param’ and ‘.g’; the component initializes the
pairing; generates the secret key by selecting a random number
belonging to Zp; generates the public key by computing
gsk; generates the signature parameter by selecting a random
number belonging to G; and returns the keys and w to the
user.

C. Signature Generator

The Signature Generator component allows clients to sign
data using the SW scheme. In the SW scheme, the data to
be signed is assumed to have fixed sizes and belongs to Zp.
To support data sizes bigger than original data, users have to
divide the data in blocks that belong to Zp, and sign each
block individually. In order to automate data division into Zp
data blocks and sign each of them with the SW scheme, the
Signature Generator supports two signing modes: the Sign-
Block mode, for signing individual data blocks in Zp; and
the Sign-Data mode, that converts all the input data to one or
more blocks ∈ Zp, signs each block using the Sign Block
component, and returns the concatenation of all generated
signatures from the blocks.

D. Random Number Generator

This component allows generation of random numbers be-
longing to any of Zp, G or GT fields. To do so, this generator
receives as inputs the desired field, the pairing ‘.param’ and
the ‘.g’ and outputs the random number.

E. Proof Generator

The Proof Generator component is the only one that is
executed in the cloud (cf. Figure 1). It allows clouds to
generate integrity proofs with the files they have stored when-
ever an auditor requests them. To do so, the algorithm first
initializes pairing with the setup parameters, then calculates
α and β based on the data’s blocks present in the file. To
simplify the deployment and to reduce the cost of running the
Proof Generator in a cloud, we leverage recent services that

3See Section 4 of [27] for more information about the pairing curves and
their selection.
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implement the FaaS model [21], [26]. The alternative would be
to have a virtual machine for this purpose in a cloud compute
service (e.g., Amazon EC2), but it would be costly to run it
permanently in the cloud, or to store an image there to run
it when necessary. The FaaS model allows the execution of a
code component (a function) in a cloud upon a certain event,
in our case, the reception of a request through a REST API. In
this model, the users pay only for the time and resources used
when the function is executed, not when it is idle. Therefore,
it is possible to have the Proof Generator component always
ready to run in the cloud without costs when it is not running.

F. Proof Verifier

The Proof Verifier component allows users to verify in-
tegrity proofs, using the SW proof verification step. To do so,
the algorithm first initializes pairing with the setup parameters
(‘.param’ and ‘.g’); applies g pairing to β , multiplies all
identifiers present in the proof with wα, applies public key
pairing to the identifier and α multiplication and verifies if
both pairings obtained a match. If so, the data integrity is
preserved.

IV. EXTENDING SCFS WITH S-AUDIT

S-AUDIT was designed to allow easy integration with
existing cloud-backed applications. As a proof of concept, the
S-AUDIT components described in Section III were integrated
with the Shared Cloud-backed File System (SCFS) [11].

SCFS is a distributed file system that stores files in a
cloud or a set of clouds (a cloud of clouds). Users mount
the SCFS file system on a folder of their device, and the
SCFS client-side component synchronizes files with the cloud
storage services. SCFS supports data sharing among several
users, automatically propagating users’ modifications between
them. In the integration we have to consider the three S-AUDIT
entities:

• The user code is integrated with the client-side code of
SCFS;

• The auditor code is a stand-alone Java program;
• The cloud code runs in a FaaS service such as Amazon

Lambda [1].
Next we focus mostly on the first entity, as it is the one

truly integrated with SCFS code.
SCFS has two modes: the single-cloud model, where files

are stored in a service like Amazon S3; and the multiple-
cloud model, where files are stored on several clouds using
the DepSky software library [10]. In this integration, SCFS
was configured with DepSky. Data integrity is protected in
SCFS and DepSky using RSA digital signatures [34]. This
allows users to verify any data present in the cloud storage,
but requires users to download the data and the signatures and
perform the integrity verification on their device, with both
monetary costs and delays.

The user components of S-AUDIT were integrated in Dep-
Sky’s component responsible for uploading data into the cloud.
The logic for communicating with different commercial clouds
is implemented in subcomponents called cloud drivers. Since
the integration of S-AUDIT should not break any of the

auditable-amazon-s3 
driver

S-Audit components

LocalDepSkyClient

DepSky Core

DriversFactory

amazon-s3 driver

DepSky Drivers

Signature Generator

Key Generator

RandomGenerator

SCFS client-side code

Figure 2. SCFS/DepSky client-side code. Components modified and added
for S-AUDIT integration are shown in grey.

features currently supported by DepSky or SCFS, integrating
both systems required code changes to DepSky, in a contained
way. The followed approach was the addition of a new type
of cloud driver: the auditable cloud driver. With these newly
introduced cloud drivers, besides accessing and uploading
data to the cloud, data is signed using S-AUDIT’s signature
generator and the signature is also stored on the cloud. As seen
in Figure 2, for integrating these new drivers, DepSky was
modified in two packages: core and drivers. Code was added
to the core package of DepSky, in the DepSky initialization
function (in LocalDepSkySClient.java) and to the DepSky
driver constructor function (in DriversFactory.java).

For using S-AUDIT, SCFS has to be configured with these
auditable cloud drivers, which implement the logic of our
system. For instance, to use Amazon S3 as cloud storage,
instead of using the original (non-auditable) driver amazon-s3,
the corresponding auditable driver auditable-amazon-s3 was
used. Users can choose which drivers to use, by modifying
the configuration file with the name of the desired drivers.
The DepSky initialization function automatically reads the
user’s secret key, the setup parameters (‘.param’ and ‘.g’)
and the signature parameters (‘.w’) provided by the auditor;
and uses the initialization function of the DepSky driver for
initializing the driver with that information. Regarding the
driver package, the auditable drivers extend the non-auditable
drivers. Whenever data is uploaded to the commercial cloud
using the auditable driver, data is signed by using S-AUDIT’s
sign data component and then both signature and data are
uploaded to the commercial cloud by invoking the the non-
auditable driver code.

V. EXPERIMENTAL EVALUATION

The cloud used during the implementation was AWS [4]:
S3 [2] was used for storage and Lambda for executing the
Proof Verifier.

With the experiments we wanted to answer the questions:
(1) What is the gain in terms of bandwidth consumption in
using S-AUDIT instead of RSA (Section V-B)?
(2) What are the monetary costs of using S-AUDIT in com-
parison to the use of digital signatures (Section V-C)?
(3) What is the performance overhead observed by the user
when writing files (Section V-D)?
(4) How long does it take to verify the integrity of a file
(Section V-E)?
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A. Experimental Settings

On the experiments, the user and the auditor components
were executed on a computer with Intel Core i7-4500U
CPU 1.80-2.40 GHz processor, 8 GB of RAM, and running
Windows 10. The user and auditor were located in Portugal.
The cloud was AWS located in Ireland. Lambda was setup
to execute code with 128 MB of memory (the cheapest
configuration) and 512MB of memory (when the file size
required it).

The evaluation was performed using one file for each of the
following sizes: 100 KB, 500 KB, 1 MB, and 10 MB. Each
experiment was repeated 30 times.

Some of the experiments involved the execution of two
schemes to serve as baseline: the original SW integrity verifi-
cation scheme (implemented using a version of S-AUDIT that
strictly follows the scheme without employing the point com-
pression technique); and the RSA digital signature scheme.
Both S-AUDIT and the original SW scheme were parameter-
ized with type F pairing curves, where G had 40 bytes, GT 80
bytes, and Zp 20 Bytes, with SHA-1 as hash algorithm, and
asymmetric keys used with a 20 byte secret key and a 80 byte
public key. For RSA, 1024 bit keys and SHA-1 were used.

B. Bandwidth

An important goal of our work is to avoid the time and cost
of downloading all the data from the cloud in order to verify
if it was modified. In this section we measure the bandwidth
consumed downloading data, measured in number of bytes.

Figure 3 shows the results for S-AUDIT and compares
them with the original SW scheme (that provides identical
results) and with the use of RSA digital signatures (that
retrieves all data to be verified). The results show that as the
storage size grows, S-AUDIT and the SW scheme are able to
maintain constant bandwidth consumption. Also, since proofs
are composed of an aggregation of blocks belonging to Zp
(20 bytes) and an aggregation of blocks belonging to G (40
bytes), the bandwidth consumption is always equal to the sum
of these group’s sizes and that it is always low (the cost for
reading 60 bytes is negligible). On the contrary, for RSA, the
use of bandwidth grows linearly with the size of the files.

C. Monetary Costs

To assess the monetary costs of verifying the integrity of the
cloud storage two cases were considered: the additional stor-
age taken with digital signatures; and the costs of generating
proofs on the cloud.

a) Storage Costs: Using S-AUDIT for verifying data
integrity on the cloud storage requires users to store on the
cloud the data’s digital signatures, which implies additional
monetary storage costs.

Figure 4 compares the storage size – of the file and
signature(s) – as data size grows, when using S-AUDIT,
SW, and RSA signatures. As seen in the figure, storing SW
signatures increases the storage size by 200%, but S-AUDIT
manages to reduce this overhead to 100% with the signature
reduction scheme of Section II-E. This reduction has great
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Figure 5. Time for the cloud to generate an integrity proof using S-AUDIT.

positive impact on storage monetary costs, but still requires
twice the storage than the ideal case where signature sizes
are negligible (the RSA case). The actual monetary costs
tend to be proportional to the amount of data stored in most
commercial clouds. For example, in Amazon S3 Ireland this
cost is $0.023 per GB per month, for the first 50 TB / month,
using standard storage (half of that for infrequent access and
$0.004 in the Glacier service) [3].

b) Proof Generation Costs: In order to evaluate the
monetary costs associated with integrity proof generation, S-
AUDIT’s proof generator was executed in the cloud.
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Table I
PRICES FOR GENERATING PROOFS AND READING DATA (BASED ON

AMAZON IRELAND PRICES, STANDARD STORAGE).

S-AUDIT RSA signatures
File Size
(KB)

Average
Execution Time (s)

Execution cost1
(microUSD)

Read Costs2

(microUSD)
Savings
(%)

128 3.82 8.11 11.52 29.58
256 7.44 15.60 23.04 32.29
512 14.67 30.57 46.08 33.64
1000 28.55 59.48 90.00 33.90
10000 82.29 686.38 943.74 27.27

1Considering 0.208 microUSD for 0.1s of computation (Lambda w/128 MB
RAM) for files up to 1 MB, and 0.834 microUSD for 0.1s of computation

(Lambda w/512 MB RAM) for bigger files.
2Considering 0.09 microUSD for 1GB read from the cloud storage (S3)

Figure 6. Monthly costs in microUSD for 1 MB of data depending on the
number of verifications per month.

Figure 5 presents the time for generating integrity proofs in
S-AUDIT. The figure makes clear that the time grows linearly
with the storage size. Furthermore, as seen in Table I, when
comparing price paid for generating a proof (execution time)
with the cost of downloading the files entirely and performing
the integrity verification on the auditors’ device (as required
by RSA), generating integrity proofs was cheaper than reading
the data from the cloud and allowed a monetary saving of 30%,
on average.

c) Cost Tradeoffs: The previous results show that using
RSA signatures is costly (and slow) in terms of downloading
data, but S-AUDIT doubles the cloud storage monetary costs.
Therefore there is a trade-off that we now quantify. Figure 6
shows how the cost of verifying 1 MB varies with the number
of verifications done per month. For S-AUDIT the cost has
two main components: the cost of storage (again the values
for standard storage in S3 Ireland), and the cost for generating
proofs in the cloud (again in Lambda). For RSA signatures,
the cost has also two main components: the cost for storing
and downloading the data (also S3 Ireland).

The main conclusion from the graph is that the best option
in terms of cost depends on how often the data is verified.
If the data is verified once per month, the cost of using S-
AUDIT is 7.1% lower than the cost of using RSA signatures.
This cost becomes much lower – 34.9% – if the verification
is done approximately every week (4 times per month).

Notice that the cost of S-AUDIT would be lower if cheaper
storage services were used, e.g., Amazon S3 with infrequent
access or Amazon Glacier [3].

File Size (KB)

Figure 7. Time for signing data using S-AUDIT and RSA.

D. User: Client-Side Overhead

S-AUDIT should not have a great impact on the performance
seen by the user, i.e., on the client-side software. However,
such impact may exist when files are written in the cloud,
as signatures have to be computed in order to allow verifying
integrity later. In order to assess if S-AUDIT meets this criteria,
two aspects were evaluated: the time taken to sign data using
S-AUDIT and RSA; and the overhead on SCFS.

a) Signature Generation: The signature generation of S-
AUDIT was evaluated in terms of the time required to compute
a signature in the user’s device. The results obtained are
presented in Figure 7. The time required for signing data
using S-AUDIT increases linearly and is much slower when
compared to RSA digital signatures, which take around two
milliseconds. This almost constant time is due to the fact
that data signed using RSA digital signatures is first hashed
(faster phase), then encrypted using RSA (slower but constant
time). In S-AUDIT, the SW scheme, and all the other publicly
verifiable schemes, all of the data has to be signed without
using hashes, to avoid security problems related to generating
proofs using precomputed hashes (i.e., an adversary at the
cloud computes the hashes once, corrupts or discards the data,
and later computes proofs using only the hashes). Furthermore,
due to this limitation it is necessary to sign each block of
data individually, which takes longer as data grows. This
makes S-AUDIT slower than the usual signature generation
mechanisms. This was expected due to the computational cost
of the homomorphic signature generator. Nevertheless, this
overhead can be masked by the application, as shown next.

b) SCFS with S-Audit’s Signature Generator: In order
to evaluate the performance impact of S-AUDIT integrated on
cloud-backed applications, we evaluated the performance of
writing a file in SCFS, both with and without S-AUDIT. The
results differ much depending on the mode in which SCFS is
executed: non-blocking or blocking.

The non-blocking mode is the one that is recommended [11].
In this mode, when a client closes a file by calling close, the
file is written to the local disk and the call returns. Then, in
the background, DepSky pushes the file to the clouds. In this
mode, both versions of SCFS, with and without S-AUDIT, had
the same performance from the client’s perspective.
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(with linear interpolation).

Figure 9. Time for verifying S-AUDIT file integrity proofs and RSA
signatures.

In blocking mode, SCFS waits for the file to be stored
in the cloud for the close call to return. This mode is slow
even in the original SCFS, so it is not recommended [11].
Nevertheless, we did several experiments of uploading a 1 MB
file to the cloud using SCFS with and without S-AUDIT. The
results obtained are presented in Figure 8 and show that the
integration with S-AUDIT increases time significantly. These
results are similar to those presented in Figure 7 (for the 1
MB file).

E. Auditor: Proof Verification Time

The last set of experiments assessed the time required for
the auditor component do to its job, i.e., to verify the proofs
obtained from the cloud. This was compared with checking
RSA signatures, excluding the time to download the files.

As seen in Figure 9, the time necessary for verifying a
signature in S-AUDIT increases linearly and is slow compared
with RSA digital signatures. This is due to the fact that for
verifying a proof using S-AUDIT and on the original SW
scheme, it is necessary to multiply all the identifiers of the
blocks audited and it does not scale well as the data grows.
For example, verifying 1MB of data involves multiplying the
identifiers of 25600 blocks, which increases time to the values
obtained in the experiments.

F. Evaluation Outcomes

The main outcomes of the experimental evaluation are the
following:

• In terms of monetary costs, using S-AUDIT is better or
worse than RSA signatures depending on the periodicity
of the verifications; in a typical environment (AWS) S-
AUDIT is cheaper when data is verified monthly (7.1%
cheaper) and is considerably cheaper when data is verified
weekly (34.9%);

• When doing integrity verification, S-AUDIT requires
downloading much less data than RSA signatures (only
60 bytes), but verifying the proofs takes time also;

• S-AUDIT requires computing signatures when data is
uploaded so it has an impact on the performance of that
operation, but this impact can be completely masked by
the application, as seen with SCFS in non-blocking mode.

VI. RELATED WORK

S-AUDIT fits in the cloud integrity verification research
area. More precisely, it is closely related with mechanisms that
allows users to perform integrity verification on cloud storage.
The available mechanisms can be divided in two categories:
integrity verification with non-homomorphic proofs and with
homomorphic proofs.

In systems that use non-homomorphic proofs [33], [37],
[10], [19], [39], [22], [11], [31], [36], [15], performing in-
tegrity verification requires files to be downloaded, with the
associated bandwidth consumption and monetary costs. S-
AUDIT aims to reduce these penalties.

In the case of systems that use homomorphic proofs, such
as [8], [42], [40], [13], [41], [18], [35], integrity verification
requires less bandwidth consumption than systems that use
non-homomorphic proofs. However all the mechanisms of this
class studied were not yet practical and only had theoretical
demonstrations of their feasibility. S-AUDIT is the first system
to show that it is possible to integrate with conventional cloud-
backed applications or commercial clouds and also it is the first
to benchmark extensively a homomorphic scheme in a way
that makes it possible to clearly understand the advantages
and disadvantages of using homomorphic schemes.

S-AUDIT allows applications to use a cost-efficient ho-
momorphic integrity verification scheme, based on the SW
scheme and expanded with pairing-friendly elliptic curves [9]
and point compression [27] optimizations.

Research on cloud storage security aims to provide a large
set of properties and services [14], from which remote integrity
verification is only a part. DepSky, SCFS, CYRUS, MetaSync,
UniDrive, and RACS provide integrity and availability by
storing data in several clouds [10], [11], [15], [23], [38], [43].
Some of these services provide also confidentiality [10], [11],
[15], [43]. Depot provides fork-join-causal consistency even
if most storage servers/clouds and clients are faulty, but no
confidentiality [28]. CloudProof allows users to prove cloud
violations of integrity, write-serializability, and freshness [33].

VII. CONCLUSION

This paper presents S-AUDIT, a cloud-storage verification
service designed to be easily integrated with current cloud
storage solutions, including cloud-backed applications and
commercial storage clouds. S-AUDIT automates all the tasks
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involved in storage integrity verification, including signature
generation and verification.

S-AUDIT is targeted at providing integrity proofs without
retrieving the data. S-AUDIT does not aim to substitute the
current mechanisms that provide integrity assurances of data
read from the cloud (MACs, signatures), but to provide proofs
when downloading the data is not needed, e.g., when data is
stored unmodified for reasonably long periods of time.

S-AUDIT was integrated with the SCFS cloud-backed file
system and AWS. As shown by our evaluation: S-AUDIT is
34.5% cheaper than signatures when data is verified weekly in
a typical setting: requires downloading only 60 bytes although
proof verification takes seconds; and requires uploading much
more data, but this overhead can be entirely masked by the
application, as observed with SCFS.
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